
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003 457

Twin Binary Sequences: A Nonredundant
Representation for General Nonslicing Floorplan

Evangeline F. Y. Young, Chris C. N. Chu, and Zion Cien Shen

Abstract—The efficiency and effectiveness of many floorplan-
ning methods depend very much on the representation of the geo-
metrical relationship between the modules. A good representation
can shorten the searching process so that more accurate estima-
tions on area and interconnect costs can be performed. Nonslicing
floorplan is the most general kind of floorplan that is commonly
used. Unfortunately, there is not yet any complete and nonredun-
dant topological representation for nonslicing structure.

In this paper, we propose the first representation of this kind.
Like some previous work (Zhouet al.2001), we have also made use
of mosaic floorplan as an intermediate step. However, instead of
including a more than sufficient number of extra dummy blocks
in the set of modules (that will increase the size of the solution
space significantly), our representation allows us to insert anexact
number of irreducible empty roomsto a mosaic floorplan such that
everynonslicing floorplan can be obtained uniquely fromone and
only onemosaic floorplan. The size of the solution space is only
(!23 1 5), which is the size without empty room insertion,

but every nonslicing floorplan can be generated uniquely and effi-
ciently in linear time without any redundant representation.

Index Terms—Computer-aided design, floorplanning, non-
slicing, representation, very large scale integration.

I. INTRODUCTION

F LOORPLAN design is a major step in the physical design
cycle of very large scale integration (VLSI) circuits to plan

the positions and shapes of a set of modules on a chip in order
to optimize the circuit performance. As technology moves
into the deep-submicron era, circuit sizes and complexities
are growing rapidly, and floorplanning has become ever more
important than before. Area minimization used to be the most
important objective in floorplan design, but today, interconnect
issues like delay, total wirelength, congestion, and routability
have instead become the major goal for optimization. Un-
fortunately, floorplanning problems are NP-complete. Many
floorplanners employ methods of perturbations with random
searches and heuristics. The efficiency and effectiveness of
these kinds of methods depend very much on the representation
of the geometrical relationship between the modules. A good
representation can shorten the searching process and allows fast
realization of the floorplan so that more accurate estimations
on area and interconnect costs can be performed.

Manuscript received June 1, 2002; revised September 10, 2002. This paper
was recommended by Guest Editor S. S. Sapatnekar.

E. F. Y. Young is with the Department of Computer Science and Engi-
neering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (e-mail:
fyyoung@cse.cuhk.edu.hk).

C. C. N. Chu and Z. C. Shen are with the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames, IA 50011-3060 USA.

Digital Object Identifier 10.1109/TCAD.2003.809651

A. Previous Works

The problem of floorplan representation has been studied ex-
tensively. There are three types of floorplans: slicing, mosaic,
and nonslicing. A slicing floorplan is a floorplan that can be
obtained by recursively cutting a rectangle into two by using a
vertical or horizontal line. Normalized polish expression [12]
is the most popular method to represent slicing floorplan. This
representation can describe any slicing structure with no redun-
dancy. An upper bound on its solution space is .
For general floorplan that is not necessarily slicing, there was
no efficient representation other than the constraint graphs until
the sequence pair (SP) [7] and the bounded-sliceline grid (BSG)
[8] appeared in the mid-1990s. The SP representation has been
widely used because of its simplicity. Unfortunately, there are
a lot of redundancies in these representations. The size of the
solution space of SP is and that of BSG is .
This drawback has restricted the applicability of these methods
in large-scale problems.-tree [4] and -tree [1] are later pro-
posed to represent compacted (admissible) nonslicing floorplan.
They have a very small solution space of and can
give a floorplan in linear time. However, they describe only par-
tial topological information and module dimensions are needed
to give a floorplan exactly. The representation is not unique,
and a single -tree or -tree representation, depending on the
module dimensions, can lead to more than one floorplan with
modules of different topological relationships with each other.

In [5], a new type of floorplan is proposed called mosaic
floorplan. A mosaic floorplan is similar to a general non-
slicing floorplan except that it does not have any unoccupied
room [Fig. 1(a)] and there is nocrossing cutin the floorplan
[Fig. 1(b)]. A representation called corner block list (CBL) is
proposed to represent mosaic floorplan. This representation
has a relatively small solution space of 1 and the
time complexity to realize a floorplan from its representation
is linear. However, some corner block lists do not correspond
to any floorplan. As a remedy to the weakness that some
nonslicing structures cannot be represented [e.g., Fig. 1(a)],
CBL is extended by including dummy blocks of zero area in the
set of modules. In order to represent an all nonslicing structure,

of such dummy blocks are used but this has increased
the size of the solution space significantly [14]. In [10], a new
representation called -sequence is proposed to represent

1In [5], the paper claims without proof that the size of the solution space
for CBL isO(n!2 =n). However, we believe that the correct size of CBL
solution space should be�(n!2). In a CBL representation,(S;L; T), there
aren! combinations forS, 2 combinations forL, and2 combinations
for T . Therefore, the total number of combinations is�(n!2).

0278-0070/03$17.00 © 2003 IEEE

458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

(a) (b)

Fig. 1. Structures that cannot be represented in a mosaic floorplan.

mosaic floorplan, which is later enhanced in [15] by including
empty rooms. It is also proved in [15] that the number of empty
rooms required is upper bounded by where is
the number of modules.

