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ABSTRACT
As technology scales down quickly, timing becomes more and more

critical in modern designs. During placement and routing, a lot of

techniques are applied to reduce circuit delay. A good timing driven

routing tree construction can in�uence placement and routing sig-

ni�cantly. As circuits become more and more complex, previous

algorithms may not be e�cient enough to be applied in modern

designs. In this paper, we propose a new algorithm to construct

timing-driven routing trees to trade o� wirelength and timing. Our

tree construction is based on properties of shortest path tree and

minimum spanning tree. Experimental results show that our al-

gorithm can obtain a smaller delay while keeping the wirelength

short.
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1 INTRODUCTION
1.1 Previous Work
Timing is always a critical issue in the circuit design. Alpert et al. [2]

surveyed several existing steiner tree construction methods consid-

ering timing and compared their performance of trade-o� between

total tree length and path length. Prim-Dijkstra algorithm [1], also

called PD algorithm, considers tree edge weight as the combination

of tree edge length and tree path length from a source node to an

edge end node. PD algorithm achieves a better trade-o� between to-

tal tree length and path length than others [2]. However, sometimes

a bit larger edge weight with small edge length is also a good choice

of PD algorithm such that the total tree length is reduced while

the path length is not increased a lot. Bounded Radius Bounded

Cost routing tree (BRBC) algorithm [5] iteratively connects a node,

which violates path length constraint, to the source node directly by

its shortest path and the work [8] performs an additional relaxation

step to further improve the performance. It can produce a tree with

the longest path length at most (1 + ϵ) times that of the shortest

path tree and the total tree length at most (1 + 2/ϵ) times that of

minimum spanning tree. All these algorithms above are based on

geometry information, such as total tree length and path length,

to build a timing driven routing tree. Besides, some consider El-

more delay model into their algorithms to construct a tree. Elmore
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Routing Tree (ERT) algorithm [3] iteratively picks a node that min-

imizes the maximum Elmore delay among all sinks. The work [2]

shows that the actual total tree length of the tree produced by ERT

algorithm is terribly large, which may not be suitable in practice.

Moreover, it depends on extra timing information, such as resis-

tance and capacitance. Rudolf [12] proposed a new delay bounded

tree construction method which can obtain a tree with relative

smaller delay. Given a shortest path tree, it traverses the tree to

check whether a node violates capacitance constraint and connect

a node in the subtree directly to the root, which has shortest path

length from the source. Besides, such tree is also applied in the RC

aware router [11]. Although delay is improved, it does not consider

total tree length which is unfavourable in actual physical design.

Another kind of algorithms tries to solve the minimum rectilinear

steiner arborescence (MRSA) problem and any paths connected the

source to a sink should be the shortest path. A-tree algorithm [6]

solves such problem by growing or combining subtrees to build

the arborescence. But the total tree length cannot be guaranteed.

Stephan et al. [7] proposed an algorithm to construct a tree with

delay bounded by (1 + ϵ) · rat(v), where rat(v) denotes required

arrive time, and total tree length bounded by (2 + dloд( 2ϵ )e) times

that of its initial tree, which may be a minimum steiner tree with

simple modi�cation.

1.2 Our Contributions
In this paper, we present an algorithm to obtain a routing tree that

can balance total tree length and path length from the root to each

node. In all, the contributions of our work are:

(1) A graph with a signi�cantly smaller number of edges is

proposed in which the optimal solution of our problem still

exists in it.

(2) Two graphs, upper bound graph UG and lower bound

graph LG, are proposed. They own good properties of the

path length for each node.

(3) An e�cient algorithm called UGLG algorithm is proposed

to build a tree that can balance tree length and path length

based on UG and LG.

(4) A batch algorithm is shown to further improve the perfor-

mance of UGLG algorithm such that the total tree length

is further reduced while delay keeps small.

(5) We analyze di�erent algorithms in the experiments and

show that our algorithm can achieve a better trade-o�

between total tree length and maximum delay. The batch

algorithm is also compared.

