
800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

[14] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar, “Tran-
sition fault simulation,”IEEE Des. Test, vol. 4, pp. 32–38, Apr. 1987.

[15] J. Richman and K. R. Bowden, “The modern fault dictionary,” inProc.
Int. Test Conf., Sept. 1985, pp. 696–702.

[16] P. G. Ryan, S. Rawat, and W. K. Fuchs, “Two-stage fault location,” in
Proc. Int. Test Conf., Oct. 1991, pp. 963–968.

On Extending Slicing Floorplan to Handle L/T-Shaped
Modules and Abutment Constraints

F. Y. Young, M. D. F. Wong, and Hannah H. Yang

Abstract—In floorplanning, it is common that a designer wants to
have certain modules abutting with one another in the final packing.
The problem of controlling the relative positions of an arbitrary number
of modules in floorplan design is nontrivial. Slicing floorplan has an
advantageous feature in which the topological structure of the packing can
be found without knowing the module dimensions. This feature is good
for handling placement constraints in general. In this paper, we make use
of it to solve the abutment problem in the presence of L- and T-shaped
modules. This is done by a procedure which explores the topological
structure of the packing and finds the neighborhood relationship between
every pair of modules in linear time. Our main contribution is a method
that can handle abutment constraints in the presence of L- or T-shaped
modules in such a way that the shape flexibility of the soft modules can
still be fully exploited to obtain a tight packing. We tested our floorplanner
with some benchmark data and the results are promising.

Index Terms—Abutment constraints, floorplanning, rectilinear-shaped
modules, slicing floorplan.

I. INTRODUCTION

Floorplanning is an important step in physical design of VLSI cir-
cuits. It is the problem of placing a set of circuit modules on a chip to
optimize the circuit performance. Besides optimizing the packing area
and interconnect cost, it is common that the designers will want to im-
pose some placement constraints on the final packing for different pur-
poses. For example, a designer may want to have several logic modules
in a circuit to abut one after another to favor the transmission of data
between them. This abutment problem is common in practice, but few
floorplanning algorithms can handle it. The problem of controlling the
relative positions of an arbitrary number of modules in floorplan design
is nontrivial.

One objective of our work is to handle abutment constraints in floor-
planning. Our work is based on a particular type of floorplan called
slicing floorplan. A slicing floorplan is one that can be obtained by re-
cursively cutting a rectangle into two parts by either a vertical line or a
horizontal line. There are several advantages of using slicing floorplan.
First, focusing only on slicing floorplan significantly reduces the search
space, which in turn leads to a faster runtime. Second, the shape flexi-

Manuscript received March 28, 2000; revised November 18, 2000. This paper
was recommended by Associate Editor C.-K. Cheng.

F. Y. Young is with the Department of Computer Science and Engineering,
the Chinese University of Hong Kong, New Territories, Hong Kong (e-mail:
fyyoung@cse.cuhk.edu.hk).

M. D. F. Wong is with the Department of Computer Sciences, the University
of Texas at Austin, Austin, TX 78712 USA (e-mail: wong@cs.utexas.edu).

H. H. Yang is with the Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
hyang@ichips.intel.com).

Publisher Item Identifier S 0278-0070(01)03538-2.

bility of the soft modules can be fully exploited to give a tight packing
based on an efficient shape curve computational technique [9], [11].
It has been shown mathematically that a tight packing is achievable
[14] for slicing floorplan if the modules are flexible in shape. Slicing
floorplan has another advantageous feature: we can find the topolog-
ical structure of the packing efficiently without knowing the module
dimensions. This feature is good for handling placement constraints in
general because we can check and fix the constraints given the topo-
logical information.

We have also made used of this feature to handle rectilinear blocks.
Because of the recent advance in the semiconductor manufacturing
technology, new packaging schemes such as multichip modules
(MCMs) and integrated circuit components often have their shapes
more complex than a simple rectangle. A lot of works have been
reported on placement of rectilinear blocks [1]–[8], [10], [12], [13],
but none of them can handle rectilinear blocks with soft modules
efficiently. Slicing floorplan is well known to be effective in handling
soft modules. It is not obvious how L- or T-shaped modules can be
handled because of the nature of slicing floorplan that the regions
inside must be rectangular in shape. In our work, we treat an L-
or T-shaped module like a rectangular one, but it willbe expanded
to its original shapes when being packed. Again, we will explore
the topological structure of the packing and expand the modules
accordingly.