B. Our Contributions

Although the problem of floorplan representation has been
studied extensively, and numerous floorplan representations
have been proposed in recent years, it is still practically useful
and theoretically interesting to find a complete (i.e., every
nonslicing floorplan can be represented) and nonredundant
topological representation for general nonslicing structure.
In this paper, we will present such a representation, the twin
binary sequences (TBS). This will mark the first of this kind.
Like some previous work [14], we have made use of the mosaic
floorplan as an intermediate step to represent a nonslicing struc-
ture. However, instead of including an extra number of dummy
blocks in the set of modules, the representation allows us to
insert an exact number ofirreducible empty roomsto a mosaic
floorplan such that every nonslicing structure can be generated
uniquely and nonredundantly. Besides, the representation can
give a floorplan efficiently in linear time. We have studied the
relationship between mosaic and nonslicing floorplan and have
proved that the number of empty rooms needed to be inserted
into a mosaic floorplan to obtain a nonslicing structure is tightly
bounded by where is the number of modules.2

In Section II, we define twin binary sequences (TBS), and
show how a floorplan can be constructed from this representa-
tion in linear time. In Section III, we show how this representa-
tion can be used to describe nonslicing structure with the help
of a fast empty room insertion process. We also present some
interesting results on the relationship between mosaic and gen-
eral floorplan. In Sections IV and V, we discuss our floorplanner
based on simulated annealing and the experimental results are
shown.

II. TBS REPRESENTATION

In the paper [13], Yao,et al. first suggest that twin binary
trees (TBT) can be used to represent mosaic floorplan. They
have shown a one-to-one mapping between mosaic floorplan
and TBT. We have made use of TBT in our representation. Re-
call that the definition of TBT comes originally from the paper
[3] as follows:

Definition 1: The set of TBT with nodesTBT Tree
Tree is the set

TBT Tree and

2Together with the upper-bound result in [15], the tight bound can be further
improved to�(n � 2

p
n).

Fig. 2. An example of a TBT.

Fig. 3. Building a TBT from a mosaic packing.

where Tree is the set of binary trees with nodes, and
is the labeling of a binary tree obtained as follows. Starting
with an empty sequence, we perform an inorder traversal of the
tree . When a node with no left child is reached, we will add
a bit 0 to the sequence, and when a node with no right child is
reached, we will add a bit 1 to the sequence. The first 0 and the
last 1 will be omitted. is the complement of obtained by
interchanging all the 0s and 1s in. An example of a TBT is
shown in Fig. 2

Instead of using an arbitrary pair of trees (which may not
be twin binary to each other) directly, we used four-tuple

called TBS to represent a mosaic floorplan with
modules where is a permutation of the module names,is a
sequence of bits, and and are sequences of bits.
The properties of these bit sequences will be described in de-
tails in Section II-B. This four-tuple can be one-to-one mapped
to a pair of binary trees and such that and must be
twin binary to each other and they together represent a mosaic
floorplan uniquely. Most importantly, we are then able to insert
empty rooms to and at the right places to give a nonslicing
floorplan. We proved that every nonslicing structure can be ob-
tained by this method from one and only one mosaic floorplan.
In order to motivate the idea of our new representation, we will
first show how a TBT can be obtained from a mosaic floorplan
in Section II-A.

A. From Floorplan to TBT

Given a mosaic floorplan , we can obtain a pair of TBT
and by traveling along the slicelines of . An example

is shown in Fig. 3. To construct , we start from the module
at the lower left corner and travel upward (left subtree) and to
the right (right subtree). Whenever the lower left corner of an-
other module is reached, a node labeledwill be inserted into
the tree and the process will be repeated starting from module

until all the modules in the floorplan are visited. The tree

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 459

Fig. 4. Proof of Observation 1 (if part).

can be built similarly by starting from the module at the upper
right corner and travel downward (right subtree) and to the left
(left subtree). Similarly, whenever the upper right corner of an-
other module is reached, a node labeledwill be inserted into
the tree and the process will be repeated starting fromuntil
all of the modules are visited. The paper [13] has shown that
the pair of trees built in this way must be twin binary to each
other, and there is a one-to-one mapping between mosaic floor-
plan and TBT. We observed that the inorder traversal of the two
binary trees constructed by the above method must be the same.
Let us look at the example in Fig. 3. We can see that the inorder
traversals of both and areABCFDE. We have proved the
following observation that helps in defining the TBS represen-
tation.

Observation 1: A pair of binary trees and can be con-
structed from a mosaic floorplan by the above method if and
only if: 1) they are twin binary to each other, i.e.,

; and 2) their inorder traversals are the same.

Proof: (if part) This part can be proved by induction on
the number of modules in the floorplan. The base case occurs
when there is only one module in the floorplan and conditions
(1) and (2) follow trivially. Assume that these conditions are true
when there are not more than modules in the floorplan.
Consider a floorplan with modules. Let the pair of bi-
nary trees constructed from by the above method be and

. Consider the module at the upper left corner of . There
are only four possible configurations for the position ofin
as shown in Fig. 4. In each case, letbe the floorplan obtained
by sliding module out of by moving the thickened slice-
line in the direction shown. Let and be the pair of binary
trees constructed from by the above method. Since floorplan

has only modules, and satisfy conditions (1) and (2)
according to the hypothesis, i.e., , and their in-
order traversals are the same. From Fig. 4, we can see that in case

(a) (b)

Fig. 5. Proof of Observation 1 (only if part).

(a) and (c), , , and the inorder
traversal of is the same as that obtained by appending
in front of the inorder traversal of . Similarly, in case (b)
and (d), , , and the inorder tra-
versal of is the same as that obtained by appendingin
front of the inorder traversal of . Therefore, and also
satisfy conditions (1) and (2).