The remainder of the paper is organized as follows: Section 2

is about background. Our algorithm is described in section 3. In

section 4, we introduce a batch algorithm. Abundant experimental

results are shown in section 5. Then we conclude our contribution

in section 6.
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Figure 1: Elmore Delay Model. (a) A net with a driver and
two sinks. (b) The wire is modeled by π type distribute RC
delay model. (c) The RC delay model of (a). Sink 1 and 2 has
a loading capacitance C1 and C2 respectively.

2 BACKGROUND
Given a net with sink {v0,v1, . . . ,vi , . . . ,v |V |−1} and a source s
with �xed positions, we need to construct a tree considering timing

information. The distance between nodes is measured as `1norm.

2.1 RC Delay Model
Given a circuit shown in �gure 1 (a), the wire is modeled by the π
model as shown in �gure 1 (b). The driver node 0 is modeled by a

driver resistance Rd and the lumped downstream capacitance. The

estimation of delay in our experiments is based on the π model and

the Elmore Delay model [10].

2.2 Problem Formulation
The analysis of the RC delay model [3] shows that the total tree

length and the path length of a sink i are related to the delay of

sink i .
A graphG(V ,E) consists of |V |−1 sinks and a source s . Any node

i ∈ V and j ∈ V are connected. Given a user de�ned parameter

α (α ≥ 0), a tree T with root s is constructed on G such that:

minimize

∑
ei j ∈T

wi j

lsi <= (1 + α) · Di ∀i ∈ N
(1)

where ei j is the edge between node i and node j andwi j is the edge

length of ei j . lsi denotes the path length from s to sink i in T and

Di denotes the shortest path length from s to sink i in G(V ,E). A

tree T is constructed such that the path length lsi of each sink i is

bounded by (1 + α) times the length of the shortest path from s to

node i in G(V ,E) and the total tree length is minimized.

3 UGLG ALGORITHM
3.1 Edge Reduced Graph ERG

De�nition 3.1. Edge Reduced Graph ERG(V ,E) Given a set of

points V in the (R2, `1) space, consider two points i ∈ V and j ∈ V
with xi ≤ x j . There exists an edge ei j ∈ E if and only if there is

no point k at (xk ,yk ) such that xi ≤ xk ≤ x j and yi ≤ yk ≤ yj or

yj ≤ yk ≤ yi .

Theorem 3.2. Given a set of points V in the (R2, `1) space, there
exists an optimal solution solu∗ of problem (1) in the corresponding
Edge Reduced Graph ERG(V ,E).

ERG(V ,E) is an undirected graph and the proof of theorem 3.2

is shown in the appendix. ERG(V ,E) can be constructed as follows:

ERG(V ,E) consists of |V | points, which are sorted in ascending

order of x. For each node i , a line is swept from it to the rightmost.

There are two markers yimax and yimin of node i with initial value

of +∞ and −∞. An edge ei j will be added to E ifyimin < yj < y
i
max .

Meanwhile yimax and yimin are updated according to equation 2.

yimax = max{min{yimax ,yj },yi }

yimin = min{max{yimin ,yj },yi }
(2)

3.2 Upper Bound GraphUG and Lower Bound
Graph LG

De�nition 3.3. Lower Bound Graph LG(V ,E ′) Given a directed

graphG(V ,E), a source node s and a parameter α , consider an edge

epq with weight wpq in G(V ,E). The lower bound graph LG(V ,E ′)
is constructed such that the edge epq ∈ E

′
i� epq satis�es

Dp +wpq ≤ (1 + α) · Dq (3)

where Dp and Dq are the shortest path length from s to p and to q
in G(V ,E) respectively.

De�nition 3.4. Upper Bound GraphUG(V ,E∗) Given a directed

graphG(V ,E), a source node s and a parameter α , consider an edge

epq with weightwpq inG(V ,E). The upper bound graphUG(V ,E∗)
is constructed such that the edge epq ∈ E

∗
i� epq satis�es

(1 + α) · Dp +wpq ≤ (1 + α) · Dq (4)

where Dp and Dq are the shortest path length from s to p and to q
in G(V ,E) respectively.