Our main contribution is a method that can handle abutment con-
straints in the presence of L- or T-shaped modules in such a way that
the shape flexibility of the soft modules can still be fully exploited to
obtain a tight packing. We tested our floorplanner using some bench-
mark data. The experiments give very promising results. The rest of the
paper is organized as follows. We will first define the problem formally
in Section II. Section III describes our method to handle abutment con-
straints with L- and T-shaped modules. Experimental results will be
given in Section IV.

II. PROBLEM DEFINITION

We consider three kinds of modulesM =MR [ML [MT , where
MR is a set of rectangular modules,ML is a set of L-shaped mod-
ules, andMT is a set of T-shaped modules. A rectangular moduleA
is a rectangle ofheighth(A) andwidthw(A). Theaspect ratioof A
is defined ash(A)=w(A). A rectangular module can either behard or
soft. The height and width of a hard module are fixed, but the module
is free to rotate. The shape of a soft module can be changed as long
as the area remains a constant and the aspect ratio is within a given
range. An L-shaped moduleB [see Fig. 1(a)] consists of two rectan-
gular submodulesB1 andB2, wherew(B1) andw(B2) are aligned
andh(B1) > h(B2). A T-shaped moduleC [see Fig. 1(b)] consists of
three rectangular submodulesC1, C2, andC3, wherew(C1),w(C2),
andw(C3) are aligned andh(C1) > maxfh(C2); h(C3)g. We as-
sume that all the T- and L-shaped modules are hard modules.

In general, two modulesA andB are said to be abutting horizontally
(see Fig. 2), denoted byHabut(A;B), if a vertical boundaryLA of
moduleA and a vertical boundaryLB of moduleB abut such thatLA
lays immediately on the left ofLB and the length of the abutment is
at leastminflen(LA); len(LB)g, wherelen(LA) is the length ofLA
andlen(LB) is the length ofLB . The abutment in the vertical direction
is defined similarly.

A floorplan fornmodules is a dissection of a rectangle by horizontal
and vertical lines inton nonoverlapping regions such that each region
must be large enough to accommodate the module assigned to it. A
packingis a nonoverlap placement of all the modules inM . A feasible

0278–0070/01$10.00 © 2001 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 801

(a) (b)

Fig. 1. (a) L-shaped module and (b) T-shaped module.

Fig. 2. Abutment example.

packingis a packing such that all the abutment constraints are satisfied
and the widths and heights of all the soft modules are consistent with
their aspect ratio constraints and area constraints. Our objective is to
construct a feasible packingF to minimizeA + �W , whereA is the
total area of the packing,W is an estimation of the interconnect cost,
and� is a user-specified constant that controls the relative importance
ofA andW in the cost function. We require that the aspect ratio of the
final packing is between two given numbers:rmin andrmax.

III. SLICING FLOORPLAN

A slicing floorplan can be represented by an oriented rooted binary
tree called a slicing tree. Each internal node of the tree is labeled by a
* or a + operator, corresponding to a vertical or a horizontal cut, re-
spectively. Each leaf corresponds to a basic module and is labeled by
a number from 1 ton. No dimensional information on the position of
each cut is specified in the slicing tree. If we traverse a slicing tree in
postorder, we obtain aPolish expression. A Polish expression is said to
benormalizedif there is no consecutive *’s or+’s in the sequence. It
is proved in [12] that there is a 1:1 correspondence between the set of
normalized Polish expressions of length2n � 1 and the set of slicing
floorplans withnmodules. Our method is developed based on the sim-
ulated annealing algorithm in [12]. In [12], the set of all normalized
Polish expressions is used as the solution space. In order to search the
solution space efficiently, they defined three types of moves (M1, M2,
and M3) to transform a Polish expression into another. They can make
use of the flexibility of the soft modules to select the “best” floorplan
among all those represented by the same slicing structures. This is done
by carrying out an efficient shape curve computation whenever a Polish
expression is examined. The cost function isA+ �W , whereA is the
total packing area andW is the interconnect cost.