(only if part) Again, this part is proved by induction. The base
case occurs when there is only one node in the pair of binary
trees. If both conditions (1) and (2) are true (note that condition
(1) must be true since there is only one node in the trees and
their labelings are both empty), their nodes are labeled the same
and they correspond to a packing with only one module. As-
sume that this statement is true for any pair of trees with
nodes, i.e., inorder traversal of lengthand labeling of length

. Consider a pair of trees (and) with inorder traversal
, and labelings and .

There are two cases as shown in Fig. 5 according to the value of
the bit . In both cases, the inorder traversal ,
and the bit sequences and will corre-
spond to a floorplan according to the hypothesis. We can
obtain a floorplan from by putting the module on the
right [case (a)] or at the top [case (b)].will correspond to a

460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 6. Example of an extended tree.

pair of trees with inorder traversal , and label-
ings and . We can choose between case
(a) and (b) depending on the value of. Therefore, this only if
statement is also true when there are nodes in the pair of
trees.

If we extend a tree by adding a left child of bit 0 to every
node (except the leftmost node) that has no left child and by
adding a right child of bit 1 to every node (except the rightmost
node) that has no right child, the tree obtained is called anex-
tendedtree of . An example of an extended tree is shown in
Fig. 6. Notice that the inorder traversal of the extended tree of
will be where is the in-
order traversal of and is the labeling of . Ob-
servation 1 can be restated as follows.

Observation 2: A pair of binary trees and can be con-
structed from a mosaic floorplan by the above method if and
only if the inorder traversal of their extended trees are the same
except that all the bits are complemented.

B. Definition of TBS

From observation 1, we know that a pair of binary trees
and arevalid (i.e., corresponding to a packing) if and only if
their labelings are complement of each other and their inorder
traversals are the same. However, the labeling and the inorder
traversal are not sufficient to identify a unique pair ofand

. Given a permutation of module namesand a labeling ,
there can be more than one valid pairs ofand such that
their inorder traversals are and . In
order to identify a pair of trees uniquely, we need two additional
bit sequences and for and , respectively, such that the

bit in and tells whether theth module in is the left
child (when the bit is 0) or the right child (when the bit is 1)
of its parent in and , respectively. These bits are called the
directional bits. If module is the root of a tree, its directional
bit will be assigned to zero.

For a binary tree, its labeling sequence
and its directional bit sequence must satisfy
the following conditions.

1) In the bit sequence , the number of 0s
is one more than the number of 1s.

2) For any prefix of the bit sequence ,
the number of 0s is more than or equal to the number of
1s.

We proved the following lemmas which show that conditions
(1) and (2) are necessary and sufficient for a pair of labeling

sequence and directional bit sequenceto correspond to a
binary tree.

Lemma 1: For any binary tree, its labeling sequenceand
directional bit sequence must satisfy conditions (1) and (2).

Proof: Given a binary tree , the bit sequence
is the inorder traversal of the extended

tree of (with the internal nodes labeled by their directional
bits). To verify condition (1), notice that each internal node of

has two children, one is labeled by zero and the other one
is labeled by one. We assume that the root is labeled by zero.
Therefore, condition (1) must be satisfied. To verify condition
(2), notice that for any two children having the same parent, the
child labeled zero is always visited first in the inorder traversal.
Therefore, condition (2) must be satisfied.

Lemma 2: For any binary sequencesof bits and
of bits satisfying conditions (1) and (2), there exists a unique
binary tree such that the labeling sequence ofis and the
directional bit sequence ofis .

Proof: The uniqueness can be proved by induction on the
number of nodes. The claim is trivially true when there is only
one node, i.e., when . Assume that the claim holds when
the number of nodes is at most, i.e., when . Consider
the case when . Given a pair of binary sequences

and , we can reduce the
problem to the case with or less nodes as follows. First of all,
we append a bit in front of and a bit at the
end of . Then there exists at least onesuch that
and . This is a place for a leaf node where the leaf is
either a left (when) or a right (when) child of
its parent. We use to denote the set of all such locations, i.e.,

. Let
be the binary sequence obtained fromby replacing
by for all , and be the binary sequence obtained
from by deleting for all . Notice that the first bit
of must be zero and the last bit must be one, i.e., we can
write as . According to the induction hypothesis, there
exists a unique binary treesuch that the labeling sequence of

is and the directional bit sequence ofis . The tree
for the original pair of binary sequences
and can be constructed uniquely fromby
inserting a leaf to the position of bit in for all .
Therefore, the uniqueness still holds when .

Now, we can define the TBS representation. A TBSfor
modules is a four-tuple:

where is a permutation of the modules, both and , and
(the complement of) and satisfy conditions (1) and (2). We
have proved the following two theorems that show a one-to-one
mapping between TBT and mosaic floorplan.

Theorem 1: The mapping between TBS and TBT is
one-to-one.

Proof: Given a pair of TBT, we can construct one unique
TBS according to the definition in Section II-B. On the other
hand, if we are given a TBS , according to
Lemma 2, there exists a unique binary tree such that the

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 461

(a) (b) (c) (d) (e)

Fig. 7. Simple example of constructing a floorplan from its TBS.

labeling sequence of is and the directional bit se-
quence of is . Since , and are
twin binary. We can then label their nodes according to the in-
order traversal . This is the unique pair of TBTand corre-
sponding to . Therefore, the mapping between TBS and TBT
is one-to-one.

Theorem 2: The mapping between TBS and mosaic floor-
plan is one-to-one.

Proof: The one-to-one mapping between TBS and mo-
saic floorplan follows from Theorem 1 and the proof in paper
[13] that the mapping between TBT and mosaic floorplan is
one-to-one.