According to the de�nition 3.3, we can conclude that the optimal

solution of our problem must be in LG because LG only excludes

edges whose existence will violate path length constraints. How-

ever, an MST in LG may not be a legal solution. InUG , all solutions

are legal but the total tree length of an MST in UG will be always

at least that of an MST in LG. According to these properties, our

strategy is to build a legal MST in UG �rst and take advantages of

the edges in LG to further optimize the solution.

In our method, an Edge Reduced Graph ERG(V ,E) is constructed

�rst. According to the de�nitions 3.3 and 3.4, shortest path length

Di (∀i ∈ N ) could be obtained by the shortest path algorithm and

two graphs LG andUG can then be built. Since all possible trees in

UG are legal, we will choose to start with an MST inUG . However,

the total tree length of the MST in UG may be very much larger

than that of the optimal solution in ERG . The reason is that, due to

the constraint in de�nition 3.4, UG may exclude some edges epq of

small weight if the di�erence between the shortest path lengths of

p and q is small. We thus need to add back those edges with small

weight in LG to our tree to further optimize the total tree length.

The advantage of using LG is that the number edges in LG are much

lower than that in ERG . However, some of these edge adding steps

will result in an illegal tree. If an edge is to be added, the path

length at all the sinks should still be legal after the addition. Some

edge will be needed to be removed from our tree after addition such

that our solution can still be a tree. We handle edges in LG in a

non-decreasing order of their edge weights.

The framework of our algorithm is shown in algorithm 1.
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Algorithm 1 Constructing A Timing Driven Routing Tree

Input: A source node s and a set of sinks i ∈ V
Output: A timing driven routing tree T ′

1: Obtain edge reduced graph ERG(V ,E)
2: Get shortest path length di for each sink i ∈ V
3: Obtain upper bound graph UG and lower bound graph LG
4: Get a minimum spanning tree TM_UG on UG
5: Sort the edges in LG in non-decreasing order

6: Initialize our data structure

7: for e ∈ edges in LG do
8: Try to add the edge e to TM_UG
9: end for

10: T ′ ← TM_UG

3.3 Data Structure
When an edge epq is being added, we need to check whether the

path length at all the sinks in the subtree of node q are legal. A

straightforward way is to visit all the nodes in the subtree once,

which is time consuming. To reduce running time, a data structure

is designed to keep information showing how tight the current path

length of a node is. This slack information indicates how much the

path length of node i can be increased before exceeding the bound.

At each node i , Ci , δi and Li (a list of Sik where node k is in the

subtree of node i) are stored. Ci denotes the current distance from

the source s to node i . δi denotes the di�erence between Ci and Oi
as shown in equation 5, where Oi is the origin distance from s to

node i in TM_UG , an MST in UG.

Ci + δi = Oi (5)

The term Sik denotes the slack information of node k in the subtree
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Figure 2: Slack Information

of node i . The slack information and Li of node i are maintained as

shown in �gure 2. First, at node k , Skk is calculated by equation 6. If

node k is a leaf, there is only one slack information in Lk . The slack

information of node k should be passed to its parent node i and the

slack information Sik of node k at node i is calculated by equation 7.

For an internal nodem, the number of slack information stored in

Lm is equal to its number of children and the slack information

in Lm is stored in a non-decreasing order. Only the smallest slack

information Smj in Lm will be passed to its parent node i as Sij . After

traversing the tree, Li of each node i in the tree is built.

(1 + α) · Dk = Skk +Ok = Skk +Ck + δk (6)

(1 + α) · Dk = Sik +Oi − lik = Sik +Ci − lik + δi = Sik +Ck + δi
(7)

When we modify the tree structure, slack information of nodes

should be added and deleted accordingly. The detail of modi�cation

of the slack information will be shown later.