IV. OUR APPROACH

A. Overview

The algorithmMain below outlines our method. In each step of
the annealing process, we consider a particular Polish expression. We
will scan the expression once to find out the topological structure of
the packing and, in particular, the neighborhood relationship between

(a) (b)

Fig. 3. Shuffling modules to obtain a feasible packing. (a) BothC andD are
right neighbors of A. (b) A and B abut horizontally.

(a) (b)

Fig. 4. Example of module expansion.D is L-shaped. (a) Initial packing. (b)
Packing obtained after expanding moduleD.

(a) (b)

Fig. 5. Abutment between modules. (a) Packing corresponding to expression
AB + CDE + F + G+H+ . (b) Neighborhood information.

every pair of modules. This is possible because the operators+ and
* in a Polish expression have orientations, e.g.,AB+, means thatA
is belowB andAB* means thatA is on the left ofB. We will scan
the expression once to mark the left, right, top, and bottom neighbors of
every module. Fig. 5 shows a simple example in which the neighbors of
every module are marked in a table after this step. We will then shuffle
the modules to satisfy as many abutment constraints as possible. Please
refer to Fig. 3 as an example. In this example, moduleA is constrained
to abut with moduleB horizontally, i.e.,Habut(A;B), but this con-
straint is violated in the original packing [see Fig. 3(a)]. After finding
the neighborhood information between all pairs of modules, we will
shuffleB with a closest right neighbor ofA, i.e., moduleD in this ex-
ample, to obtain a similar packing [see Fig. 3(b)], which satisfies the
constraint. After this shuffling step, the abutting modules will stay to-
gether unless some later moves break them apart.

After fixing the abutment constraints, we willexpandthe L- or
T-shaped modules into their original shapes. This is done by modi-
fying the Polish expression to embed the submodules of the rectilinear
blocks in such a way that the relative positions between all the modules
in the original Polish expression are preserved. Please refer to Fig. 4
as an example. In this example, moduleD is L-shaped and the initial
packing is shown in Fig. 4(a). We will expandD to its original shape
before computing the total area and interconnect cost. The packing
after expansion is shown in Fig. 4(b). After expansion, we can do the
shape curve computation as usual to obtain the total area of the final
floorplan and the flexibility of the soft modules can be fully exploited.
We will describe the steps in details in the following sections.

802 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Algorithm Main

Input: The size, shape and interconnection of a set

of modules M =M [M [M , where M is

a set of rectangular modules, M is a set

of L-shaped modules and M is a set of

T-shaped modules; a set of horizontal abut-

ment constraints and a set of vertical abut-

ment constraints.

Output: A feasible packing of the modules in M

1. Initialization.

2. Repeat:

3. Transform the Polish expression � to �.

4. Scan � to find the neighbors of every module.

5. Modify � to � by shuffling modules to fix the

violated abutment constraints.

4. Expand the L- or T-shaped modules in �

to obtain a new Polish expression �.

5. Calculate the total area and interconnect cost

of the floorplan represented by �.

6. Decide whether to accept � . If yes, � = � .

7. Until Cost < k.

B. Handling Abutment Constraints

1) Finding the Neighbors of a Module:We can find the neighbors
of a module from the Polish expression because the operators in the
expression have orientations, e.g.,AB+ means thatA is belowB and
AB* means thatA is on the left ofB. These topological relation-
ships are independent of the dimensions of the modules. For example,
Fig. 5 is a packing corresponding to the expressionAB + CDE +
F + *G + H + *. We can tell from the Polish expression the neigh-
borhood relationship as shown in Fig. 5(b). This information can be
obtained by scanning the expression once and update the table when-
ever an operator is seen, i.e., when two subfloorplans are combined
by either a+ operator (vertical cut) or a * operator (horizontal cut).
The algorithmNeighborbelow outlines the step to find this neighbor-
hood information. Notice that the variablesL[X]; R[X]; T [X], and
B[X] denote the set of modules lying along the left boundary, right
boundary, top boundary, and bottom boundary of a subfloorplanX.
Consider combining two subfloorplansX andY horizontally as in
XY *. If both R[X] andL[Y] have more than one modules, the top
module inR[X] will abut horizontally with the top module inL[Y]
and the bottom module inR[X] will abut horizontally with the bottom
module inL[Y]. We will explain using the example in Fig. 5. When
we combine the subfloorplan containingA andB and the subfloor-
plan containingC;D;E; F; G, andH by the * operator, we know that
B will abut withH horizontally andA will abut withC horizontally.
Notice that we do not know whetherG will abut with A, B, or both
because this is dependent on the dimensions of the modules, so we will
not indicate anything about the abutment ofG in Fig. 5(b). However, if
eitherR[X] orL[Y] has only one module, every module inR[X] will
abut with every module inL[Y] horizontally. For example, in Fig. 5,
when we combine the subfloorplan containingC and the subfloorplan
containingD;E andF by the* operator, we know thatC will abut with
D;E andF horizontally. Similarly, we can derive the vertical neigh-
borhood relationship from the+ operator.