C. From TBS to Floorplan

1) Algorithm for Floorplan Realization:In order to realize a
floorplan from its TBS representation efficiently, we devised an
algorithm that only needs to scan the sequences once from right
to left to construct the packing. We will construct the floorplan
by inserting the modules one after another following these-
quence in the reversed order. A simple example illustrating the
steps of the algorithm is given in Fig. 7. At the beginning, we
will put the last module of the sequence, i.e., module, into
the packing . We will then insert the other modules one after
another. The next module to be considered afteris .
Since , we will look at the sequenceand find the closest
bit 1 on the right of , i.e., . We will then add module into

from the left pushing (since) to the right as shown
in Fig. 7(b) and delete bit from . The next module to be
considered after is . Since , we will look at the
sequence and find the closest bit 1 on the right of, i.e., .
We will then add module into from above pushing (since

) down as shown in Fig. 7(c) and delete bit from .
These steps repeat until the whole sequenceis processed and
a complete floorplan is obtained.

Algorithm TBStoFloorplan
Input: TBS
Output: Packing corresponding to
Begin
1. Append with bit “1,” i.e., .
2. Initially, we have only module in

.
3. For down to :
4. If :
5. Find the smallest s.t. and

.
6. Note that the set of modules

(those with their corre-

(a) (b)

Fig. 8. Proof of Theorem 3.

sponding bit not deleted yet) will be
lying on the left boundary of . Add
module to from the left, pushing
those modules in to the right.

7. Delete from .
8. If :
9. Find the smallest s.t. and

10. Note that the set of modules
(those with their corre-

sponding bit not deleted yet) will
be lying on the top boundary of . Add
module to from above, pushing those
modules in down.

11. Delete from .
End

2) Proof of Correctness:The correctness of the above algo-
rithm on floorplan realization can be proved by the following
lemma and theorem.

Lemma 3: In the for-loop of the above algorithm, when we
scan to a point where and ,
the corresponding node in has a right child and
all the nodes in, where is the subtree of rooted at ,
have been scanned immediately before. In addition, any node

where and will have its
bit deleted.

Proof: W.l.o.g., we only prove the case when . The
case when can be proved similarly. The proof can be
done by induction on. The base case is when . If

, must have a right child in , according to the
definition of TBS. Let be the right subtree of in . Since
we are performing the inorder traversal in the reversed order, the
nodes in must have been scanned immediately before . In
this base case, there is only one node in which is the right
child of and . Therefore, the statement is true for
this base case.

Assume that the statement is true when for some
. Consider the case when . If ,

similarly, must have a right child in , according to the
definition of TBS. Let be the subtree of rooted at . Since
we are performing the inorder traversal in the reversed order, the
nodes in must have been scanned immediately before .
Let them be , where is the size of .
(Note that .) If there is any node in
where and , must have been deleted when the
scan reaches . This is because, if , is the right
child of its parent in and must also be in. According to

462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

(a) (b)

Fig. 9. Proof of Theorem 3.

the inductive hypothesis, when we scan to, we will find that
(since has a right child in) and will be the

only node in the right subtree of in such that at that
moment. Since the nodes in the right subtree ofwill be lying
immediately in front of in the reversed inorder traversal, we
will delete all the bits up to and including . Therefore, when
we scan to , any node where and will
have its bit deleted.

Theorem 3: The algorithm TBStoFloorplan can convert TBS
to its corresponding floorplan correctly.

Proof: Again, the proof can be done by induction on the
number of modules. The base case occurs when there are only
two modules in the packing. There can only be two different
mosaic packings with two modules, one with the two modules
lying side by side and the other one with the two modules piling
up vertically. It is easy to show that the algorithm is correct in
both situations.

Assume that the algorithm is correct when there aremod-
ules in the floorplan for some . Consider the case when
there are modules. W.l.o.g., we assume that . The
case when can be proved similarly. Since ,
the upper left module has a right child in

and should be packed in one of the two ways shown in
Fig. 8 in the floorplan . Assume that the TBS of is

where , ,
, and . Consider

sliding module out of the floorplan (Fig. 9) in the direction
shown to obtain a floorplan with modules. Note that the
TBS for can be obtained fromby changing from one
to zero and removing , , , and from , , , and ,
respectively. Since has only modules, the algorithm can
construct the floorplan correctly from , according to the
inductive hypothesis.

Consider the sequence of operations of the algorithm on.
The first steps of the for loop will be the same as that
for . The two sequences of operations are the same although

is changed from one to zero because all of the modules lying

between and in the inorder sequenceare in the left subtree
of in . After scanning pass , if there is an where

, we will only delete those bits up to and including
, where is the right child of , according to Lemma 3.

Thus, the value of will not affect the first steps of the for
loop. That means, when we reach, the intermediate floorplan
obtained is the same as . At , since , according to
the above lemma, will be the only module in the left
subtree of in such that . Therefore, we will delete
all the bits up to and including and insert module to
from the left, pushing to the right all the modules from the upper
left corner of down to and including module . We will get
back the correct packing. Therefore, the statement is also true
when there are modules in the packing.

D. Size of Solution Space

The TBS representation is a complete and nonredundant
representation for mosaic floorplan. Thus, the number of
different TBS configurations should give the Baxter number
[13]. The Baxter number can be written analytically as a
complicated summation [13, eq. (3.1)]. However, there is no
known simple closed-form expression for the Baxter number.
In the following, an upper bound on the number of different
TBS configurations (i.e., on the Baxter number) is presented.

Consider a TBS for modules. and
uniquely specify a rooted ordered binary tree. Thus, the number
of combinations of and is given by the Catalan number.
Since the number of combinations foris , the number of
combinations for is upper-bounded by , the Catalan
number is upper-bounded by , the number of
different TBS configurations is bounded by .