3.4 Edge Adding Technique
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Figure 3: Examples of the possible relationships of node 3

and node 4

Figure 4: Examples of adding edge e43

Consider a directed edge e43 from node 4 to node 3 and the

possible relationships of these two nodes are shown in �gure 3. The

edge e43 cannot be added to the tree because node 3 is the ancestor

of node 4 as shown in �gure 3 (c). Otherwise, lazy update of Ci
and δi is applied on each node i on two paths from s to node 3 and

from s to node 4 (denoted in blue in �gure 4 (a)). Next an edge

e56 denote in red in the path from node 3 to node 2 will be chosen

to be deleted (�gure 4 (b)). Edge e56 is the edge with the largest

edge length in the path from node 3 to node 2 such that there is

no violation on the path length constraints after deletion. Then

the smallest slack information S6k in L6 should be removed from

Li of node i on the blue path in �gure 4 (c), if it exists in Li (as
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Sik ). Meanwhile, the smallest slack information in L3 should also be

removed from the Li of node i on the green path in �gure 4 (c). The

last step is to add smallest slack information in L6 to Li of node i
on the blue path of �gure 4 (d). The tree structure is also modi�ed

simultaneously.

The whole process is summarized in algorithm 2.

Algorithm 2 Add Edge epq to Tree T

Input: an edge epq with weight wpq , a parameter α , a tree T with

a root s
Output: a tree T ′

1: if Safe checking then
2: Update Ci and δi of node i in two paths from s to p and q
3: if Select an edge euv to delete then
4: Remove slack information

5: Add slack information

6: end if
7: end if
8: T ′ ← T

3.4.1 Safe Checking. Given an edge epq , this step checks to

ensure that node q is not the ancestor of node p.

3.4.2 Update Distance Information. Except for the �rst addition

and deletion, distance information Ci and δi of node i may not be

accurate because such information is not updated after modi�cation

of the tree structure. Hence, it will in�uence calculation on bound

value of constraints. Hence, informationCi and δi of node i should

be updated before adding or deleting edges. Ci of node i on the

path from s to node p and s to node q is updated and δi is handled

simultaneously by equation 5.

s

w

p

u

v

q

uv
e

pq
e

is deleted.

is added.

Figure 5: Illustration on UGLG algorithm

3.4.3 Select an edge euv to delete. As shown in �gure 5, assume

node w is the lowest common ancestor of node p and node q. An

edge euv on the path from node q to nodew is selected to be deleted

by satisfying two conditions. Condition 1 is that all the path lengths

of the nodes in tree T should remain legal after adding epq and

deleting euv . If inequality 10 holds for node v , no path length

constraint is violated, where newv denotes the new path length

from s to nodev by adding edge epq . Assume Svk is the �rst value in

Lv which means the gap between new path length and the bound

value of node k is the smallest in the subtree of nodev . Inequality 8

should hold where newk is the new path length from s to node k . By

applying equation 7, inequality 9 and inequality 10 can be obtained.

The other condition is that the edge length of euv is maximum

among all the edges satisfying condition 1 on the path from p to w .

(1 + α)Dk > newk = newv − lvk (8)

Svk +Cv + δv − lvk > newv − lvk (9)

Svk +Cv + δv > newv (10)

If there is no such edge satisfying both conditions, epq will not be

added and another edge is considered to be added.

3.4.4 Remove Slack Information. As shown in �gure 5, when

euv is deleted from the tree, the smallest slack information Svk
should be removed from Li of node i on the path from u to s , if Sik
exists. Similarly, the smallest slack information S

q
m in Lq should be

deleted from Li of node i on the path from q to v (q excluded).

3.4.5 Add Slack Information. As shown in �gure 5, the �rst slack

information Sik of each child node i on the path from node v to s

should be passed to its parent node p as S
p
k by equation 11.

Sik + δi = S
p
k + δp (11)

3.5 Complexity
In algorithm 1, the construction of ERG requires O(|V |2) and the

graph UG and LG is built in O(|V | + |E |). The shortest path tree

algorithm and the minimum spanning tree algorithms requires

O(|E | + |V |loд |V |). Sorting takes O(|V |loд |V |). Traversing all the

edges is inO(|E |). Besides, modi�cation on Li takesO(loдd), where

d denotes the degree of the tree. Considering adding an edge,

we should trace a path in O(loдN ) and make modi�cation on Li .
Running time of algorithm 2 is in O(|E |loд |V |loдd). Taking all into

consideration, our algorithm takesmax{O(N 2),O(|E |loд |V |loдd)}.