Algorithm Neighbor

Input: A Polish expression � = � � . . .�

Output: For each module A, find the modules abut-

ting with A in all four directions.

1. For i = 1 to 2n � 1:

2. If � is a module name:

(a) (b)

Fig. 6. Shuffling modules to fix violated abutment constraints. (a) Initial
packing. (b) Packing obtained after shuffling moduleD with moduleF .

L[�] = R[�] = T [�] = B[�] = �

3. Push � .

4. If � is a * operator:

5. Pop Y. Pop X.

6. If R[X] or L[Y] has only one module:

7. Habut[A;B] is true for all A 2 R[X] and

B 2 L[Y];

8. Else:

9. Habut[A ;B] and Habut[A ;B] are true

where A and A are the top and bottom

modules in R[X] resp., and B and B are

the top and bottom modules in L[Y] resp.

10. R[�] = R[Y]; L[�] = L[X],

T [�] = T [X] + T [Y]; B[�] = B[X] +B[Y].

11. Push � .

12. If � is a + operator:

13. Pop Y. Pop X.

14. If T [X] or B[Y] has only one module:

15. V abut[A;B] is true for all A 2 T [X] and

B 2 B[Y];

16. Else:

17. V abut[A ;B] and V abut[A ;B] are true

where A and A are the left and right

modules in T [X], resp., and B and B

are the left and right modules in B[Y],

resp.

18. T [�] = T [Y]; B[�] = B[X],

R[�] = R[X] + R[Y]; L[�] = L[X] + L[Y].

19. Push � .

2) Shuffling Modules to Fix Violated Abutment Constraints:If a
Polish expression does not satisfy all the abutment constraints, we can
fix it as much as possible by shuffling the modules. An example is
shown in Fig. 6. In this example, assume that moduleB is required to
abut withF vertically, i.e.,V abut(B;F), but it is violated initially as
shown in Fig. 6(a). We will then try to moveF to the top ofB or move
B to the bottom ofF . In the first case,B has two neighbors at the top:
C andD. SinceF is closer toD than toC in the Polish expression, we
will shuffle F andD in order to fix this violated constraint. In general,
if an abutment constraintV abut(X;Y) is violated, we will first try to
moveY to the top ofX by shufflingY with the closest top neighbor of
X in the Polish expression. If it is failed, e.g., all the top neighbors of
X are fixed in position, we will try to moveX to the bottom ofY by
shufflingX with the closest bottom neighbor ofY . The procedure for
abutment in the horizontal direction is defined similarly. Notice that
we will not shuffle the modules back to their original positions if an
expression is accepted, i.e., the constrained modules will stay together
unless some later moves break them apart.

It is possible that some constraints are still violated after all the pos-
sible shufflings. We include a penalty term in the total cost to penalize
the violated constraints. All violations will be eliminated as the an-
nealing process proceeds in most of the cases.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 803

Fig. 7. Expansion of an L-shaped module.

C. Handling L- and T-Shaped Modules

Instead of partitioning into rectangular submodules, L- and T-shaped
modules are treated as single modules in the annealing process. They
will be expandedto their original shapes when being packed and the
expansions are dependent on their topological positions in the original
Polish expression. After calculating the total area and interconnect cost,
they are treated as single modules again in the floorplan transformation.

1) Expansion of L-Shaped Modules:Consider an L-shaped module
X in a Polish expression�. We will expand it into its submodulesX1

andX2 by modifying the expression according to the relative position
ofX in�. There are four different cases as shown in Fig. 7. The subtree
labeled “1” can either be a basic module or a subtree of modules. We
are trying to pack modules into the unoccupied area of the L-shaped
modules. The L-shaped module is oriented differently in different cases
so as to preserve as much as possible the relative position between all
the other modules in the original Polish expression.