III. EXTENSION TO GENERAL FLOORPLAN

A. Empty Rooms in Mosaic Floorplan

A TBS represents a mosaic floorplan. Now, we want to
insert an exact number of empty rooms at the right places in

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 463

(a) (b)

Fig. 10. Examples of reducible and irreducible empty rooms.

Fig. 11. Wheel structure.

to obtain a corresponding nonslicing floorplan such that
every nonslicing floorplan can be generated by this method from
one mosaic floorplan nonredundantly. There are two kinds of
empty rooms. One is resulted because a big room is assigned
to a small module. This kind of empty room is calledreducible
empty room. An example is shown in Fig. 10(a). Another kind
of empty room is calledirreducible empty roomand is defined
as follows.

Definition 2: An irreducible empty room is an empty room
that cannot be removed by merging with another room in the
packing.

An example of an irreducible empty room is shown in
Fig. 10(b). We observed that an irreducible empty room must
be ofwheelshape and its fouradjacent rooms(the rooms that
share a T-junction at one of its corners) must not be irreducible
empty rooms themselves.

Lemma 4: The T-junctions at the four corners of an irre-
ducible empty room must form a wheel structure (Fig. 11).

Proof: If an empty room does not form a wheel struc-
ture, there is at least one slicing cut (Fig. 12) on one of its four
sides. By removing this slicing cut, we can mergewith the
room on the other side of the slicing cut (room A in Fig. 12) and

can be removed.
Lemma 5: The adjacent rooms at the four T-junctions of an

irreducible empty room must not be irreducible empty rooms
themselves.

Proof: W.l.o.g., we consider an irreducible empty room
of clockwise wheel shape and assume that its adjacent room
sharing with the T-junction at its upper left corner is also an
irreducible empty room (Fig. 13). Thenmust be an anticlock-
wise wheel. There are two cases: 1) If width width ,

can be merged with [Fig. 13(a)] to form a new empty
room. This empty room is reducible and can be removed
by combining with the modules on the right hand side (labeled

) and 2) If width width , can be merged with
[Fig. 13(b)] to form a new empty room and a similar argument

Fig. 12. Proof of Lemma 4.

(a) (b)

Fig. 13. Proof of Lemma 5.

follows. In both cases, we are able to reduce the number of ir-
reducible empty rooms by one. By repeating the above process,
we will either end up with only one irreducible empty room that
must satisfy the condition, or the situation that every remaining
irreducible empty room does not share a T-junction with each
other.

B. Mapping Between Mosaic Floorplan and General
Nonslicing Floorplan

In this section, we will show how a nonslicing floorplan
can be constructed from a mosaic floorplanby inserting some
irreducible empty rooms at the right places in. For simplicity,
we will make use of TBT for explanation. That means, given a
mosaic floorplan represented by a TBT and , we want to
insert the minimal number of empty rooms (represented by)
to the trees appropriately so that they will correspond to a valid
nonslicing floorplan , and the method should be such that
every nonslicing floorplan can be constructed by this method
uniquely from one and only one mosaic floorplan. To construct
a nonslicing floorplan from a mosaic floorplan, we only need to
consider those irreducible empty rooms, because all reducible
empty rooms can be removed by merging with some neigh-
boring rooms. From Lemma 4, we know that an irreducible
empty room must be of the shape of a wheel, so its structure
in the TBT must be of the form as shown in Fig. 14. In our
approach, we will use the following mapping to create irre-
ducible empty rooms from a sliceline structure.

Definition 3: The mapping will map a vertical (hori-
zontal) sliceline with one T-junction on each side to an irre-
ducible empty room of anticlockwise (clockwise) wheel shape
(Fig. 15).

It is not difficult to prove the uniqueness of this mapping as
stated in the next Lemma:

Lemma 6: Every nonslicing floorplan can be mapped by
from one and only one mosaic floorplan.

Proof: Given a nonslicing floorplan , each of its irre-
ducible empty rooms must form a wheel structure, sharing its
four corners with four different modules. Each of them can only

464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

(a) (b)

Fig. 14. Tree structure of an irreducible empty room.

Fig. 15. Mapping between mosaic floorplan and nonslicing floorplan.

be created from one slicing structure as described in the map-
ping . It is thus obvious that the floorplan can only be
mapped from one unique mosaic structure.

From Lemma 5, we know that the adjacent rooms of an ir-
reducible empty room must be occupied. Therefore, if we want
to insert s into the TBT and of a mosaic floorplan, the

s must be inserted between some module nodes as shown in
Fig. 16. Given this observation, we will first insert as manys
as possible (i.e.,) into and to obtain another pair of
trees and . An example is shown in Fig. 17(b). Now, the
most difficult task is to select those s that are inserted cor-

Fig. 16. Only two ways to insertX into a tree.

(a) (b)

(c)

Fig. 17. Simple example of constructing a nonslicing floorplan from a mosaic
floorplan.

rectly. According to Observation 2, a pair of TBT are valid (cor-
respond to a packing) if and only if the inorder traversal of their
extended trees are equivalent except that all the bits are reversed.
Therefore, in order to find out those valids, we will write
down the inorder traversals of the extended trees ofand
and try to match the s. The matching is not difficult since there
must be an equal number ofs between any two neighboring
module names [Fig. 17(c)]. We may need to make a choice when
there are more than ones between two modules. For example,
in Fig. 17(c), there is one between and in the first

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 465

Fig. 18. Example of searching the last module in the right subtree of� .

sequence and there are twos in the second sequence. In this
case, we can match one pair ofs. There are two choices from
the second sequence, and they will correspond to different non-
slicing structures as shown in Fig. 17(c). Every matching will
correspond to a valid floorplan, and each nonslicing floorplan
can be constructed uniquely by this method from one and only
one mosaic floorplan.