3.6 Rectilinearization
In order to further improve wirelength, we apply the technique of

removal overlapping edges [1]. It compares each pair of adjacent

edges and estimates a reduced cost according to their bounding box.

The pairs maximum cost reduction will be processed to remove

overlapped edges.

4 BATCH ALGORITHM
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Figure 6: An Example

The UGLG algorithm only considers to add the smallest weight

edge each time. However, adjusting the order of edges may reduce
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more total tree length and a case that illustrate such situation is

shown in �gure 6 (a), where red numbers denote edge length. Be-

sides, α is 1 for the case. An MST of UG is obtained in �gure 6 (b)

and edges denoted in blue in �gure 6 (c) can be added to the MST.

UGLG algorithm can produce a tree shown in �gure 6 (d). However,

if we try to add the edge b �rst and the edge a next, the correspond-

ing result shown in �gure 6(e) will have a smaller total tree length.

In addition, more iterations may also bring a better solution because

some edges may fail to add but these edges can be added after tree

structure is modi�ed. In order to produce a better solution, a batch

algorithm is developed.

Given a tree T , �rst pairs of edges (ea , ed ) are obtained by the

UGLG algorithm, where ea is considered to be added and ed is to

be deleted. The pairs are sorted by pair_weight, which is de�ned by

pair_weight = ∆w − ∆path (12)

where ∆w denotes the gain in the total tree length |ed | − |ea | and

∆path denotes the increase in path length. After sorting, the edge is

added according to the new order based on UGLG algorithm. Noted

that when we add the edge, the corresponding edge to be deleted is

decided by UGLG algorithm and it may not be as same as the one

we stored in the pair. We repeat such process until there is no more

edges to be added or it reaches the maximum iteration time.

Other factors, such as capacitance, can be taken into considera-

tion in the pair_weight in order to further optimize the problem.

5 EXPERIMENTAL RESULTS
5.1 Experiments with Di�erent Algorithms

Table 1: Benchmark Information

# pins sb18 sb16 sb4 sb10 sb1 sb3 sb5 sb7

[0, 10) 730495 969721 772680 1842288 1174480 1167280 1069712 1831245

[10, 20) 24472 17228 16855 31289 23310 34991 18163 62510

[20, 30) 10887 7327 8724 13826 11180 15447 7624 27485

[30, 40) 5060 5348 3755 9495 5842 6131 4671 11038

[40, 50) 619 264 485 1201 879 1095 625 1641

[50,∞) 9 14 14 20 19 35 30 26

total 771542 999902 802513 1898119 1215710 1224979 1100825 1933945

ICCAD2015 [9] provides timing driven designs and their net

information is shown in table 1. Nets are classi�ed by their pin

number and number of nets in each category is displayed in the

table. Meanwhile, placement results, with respect to short displace-

ment constraint, produced by the winning 1st placer in the contest

are used. Besides, we set driver resistance 4ohm. In the experiments,

several algorithms, such as PD [1], FLUTE [4], BONN [12] and ours

are compared. Except FLUTE, others are run several times using

di�erent parameters. As shown in �gure 7, wirelength and maxi-

mum delay are normalized by the result of FLUTE. The result of

FLUTE is the point denoted as a green circle. Bonn is implemented

by us and same parameters in [12] are selected in the experiments.

It can always produce a result with relatively small delay but will

lose in wirelength. Results produced by PD algorithm with param-

eters c ∈ [0, 1] can achieve a good trade o� between wirelength

and maximum delay. However, our algorithm can minimize total

wirelength further compared with PD. In order to show the e�ect

of the algorithms, a ratio r is de�ned to estimate how well the re-

sult is, which is de�ned by r =
improvement of delay

loss of wirelength

. The results

with best maximum delay of each algorithm on each benchmark

are selected, which are shown in table 2. Bonn can achieve 9.39%

gain on maximum delay but lose 138.36% wirelength on average.