2) Expansion of T-Shaped Modules:Similar to an L-shaped
module, we will expand a T-shaped moduleX into its submodules
X1, X2, andX3 by modifying the Polish expression� according
to the relative position ofX in �. There are two different cases,
depending on the siblingu of X in the slicing tree. Ifu is an internal
node and the two children subtrees ofu are not parts of the same
module, we will pack the submodules ofX with the children subtrees
of u as shown in Figs. 8 and 9. The subtree labeled “1” or “2” can
either be a basic module or a subtree of modules. Again, we are
trying to pack modules into the two unoccupied areas of the T-shaped
modules, which is oriented differently in different cases to preserve as
much as possible the relative positions between all the other modules
in the original Polish expression. Ifu is a single basic module or
the two children subtrees ofu belong to the same module (so we
cannot pack them apart as shown in Figs. 8 and 9), we will labelC

as adegeneratedT-shaped module, which will be expanded into its
submodules as described in Fig. 10.

Fig. 8. Expansion of a T-shaped module, which is a right child.

Fig. 9. Expansion of a T-shaped module, which is a left child.

3) Expansion Order: The result of the expansion will depend on
the order in which the modules are expanded. An example is shown in
Fig. 11. Assume that both moduleA andB in the figure are L-shaped.
ExpandingB followed byA will give us the packing in (a), while ex-
panding in the reverse order will give us the packing in (b). If the order
is not defined well, we may need to scan the Polish expression once
for each L- or T-shaped module and this will be very time consuming.
In our implementation, we will first expand the T-shaped modules.
This requires scanning the expression twice. The first scan expands all
the T-shaped modules that are right children, and the second scan ex-
pands all the T-shaped modules that are left children. The degenerated
T-shaped modules are labeled on the way. After these two scans, any
T-shaped module will either be expanded or labeled as degenerated.

804 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Fig. 10. Expansion of a degenerated T-shaped module.

Fig. 11. Example demonstrating the effect of the expansion order. (a) Packing
obtained by expandingB followed byA. (b) Packing obtained by expandingA
followed byB.

We will then expand the remaining L-shaped modules and the degen-
erated T-shaped modules. This also requires scanning the expression
twice. The first scan expands all the L-shaped modules or degenerated
T-shaped modules that are right children and the second scan expands
those that are left children. The algorithm is described by the algorithm
Expansionbelow. We need to scan the expression four times in total.
An example of expansion is shown in Fig. 12. In this example, module
A is T-shaped and moduleB is L-shaped.A is expanded first because
it is a T-shaped module and a right child. After that, we should expand
the T-shaped modules that are left children followed by the L-shaped
modules that are right children, but there is none of them. Finally, we
will expandB, which is an L-shaped module and a left child.

Algorithm Expansion

Input: A Polish expression � of a set of modules

M =M [M [M , where M is a set of

rectangular modules, M is a set of L-shaped

Fig. 12. Example of the expansion step.

modules and M is a set of T-shaped modules.

Output: A Polish expression � with all the modules

in M and M expanded to their corre-

sponding submodules.

1. Scan � from left to right and generate a new

Polish expression � :

2. For any T-shaped module X that is a right

child:

3. If the sibling u of X is an internal node and

the two children subtrees of u are not parts

of one module:

4. Expand X as described in Fig. 8

5. Else:

6. Label X as a degenerated T-shaped module.

7. Scan � from left to right and generate a new

Polish expression � :

8. For any T-shaped module X that is a left child:

9. If the sibling u of X is an internal node and

the two children subtrees of u are not parts

of one module:

10. Expand X as described in Fig. 9;

11. Else:

12. Label X as a degenerated T-shaped module.

13. Scan � from left to right and generate a new

Polish expression � :

14. For any L-shaped module or degenerated

T-shaped module X that is a right child:

15. If X is an L-shaped module:

16. Expand X as in case 1–2 of Fig. 7;

17. Else:

18. Expand X as in case 1–2 of Fig. 10.

19. Scan � from left to right and generate a new

Polish expression �:

20. For any L-shaped module or degenerated

T-shaped module X that is a left child:

21. If X is an L-shaped module:

22. Expand X as in case 3–4 of Fig. 7;

23. Else:

24. Expand X as in case 3–4 of Fig. 10.

25. Output �.

D. Time Complexity

We need to scan the Polish expression once to find the neighbors
of every module. This takesO(n) time, wheren is total number of
modules. Then shuffling modules to fix violated abutment constraints
takes anotherO(nq) time, whereq is the total number of abutment

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 805

Fig. 13. Penalty for violation of an abutment constraint.