C. Inserting Empty Rooms Directly on TBS

In our implementation, we do not need to build the trees
explicitly to insert empty rooms. We can scan the TBS

once to find out all the positions of thes in the
inorder traversals of and after insertion. This is possible be-
cause of the following observation. Consider aninserted at a
node position in a tree. If has a left subtree [Fig. 16(a)],
this inserted will appear just before the left subtree ofin
the inorder traversal of . Similarly, if has a right child
[Fig. 16(b)], this inserted will appear just after the right sub-
tree of in the inorder traversal of . A simple algorithm can
be used to break down the subtree structure of a tree and find
out all the positions of the s in the sequences after insertion in
linear time. The details of the algorithm are as follows.

We scan the TBS from left to right and assume that .
If , module has a right subtree in according to the
definition of TBS. By the observation above, we only need to
find the position of the last module in the right subtree of

in from the TBS, and then insert one just after in
the inorder traversal of . In addition, we will assign 1 as the
labeling bit of the inserted . Note that the right subtree of
can be taken as a binary tree except that the directional bit of the
root is 1, not 0 as usual. In addition, . Thus, we obtain
the modified conditions for the right subtree ofas follows:

a) In the bit sequence , the
number of 1s is two more than the number of 0s.

b) For any proper prefix of the bit sequence
, the number of 1s is less

than or equal to the number of 0s plus 1.

Based on the above conditions, we can count the number of 0s
and 1s from and until we reach the module . It is
not difficult to find by the following mathematical form:

(1)

Fig. 19. Example of searching the first module in the left subtree of� .

Fig. 20. Floorplan example with many irreducible empty rooms.

Fig. 21. Right-Rotate and Left-Rotate for a binary search tree.

Fig. 22. Modified red-black rotations when subtreeD is 0 or 1.

where we define

if
if

A simple example is shown in Fig. 18. After we insert anat
module , the inorder traversal of the extended becomes

. Note that the inserted appears
just after the last module (i.e., module) of the right subtree of

in . The labeling bit for the inserted is 1.
If , module has a right subtree in according to the

definition of TBS. Similarly, we can insert an at directly
by searching the last module of the right subtree ofin . The
algorithm is exactly the same as above.

466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 23. Four cases of Left-Rotate(T; �) on t .

Now we consider the case that has a left subtree in the
TBT. If , has a left subtree in . According to
the observation above, we only need to find the position of the
first module in the left subtree of in from the TBS,
and insert one just before in the inorder traversal of . In
addition, we assign 0 as the labeling bit of the inserted. Note
that the left subtree of in is exactly a general binary tree.
In addition, . We thus obtain the modified conditions
for the left subtree of as follows:

a) In the bit sequence , the
number of 0s is two more than the number of 1s.

b) For any proper prefix of the bit sequence
, the number of 0s is

less than or equal to the number of 1s plus 1.
Based on the above conditions, we can count the number of 0
and 1 from and until we reach the module . It is
not difficult to find by the following mathematical form:

(2)

Another simple example is shown in Fig. 19. After we insert an
at module , the inorder traversal of the extendedbecomes

. Note that the inserted appears
just before the first module (i.e., module) of the left subtree
of in . The labeling bit for the inserted is 0.

If , module has a left subtree in . Similarly, we
can insert an at directly by searching the first module in

the left subtree of in . The algorithm is exactly the same as
above.

After we inserted all the possible s, we obtain the inorder
traversals of the trees and are obtained. Matching can then
be done as described in Section III-C.

D. Tight Bound on the Number of Irreducible Empty Rooms

In order to describe nonslicing structure by a mosaic floorplan
representation, some previous works [14], [15] include dummy
blocks of zero area in the set of modules. The method described
in Section II-C is very efficient but it is applicable to the TBS
representation only. In general, we only need to have extra
dummy blocks in order to represent all nonslicing structures
by a mosaic floorplan representation. We have proved an upper
bound of and a lower bound of on the number
of irreducible empty rooms in a general nonslicing floorplan.
(An example with 49 modules and 36 irreducible empty rooms
is shown in Fig. 20). It means that dummy blocks are
needed and we cannot use much less.

Theorem 4: In a nonslicing floorplan , there can be at most
irreducible empty rooms.

Proof: According to Lemma 5, the adjacent rooms of an
irreducible empty room in must be occupied. Therefore, each
irreducible empty room will take up four corners of some oc-
cupied rooms. Since there are onlyoccupied rooms in total
and the four corners of the chip cannot be used, there are only

corners to be used. Therefore, there are at most
irreducible empty rooms.

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 467

Fig. 24. Proof of Lemma 7.

Theorem 5: There exists a nonslicing floorplanof mod-
ules and irreducible empty rooms.

Proof: A floorplan with irreducible empty
rooms can be constructed similarly to the example in Fig. 20. Let

be the number of modules along each edge (for the example
in Fig. 20,), number of modules and number of
empty rooms .

IV. FLOORPLAN OPTIMIZATION BY SIMULATED ANNEALING

Simulated annealing is used to search for a good TBS. The
temperature is set to 1.510 initially and is lowered at a con-
stant rate of 0.95 to 0.97 until it is below 110 . The number
of iterations at one temperature step is 30. In every iteration of
the annealing process, we will modify the TBS by one of the
following four kinds of moves:

M1: Swap two modules in .
M2: Change the width and height of a module.
M3: Rotation based on .
M4: Rotation based on .