Maximum delay of PD is 3.48% of FLUTE and the loss of wirelength

is 20.37%. Ours is 4.48% and −14.67% respectively. Considering

ratio, average ratio of ours is 0.3 and meanwhile PD is 0.175. Ours

is around 4s slower.
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Figure 7: Comparision Among Algorithms

5.2 Comparison with Removal Overlapping
Technique

We also compare PD and ours by using the overlapping removal

technique, called PD-Steiner and UGLG-steiner respectively. The

results are shown in table 3. PD improves 0.319 with respect of r
and our improvement is 0.56 on r .

5.3 Comparison with Batch Algorithm
Batch algorithm are also performed by using parameters α ∈ (0, 1]
on ICCAD2015 benchmarks. The default number of iteration is 5.

Shown in �gure 8, the results of the batch algorithms and the UGLG

algorithm on di�erent benchmarks are shown. We can see from the

�gure that the batch algorithm can achieve a little bit better result

compared with the UGLG algorithm. The runtime is increased by

around 1 − 2 s for these benchmarks.

In �gure 9, the proposed techniques, removal overlapping and

batch algorithm, are compared.The results of 8 benchmarks with

di�erent techniques are shown in the �gure. We pick results with

smallest maximum delay value among di�erent parameters by ap-

plying di�erent techniques. Maximum delay ratio and wirelength

ratio are estimated based on results of FLUTE. Batch algorithm

improves a little wirelength and overlapping removal technique

reduces wirelength a lot.

6 CONCLUSION
Optimizing timing can improve the performance of current physical

design. Based on the RC delay model, geometry relationship of the

circuit is used to model timing. The optimization objective is to
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Table 2: Comparison Among Algorithms

FLUTE

sb18 8.32 0.00% 6.97 0.00% 9.23 0.00% 5.77E+07 0.00% 18.19 0.00% -

sb16 10.75 0.00% 9.86 0.00% 11.42 0.00% 9.36E+07 0.00% 18.14 0.00% -

sb4 7.99 0.00% 6.74 0.00% 8.84 0.00% 7.16E+07 0.00% 16.60 0.00% -

sb10 14.02 0.00% 12.89 0.00% 14.88 0.00% 2.06E+08 0.00% 34.26 0.00% -

sb1 7.12 0.00% 5.96 0.00% 7.98 0.00% 9.61E+07 0.00% 26.23 0.00% -

sb3 8.57 0.00% 7.09 0.00% 9.59 0.00% 1.15E+08 0.00% 28.30 0.00% -

sb5 10.27 0.00% 8.30 0.00% 11.92 0.00% 1.08E+08 0.00% 22.26 0.00% -

sb7 6.45 0.00% 5.13 0.00% 7.26 0.00% 1.40E+08 0.00% 42.82 0.00% -

Average 9.18 0.00% 7.87 0.00% 10.14 0.00% 1.11E+08 0.00% 25.85 0.00% -

PD

Benchmarks AD imprv. MIND imprv. MAXD imprv. WL imprv. Runtime imprv. r

sb18 7.79 6.43% 6.453 7.38% 8.783 4.80% 7.65E+07 -32.56% 9.86814 45.76% 0.147

sb16 10.4 3.21% 9.487 3.83% 11.17 2.18% 1.04E+08 -11.56% 11.5992 36.06% 0.189

sb4 7.56 5.29% 6.347 5.89% 8.514 3.74% 8.45E+07 -18.08% 9.69289 41.61% 0.207

sb10 13.7 2.54% 12.56 2.63% 14.6 1.85% 2.32E+08 -12.76% 20.843 39.17% 0.145

sb1 6.77 4.86% 5.679 4.70% 7.694 3.61% 1.14E+08 -18.50% 16.0013 38.99% 0.195

sb3 8.05 6.07% 6.564 7.44% 9.195 4.10% 1.43E+08 -24.56% 16.0357 43.34% 0.167

sb5 9.8 4.54% 7.843 5.55% 11.57 2.93% 1.24E+08 -15.08% 14.6127 34.37% 0.194

sb7 6 6.90% 4.666 9.07% 6.928 4.60% 1.82E+08 -29.83% 26.149 38.93% 0.154

Average 8.76 4.98% 7.45 5.81% 9.81 3.48% 1.32E+08 -20.37% 15.60 39.78% 0.175

BONN

Benchmarks AD imprv. MIND imprv. MAXD imprv. WL imprv. Runtime imprv. r

sb18 6.84 17.82% 5.864 15.82% 7.962 13.70% 1.81E+08 -214.36% 21.429 -17.79% 0.064