TABLE I
RESULTS OF TESTING ABUTMENT CONSTRAINTS

WITH RECTANGULAR MODULES

constraints. Notice that this is only a worst-case analysis. Usually, we
do not need to scan all the modules once to find the closest module to
shuffle with and the average time taken is justO(q + n). To expand
all the L- and T-shaped modules, we need to scan the expression four
times and it takesO(n) time. Therefore, the total time taken in each
iteration of the annealing process to handle the abutment constraints
and rectilinear blocks isO(nq) in the worst case andO(n+ q) on the
average.

E. Moves and Cost Function

We use the same set of moves (M1, M2, and M3) as in [12]. The cost
function is defined asA + �W + D, whereA is the total packing
area obtained from the shape curve at the root of the slicing tree,W is
a half perimeter estimation of the interconnect cost, andD is a penalty
term for the violated abutment constraints. If an abutment constraint
between two modules are violated, the corresponding penalty term is
computed as the manhattan distance that one of the two module centers
needs to be moved in order to make them abut. An example is shown
in Fig. 13. In this example, supposeA andB are constrained to abut
horizontally, i.e.,Habut(A;B), but this constraint is violated and its
corresponding penalty termD will be x + y, wherex is the distance
between the right boundary ofA and the left boundary ofB andy is
the vertical distance between the centers ofA andB. The penalty term
is computed similarly in the case of L- or T-shaped modules by just
considering the largest submodules in the rectilinear blocks.� and
are constants which control the relative importance of the three terms.
� is usually set such that the area term and the interconnect term are
approximately balanced. We usually set large to ensure that all the
abutment constraints can be satisfied.

V. EXPERIMENTAL RESULTS

We tested our floorplanner with some benchmark data: ami33,
ami49, and playout. In all the data, the rectangular modules are soft
modules with aspect ratios lying between 0.25 and 4.0 and the L-
or T-shaped modules are hard modules. For each experiment, the
starting temperature is decided such that an acceptance ratio is 100%
at the beginning. The temperature is lowered at a constant rate and
the number of iterations in one temperature step is proportional to
the number of modules. All the experiments were carried out on a
143-MHz UltraSPARC workstation.

We did two sets of experiments, one set with only rectangular mod-
ules and the other set with L- d or T-shaped modules. In the first set, we

TABLE II
RESULTS OFCONTROL EXPERIMENTS WITHOUT ANY CONSTRAINT

NOR L/T-SHAPED MODULE

Fig. 14. Result packing of ami49. Modules 1, 2, 15, 20, and 25; 3, 41, 42, and
43 are required to abut horizontally. Modules 25, 8, 10, 12, and 3; 43 and 44 are
required to abut vertically. All constraints are satisfied.

Fig. 15. Result packing of playout. Modules 1, 2, 50, 4, 5, 6, and 14 are
required to abut horizontally and modules 8, 9, 10, 4, 11, 12, and 13 are required
to abut vertically. Ten out of the 12 abutment constraints are satisfied.

did five testings for each benchmark data, each testing with a different
set of abutment constraints. The abutment constraints we imposed are
usually that chains of four to five modules are required to abut hori-
zontally or vertically. The averaged result for each benchmark data is
shown in Table I. (The best values are shown in brackets.) We can com-
pare these results with Table II, which shows the results of the control
experiments in which there is no abutment constraint nor L/T-shaped
module in the data sets. We can see from the tables that our method

806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

TABLE III
RESULTS OFTESTING ABUTMENT CONSTRAINTS WITH L- AND T-SHAPED MODULES

Fig. 16. Result packing of lt-ami49. Modules 1, 2, 15, 20, 25, 8, and 10 are
required to abut horizontally and modules 10, 12, 3, 41, 42, 43, and 44 are
required to abut vertically. 11 out of the 12 abutment constraints are satisfied.