We design the moves such that all TBSs are reachable. In
Lemma 7, we prove that starting from any TBS, we can generate
any other TBS with the same sequence by applying one or
more moves from the set . Since we can swap any
two modules in the sequence by move M1 and M2 changes
the dimensions of a module, all TBSs are reachable by applying
moves from the set . In addition, we will
make sure that the sequences obtained after each move is a valid
TBS [i.e., satisfying conditions (1) and (2)].

For move M1, we only exchange the module names in two
randomly selected rooms. For move M2, we change the width
and height of a module within the given limits of its aspect
ratio. Obviously, both move M1 and M2 takes time. For
move M3 and M4, we borrow and modify the idea of rotations
in red–black tree [2]. A red–black tree is a binary search tree.
The rotation in a red-black tree is an operation that changes the
tree structure locally while preserving the inorder traversal of
the tree. Two kinds of rotations, Right-Rrotate and Left-Rotate,
are defined originally in [2] (Fig. 21). and represent two
nodes. and represent arbitrary subtrees. Right-Rotate

transforms the left tree structure to the right tree struc-
ture, while keeping the inorder traversal of the tree unchanged
(e.g., the inorder traversal of the tree before and after rotation

TABLE I
AREA MINIMIZATION

TABLE II
AREA AND WIRELENGTH MINIMIZATION

are both equal to in Fig. 21). The operation of left ro-
tation is similar. Both Left-Rotate and Right-Rotate run in
time. When we apply red-black tree rotations on our TBT, the
subtree in Fig. 21 should not be 1 or 0. In the case that sub-
tree is 1 or 0, we modify the red-black rotations as shown
in Fig. 22, where is designated to 0 or 1 after Right-Rotate

or Left-Rotate .
For the moves M3 and M4, we randomly pick one module

from , and check . If , has a right child in and
has a left child in . We can then use move M3 to apply

Left-Rotate on or use move M4 to apply Right-Rotate
on . They are similar to each other and one of them

will be randomly picked and applied. W.l.o.g., we present the
details of Left-Rotate on according to the following
four cases shown in Fig. 23(a)–(d) simplicity, we use letter
and to represent the root of each subtree.

Case 1) and the right child of has a left child.
Case 2) and the right child of has a left child.
Case 3) and the right child of has no left child.
Case 4) and the right child of has no left child.
For Case 1, after left rotation of module, the only change

in is the directional bits of module and , so we only need
to flip and . Because the labeling sequencedoes not
change, we do not need to update. Thus, we keep the same
as before. Case 2 is similar to Case 1. For Case 3, bothand

468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

TABLE III
COMPARISONSWITH ECBL AND ENHANCEDQ-SEQUENCES

TABLE IV
COMPARISONSWITH OTHER REPRESENTATIONS FORNONSLICING FLOORPLAN

the directional bit of module are flipped after left rotation of
module . In order to maintain conditions (1) and (2), we need
to update by flipping one directional bit of from 0 to 1.
Note that is the left child of in . Thus, if is 0, we will
flip from 0 to 1. Otherwise, we will flip from 0 to 1. Case
4 is similar to Case 3. Actually, updating in case 3 and 4 is
exactly the Right-Rotate on in case 3 and 4.

If , has a right child in and has a left child
in . We can thus use move M4 to apply Left-Rotate on

or use move M3 to apply Right-Rotate on . One
of them will be randomly picked and applied. The algorithm of
right rotation is similar to that of left rotation.

In move M3 and M4, if does not change, we only need to
update one tree and each move takes time. If changes, we
need to update both trees (i.e., apply two rotations). Therefore,
both move M3 and M4 take time in practice.

Lemma 7: Starting from any TBS, we can generate any other
TBS with the same sequence by applying one or more moves
from the set

Proof: We observe that at most left rotations suffice
to transform any arbitrary -node binary tree into a left-going
chain [2]. Given a TBT, w.l.o.g., we can apply at most
left rotations by move M3. The binary tree will become a
left-going chain [Fig. 24(a)]. Since move M3 always results in
a TBT, the binary tree must also be transformed into a right-
going chain [Fig. 24(b)]. The corresponding floorplan is shown
in Fig. 24(c).

Noticing that any left rotation in move M3 has its reversed
rotation which is the right rotation, an-node TBT where

is a left-going chain and is a right-going chain can thus be
transformed into any other arbitrary TBT by applying at most

right rotations by move M3. Therefore, at most
moves are sufficient to convert a TBS to any other arbitrary TBS
with the same sequence. We design move M4 as a symmetric
move to M3.

V. EXPERIMENTAL RESULTS

All experiments are carried out on a PC with 1400 MHz Intel
Xeon Processor and 256 Mb Memory. Simulated annealing as
stated in Section IV is used to search for a good TBS.

We test our algorithm using TBS with empty room insertion
on six MCNC benchmarks. Besides, we also run the algorithm
with empty room insertion disabled. In other words, only mo-
saic floorplan can be generated. For each case, two objective
functions are considered. The first is to minimize area only. The
second is to minimize a weighted sum of area and wirelength.
The weights are set such that the costs of area and wirelength are
approximately equal. Because of the stochastic nature of simu-
lated annealing, for each experiment, ten runs are performed and
the result of the best run is reported. The results for area mini-
mization is listed in Table I. The results for area and wirelength
minimization is listed in Table II.

As the results show, our floorplanner can produce
high-quality floorplans in a very short runtime. We also
notice that empty room insertion is very effective in reducing
the floorplan area. If empty room insertion is disabled, the
deadspace is worse for all but two cases. The deadspace is

YOUNG et al.: TBS: A NONREDUNDANT REPRESENTATION FOR GENERAL NONSLICING FLOORPLAN 469

32.84% more on average. However, with empty room insertion,
the floorplanner is about 40.8% slower.