sb16 9.82 8.65% 8.875 10.03% 10.86 4.87% 1.69E+08 -80.22% 22.4913 -23.99% 0.061

sb4 6.86 14.10% 5.792 14.13% 7.994 9.62% 1.59E+08 -122.63% 20.3612 -22.66% 0.078

sb10 13.1 6.63% 12.03 6.68% 14.2 4.55% 3.80E+08 -84.72% 40.9977 -19.66% 0.054

sb1 6.26 12.10% 5.311 10.87% 7.303 8.50% 2.17E+08 -126.18% 31.6514 -20.68% 0.067

sb3 7.16 16.47% 5.983 15.62% 8.466 11.71% 3.02E+08 -164.13% 34.42 -21.63% 0.071

sb5 9.02 12.21% 7.075 14.80% 11.08 7.01% 2.14E+08 -98.45% 27.1845 -22.10% 0.071

sb7 5.09 21.06% 4.087 20.37% 6.162 15.15% 4.44E+08 -216.19% 52.0292 -21.52% 0.070

Average 8.02 13.63% 6.88 13.54% 9.25 9.39% 2.58E+08 -138.36% 31.32 -21.25% 0.067

OURS

Benchmarks AD imprv. MIND imprv. MAXD imprv. WL imprv. Runtime imprv. r

sb18 7.67 7.86% 6.381 8.40% 8.614 6.63% 7.08E+07 -22.78% 12.8826 -30.55% 0.291

sb16 10.4 3.20% 9.508 3.62% 11.15 2.34% 1.02E+08 -9.05% 14.5204 -25.18% 0.259

sb4 7.51 5.92% 6.33 6.14% 8.427 4.72% 8.10E+07 -13.16% 12.2056 -25.92% 0.359

sb10 13.6 2.70% 12.56 2.61% 14.56 2.19% 2.25E+08 -9.46% 26.4404 -26.86% 0.231

sb1 6.76 5.06% 5.69 4.51% 7.651 4.14% 1.09E+08 -13.36% 19.0409 -19.00% 0.310

sb3 7.95 7.24% 6.531 7.89% 9.031 5.81% 1.34E+08 -17.35% 20.5394 -28.09% 0.335

sb5 9.8 4.61% 7.857 5.38% 11.53 3.27% 1.20E+08 -11.26% 17.8537 -22.18% 0.290

sb7 5.89 8.59% 4.624 9.91% 6.773 6.74% 1.70E+08 -20.91% 33.0358 -26.34% 0.322

Average 8.70 5.65% 7.43 6.06% 9.72 4.48% 1.26E+08 -14.67% 19.56 -25.51% 0.300

Note:AD, MIND and MAXD denote average delay, minimum delay and maximum delay. The unit of delay is ps and the unit of wirelength (WL)
is um. The unit of running time is second.

minimize the total wirelength while each path length is within a

certain range. After ERG is constructed, UGLG algorithm obtains

an MST in UG. It iteratively adds an edge to MST to optimize the

solution. A batch algorithm is also proposed to further improve the

performance. The experimental results show that our algorithm

can have better performance.
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APPENDIX
Theorem .1. Given a set of points in (R2, `1), there exists an opti-

mal solution solu∗ of problem (1) in the corresponding Edge Reduced
Graph ERG.
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Proof. Denote source node as s . We will show that if edge pq
in solu∗ does not exist in G , we can �nd alternative edges for pq to

obtain a better solution. In solu∗, the tree edge may have 8 direc-

tions shown in �gure 10. In the proof, we only consider direction 1

while 3, 5 and 7 are similar and others can be explained by adjacent

direction’s proof. As a base case, there are four situations shown

in �gure 10(I)(II)(III)(VI). It shows there is only one node r located

inside the bounding box of p and q.