Fig. 17. Result packing of lt-playout. Modules 1, 2, and 15; 8 and 9; 12, 13,
14 and 15 are required to abut horizontally. Modules 9, 10, 11 and 12; 20, 17
and 48; 18 and 19 are required to abut vertically. 11 out of 12 of the abutment
constraints are satisfied.

can handle abutment constraints efficiently. Figs. 14 and 15 show two
result packings.

In the second set of experiments, we modified the benchmark data
by changing some modules to L- or T-shaped. We called these data

Fig. 18. Result packing of a randomly generated example without abutment
constraint. There are 100 modules, six of which are L-shaped and four of which
are T-shaped.

lt-ami33, lt-ami49, and lt-playout. Again, we did five testings for each
data, imposing different abutment constraints on the modules for each
testing. Table III summarizes the results. Figs. 16 and 17 show two re-
sult packings. The rectangular modules are white in color, the L-shaped
modules are light gray, and the T-shaped modules are dark gray. Fig. 18
shows a result packing of a randomly generated example without any
abutment constraint. It has 100 modules in total with four T-shaped
modules and six L-shaped modules.

VI. CONCLUDING REMARKS

We devised a method that can handle abutment constraints in the
presence of L- or T-shaped modules in such a way that the shape
flexibility of the soft modules can be fully exploited to obtain a tight
packing. We made use of an advantageous feature in slicing floorplan
to exploit the topological structure of a packing without knowing the
module dimensions. We tested our floorplanner with some benchmark
data and the results are good. However, our method can only handle
L- and T-shaped modules. It is interesting to extend it to handle
arbitrarily shaped rectilinear modules, but the expansion process of
which will be quite complicated.

REFERENCES

[1] J. Dufour, R. McBride, P. Zhang, and C. K. Cheng, “A building block
placement tool,” inProc. IEEE Asia South Pacific Design Automation
Conf., Jan. 1997, pp. 271–276.

[2] K. Fujiyoshi and H. Murata, “Arbitrary convex and concave rectilinear
block packing using sequence-pair,” inProc. Int. Symp. Physical Design,
Apr. 1999, pp. 103–110.

[3] M. Kang and W. W. M. Dai, “General floorplanning with L-shaped,
T-shaped and soft blocks based on bounded slicing grid structure,” in
Proc. IEEE Asia South Pacific Design Automation Conf., Jan. 1997, pp.
265–270.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 807

[4] M. Z. W. Kang and W. W. M. Dai, “Topology constrainted rectilinear
block packing,” inProc. Int. Symp. Physical Design, Apr. 1998, pp.
179–186.

[5] M. Z. Kang and W. W.-M. Dai, “Arbitrary rectilinear block packing
based on sequence pair,” inProc. IEEE Int. Conf. Computer-Aided De-
sign, Nov. 1998, pp. 259–266.

[6] T. C. Lee, “A bounded 2D contour searching algorithm for floorplan
design with arbitrarily shaped rectilinear and soft modules,” inProc.
30th ACM/IEEE Design Automation Conf., June 1993, pp. 525–530.

[7] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” inProc. IEEE Int.
Conf. Computer-Aided Design, Nov. 1996, pp. 484–491.

[8] S. Nakatake, M. Furuya, and Y. Kajitani, “Module placement on
BSG-structure with preplaced modules and rectilinear modules,” in
Proc. IEEE Asia South Pacific Design Automation Conf., Jan. 1998, pp.
571–576.

[9] R. H. J. M. Otten, “Efficient floorplan optimization,” inProc. IEEE Int.
Conf. Computer Design, 1983, pp. 499–502.

[10] K. Sakanushi, S. Nakatake, and Y. Kajitani, “The Multi-BSG: Stochastic
approach to an optimal packing of convex-rectilinear blocks,” inProc.
IEEE Int. Conf. Computer-Aided Design, Nov. 1998, pp. 267–274.

[11] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,”Inform. Control, vol. 59, pp. 91–101, 1983.

[12] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,”
in Proc. 23rd ACM/IEEE Design Automation Conf., June 1986, pp.
101–107.

[13] J. Xu, P.-N. Guo, and C. -K. Cheng, “Rectilinear block placement using
sequence-pair,” inProc. Int. Symp. Physical Design, Apr. 1998, pp.
173–178.

[14] F. Y. Young and D. F. Wong, “How good are slicing floorplans?,”Integr.
VLSI J., vol. 23, no. 1, pp. 61–73, Oct. 1997.