In Table III, we compare our results with ECBL [14] and
the enhanced -sequences [15]. Notice that ECBL is run on
Sun Sparc20 (248 MHz) while Enhanced-seq is run on Sun
Ultra60 (360 MHz). We found that the scaling factors for the
speeds of the three machines are 1:1.68:5.03. The runtimes
reported in brackets in Table III are the scaled runtimes. We
can see that the run time of TBS is much faster, although
the performance of all three of them in area optimization are
similar. We also compared TBS with those representations
designed for nonslicing structure. The performance of Fast-SP
[11], Enhanced -tree [9], -tree [1] and TCG [6] are shown
in Table IV. Notice that Fast-SP and -tree are run on Sun
Ultra1 (166 MHz) while Enhanced -tree and TCG are run
on Sun Sparc20 (248 MHz), and the scaling factors for their
speeds are 0.613:1. Again, the runtimes reported in brackets in
Table IV are the scaled runtimes. We can see that TBS has again
out-performed the other representations in terms of runtimes,
while the packing quality in terms of area is similar. TBS is
thus a more desirable representation since its fast computation
allows us to handle very large circuits and to embed more
interconnect optimization issues in the floorplanning process.

REFERENCES

[1] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B -trees: A
new representation for nonslicing floorplans,” inProc. 37th ACM/IEEE
Design Automation Conf., 2000, pp. 458–463.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990, pp. 265–266.

[3] S. Dulucq and O. Guibert, “Baxter permutations,”Discrete Math., vol.
180, pp. 143–156, 1998.

[4] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “AnO-tree representation
of nonslicing floorplan and its applications,” inProc. 36th ACM/IEEE
Design Automation Conf., 1999, pp. 268–273.

[5] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of nonslicing floorplan,” inProc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2000, pp. 8–12.

[6] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based rep-
resentation for non- slicing floorplans,” inProc. 38th ACM/IEEE Design
Automation Conf., 2001, pp. 764–769.

[7] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” inProc. IEEE Int. Conf. Computer-
Aided Design, 1995, pp. 472–479.

[8] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” inProc. IEEE Int.
Conf. Computer-Aided Design, 1996, pp. 484–491.

[9] Y. Pang, C.-K. Cheng, and T. Yoshimura, “An enhanced perturbing al-
gorithm for floorplan design using theO-tree representation,” inProc.
Int. Symp. Physical Design, 2000, pp. 168–173.

[10] K. Sakanushi and Y. Kajitani, “The quarter-state sequence (Q-Sequence)
to represent the floorplan and applications to layout optimization,” in
Proc. IEEE Asia Pacific Conf. Circuits Syst., 2000, pp. 829–832.

[11] X. Tang and D. F. Wong, “FAST-SP: A fast algorithm for block place-
ment based on sequence pair,” inProc. IEEE Asia South Pacific Design
Automation Conf., 2001, pp. 521–526.

[12] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd ACM/IEEE Design Automation Conf., 1986, pp. 101–107.

[13] B. Yao, H. Chen, C. K. Cheng, and R. Graham, “Revisiting floorplan rep-
resentations,” inProc. Int. Symp. Physical Design, 2001, pp. 138–143.

[14] S. Zhou, S. Dong, X. Hong, Y. Cai, and C.-K. Cheng, “ECBL: An ex-
tended corner block list with solution space including optimum place-
ment,” inProc. Int. Symp. Physical Design, 2001, pp. 156–161.

[15] C. Zhuang, K. Sakanushi, L. Jin, and Y. Kajitani, “An enhanced Q-se-
quence augmented with empty-room-insertion and parenthesis trees,” in
Proc. Design, Automation, Test Eur., 2002, pp. 61–68.

Evangeline F. Y. Young received the B.Sc. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong, Shatin, Hong
Kong, in 1991 and 1993, respectively, and the Ph.D.
degree from the University of Texas, Austin, in 1999.

Currently, she is an Assistant Professor in the
Department of Computer Science and Engineering
at the Chinese University of Hong Kong. She is now
working actively on floorplan design optimization,
circuit partitioning, circuit retiming, and packing
representation. Her research interests include

algorithms and computer-aided design (CAD) of VLSI circuits.

Chris C. N. Chu received the B.S. degree in
computer science from the University of Hong
Kong, Hong Kong, in 1993, and the M.S. and Ph.D.
degrees in computer science from the University of
Texas, Austin, in 1994 and 1999, respectively.

He is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
Iowa State University, Ames. His research interests
include design and analysis of algorithms, CAD
of VLSI physical design, and performance-driven
interconnect optimization.

Prof. Chu has served on the Technical Program Committees of the ACM In-
ternational Symposium on Physical Design since 2001. He has also served as an
organizer for the ACM SIGDA Ph.D. Forum since 2002. He received the IEEE
TRANSACTIONS ONCOMPUTER-AIDED DESIGN Best Paper Award in 1999 for
his work on performance-driven interconnect optimization and the 1998–1999
Bert Kay Best Dissertation Award from the Department of Computer Sciences,
University of Texas, Austin.

Zion Cien Shen received the B.S. degree in elec-
trical engineering from Tsinghua University, Beijing,
China, in 2000, and is now pursuing the Ph.D. degree
in electrical and computer engineering, Iowa State
University, Ames.

His current research interests include algorithm de-
sign and analysis, and automation of VLSI physical
design, mainly on floorplanning and routing prob-
lems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