Base case 1: Replace pq with rq to get solu ′. lsr , lsp and lsq do

not change, where l ′sq = lsp +wpr +wrq = lsp +wpq = lsq . The

total weight is decreased by wpr . Therefore solu ′ is better.

Base Case 2: Replace pq with rq to get solu ′. lsr and lsp are same.

lsq is smaller, where l ′sq = lsr +wrq < lsr +wrp +wpq = lsq . The

total weight is reduced by wpr . Therefore solu ′ is better.

Base Case 3: node r has no connection with p and q.

(1) Replace pq with pr and rq to get solu ′ and delete the in-

coming edge ir to r in solu∗. lsp and lsq are same. l ′sr =
lsp +wpr . The total weight is smaller by wir .

(2) We can also replace pq by rq. lsp and lsr are same. l ′sq =
lsr +wrq . The total weight is smaller by wpr .

If pq is in solu∗, 1) does not hold and then l ′sr = lsp + wpr >

(1 + α)Dr ≥ lsr . Moreover, 2) does not hold and l ′sq = lsr +wrq >

(1 + α)Dq ≥ lsq = lsp +wpq . However, these two condition are

contradicted. Because

l ′sq = lsr +wrq >lsq = lsp +wpq

lsr +wrq >lsp +wpr +wrq

lsr >lsp +wpr

(13)

Therefore, either 1) or 2) must hold and the solution is better than

solu∗.
Base case 4: We delete the edge qr and replace pq by pr and rq.

lsp and lsq are same. and lsr is smaller because l ′sr = lsp +wpr <

lsr = lsp + wpq + wqr = lsp + wpr + 2wrq . The total weight is

smaller by wrq .

In addition, if any nodes located outside the bounding box of

p,q form a tree path p to r , r to p or q to r , we can transform such

case into base cases.

• path p to r : We can transform it into case 1 by adding an

edge pr and delete the incoming edge from r . The total

weight is reduced by this deleting edge.

• path r to p: We could add an edge rp and delete edge e
which is connected with r in the path r to p. It can be

proved in case 2 and the total weight is also reduced.

• path q to r : It can be modi�ed by adding an edge qr and

remove the edge connected with r in the path. It is proved

in case 4 that a better solution can be found.

Hence we can prove that the edge pq which is not in G can not be

in the solu∗ when there is one node inside bounding box of pq.

Assume there is an edge pq in solu∗ which is not in the graph

G . There are n nodes v1, · · · ,vn lying in the bounding box of the p
and q. pq can not exist in solu∗.

When there are n + 1 nodes v1, · · · ,vn+1 inside the bounding

box of the p and q and they are sorted in x ascending order. The

edge pv1, · · · ,vivi+1, · · · ,vn+1q must be in the G. We de�ne set

S = {v1, · · · ,vn+1,p,q} and set S ′ = {v1, · · · ,vn+1}.
Considering the edge pvn+1, there are less than or equal n nodes

inside the bounding box p,vn+1. According to assumption, edge

pvn+1 cannot in solu∗. We can also �nd alternative edges in G to

get a better solution.

Case 1: node vn+1 has an incoming edge lying in the path p to

vn+1. Considering nodes p, q and vn+1, it is proved in base case 1.

But it may also introduce the non existing edge pvn+1, which is

solved in assumption.

Case 2: There is a path vn+1p. Considering nodes p, q and vn+1,

it is proved in base case 2. The edge pvn+1 may be added and it is

explained by assumption.

Case 3: node vn+1 has no connection with nodes p,q in the

solu∗. Considering nodes p, q and vn+1, we can prove pq not in

solu∗ according to base case 3. But it may introduce the edge pvn+1
which is not in G and edge pvn+1 is considered in assumption.

Case 4: A path from node q to node vn+1 exists in the solu∗.
Considering nodes p, q and vn+1, base case 4 proved it. And also

edge pvn + 1 is explained in assumption.

The proof is completed. �
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