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Abstract. The structural tree-based mapping algorithm is an efficient and popular technique for
technology mapping. In order to make good use of this mapping technique in FPGA design, it is
desirable to design FPGA logic modules based on Boolean functions which can be represented by a
tree of gates (i.e., series-parallel or SP functions). Thakur and Wong [1996a; 1996b] studied this issue
and they demonstrated the advantages of designing logic modules as universal SP functions, that is,
SP functions which can implement all SP functions with a certain number of inputs. The number of
variables in the universal function corresponds to the number of inputs to the FPGA module, so it is
desirable to have as few variables as possible in the constructed functions. The universal SP functions
presented in Thakur and Wong [1996a; 1996b] were designed manually. Recently, there is an
algorithm that can generate these functions automatically [Young and Wong 1997], but the number
of variables in the generated functions grows exponentially. In this paper, we present an algorithm to
generate, for each n . 0, a universal SP function fn for implementing all SP functions with n inputs
or less. The number of variables in fn is less than n2.376 and the constructions are the smallest
possible when n is small (n # 7). We also derived a nontrivial lower bound on the sizes of the
optimal universal SP functions (V(n log n)).

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI (very
large scale integration)

General Terms: Design

Additional Key Words and Phrases: FPGA, series-parallel Boolean functions, technology mapping,
universal functions

1. Introduction

A Field-Programmable Gate Array (FPGA) is a prefabricated chip, with pro-
grammable logic and routing resources. This new chip technology allows circuit
designers to produce application-specific integrated circuits instantaneously with-
out going through the time-consuming fabrication process. FPGAs have the
advantages of fast turnaround design time and low manufacturing cost, making
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them ideal for applications such as fast system prototyping and logic emulation.
An FPGA consists of a two-dimensional array of identical logic modules each of
which can be programmed to realize a set of possible logic functions. To
implement a given circuit design on an FPGA, a key step is to decompose the
circuit into sub-circuits each of which can be implemented by a logic module.
This step is called technology mapping.

It is a good idea to design a logic module that can implement many different
functions, subject to the condition that we have a mapping algorithm that can
utilize the functionality. Recently, high-functionality logic modules based on
universal logic modules (ULMs) have been reported,1 but current technology
mappers cannot exploit all the functionality offered. Typically, the best mapping
algorithm for logic modules are discovered after the architectural design has
been done. Exploration of logic module architectures revolves around estab-
lished designs with incremental modifications. Thakur and Wong [1996a; 1996b]
took a dual approach; they began with a known mapping algorithm and designed
logic modules for which the mapping algorithm can perform well. The structural
tree-based mapping algorithm is an efficient and popular technique for technol-
ogy mapping. Due to the decomposition of unmapped logic networks into trees,
matches will be identified only for those library cells that have a representation
in the form of a tree of gates. The mapping algorithm is optimal for libraries
restricted to such functions (series-parallel functions or SP functions). For an
FPGA logic module, the library is the set of functions that can be implemented
using one logic module. In order to make good use of this mapping technique,
Thakur and Wong [1996a; 1996b] designed logic modules as universal SP
functions, that is, SP functions which can implement all SP functions with a
certain number of inputs. (A function which can implement all SP functions with
a certain number of inputs needs not be series-parallel itself but SP functions
have the advantage of having simple and compact CMOS implementations.
Hence we will aim at designing universal functions which are series-parallel as in
Thakur and Wong [1996a; 1996b].) The number of variables in the universal
function corresponds to the number of inputs to the FPGA module, so it is
desirable to have as few variables as possible in the constructed functions.
Thakur and Wong [1996a; 1996b] demonstrated a 7-input SP function that can
implement all 4-input SP functions. Experiments showed that, on average, the
number of logic modules needed to map benchmark circuits is 12% less than that
for a commercial FPGA. However, the universal SP functions presented in
Thakur and Wong [1996a; 1996b] were designed manually. Recently, there is an
algorithm that can generate these functions automatically [Young and Wong
1997], but the number of variables in the generated functions grows exponen-
tially.

In this paper, we present an algorithm to generate, for each n . 0, a universal
SP function fn for implementing all SP functions with n inputs or less. The
number of variables in fn is less than n2.376 and the constructions are the smallest
possible when n is small (n # 7). We also derived a nontrivial lower bound on
the sizes of the optimal universal SP functions (V(n log n)). The rest of the

1 See, for example, Lin et al. [1994], Patt [1973], Preparata [1971], Zidic and Vranesic [1996], and
Thakur and Wong [1995].
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paper is organized as follows. In Section 2, we formally introduce the problem of
constructing universal SP functions with minimum number of inputs and show its
equivalence to the problem of finding universal trees with minimum number of
leaves. In Section 3, we present the algorithm to construct universal trees (and
hence universal SP functions) and we display the designed functions for small n.
Section 4 is the lower bound proof.

2. Formulation of Problem

We denote the complement of a Boolean function f by f9. We now formally
define series-parallel (SP) functions and the notion of a function f implements
another function g as follows:

Definition 1. Any function of at most one input is an SP function. If f and g
are two SP functions with disjoint supports, then f 1 g and f p g are SP
functions.

Definition 2. For any m $ n, we say that a function f( z1, z2, . . . , zm) can
implement a function g( x1, x2, . . . , xn) if f can be transformed to g by: (i)
Assigning a value from {0, 1, x1, x91, . . . , xn, x9n} to each of the z1, z2, . . . , zm;
and (ii) optionally complementing the output of f.

Example 1. Let f 5 (( x1 1 x2) x93 1 x94) x5x6 and g1 5 y1y2y3 1 y4. Both f
and g1 are SP functions. Putting x1 5 y91, x2 5 y92, x3 5 0, x4 5 y3, x5 5 y94
and x6 5 1 and taking the complement of the output in f gives ((( y91 1 y92)
1 1 y93) y94 z 1)9 5 y1y2y3 1 y4 5 g1. Therefore, f can implement g1.

Definition 3. Two functions f and g are NPN-equivalent if and only if f can be
transformed to g by some combination of input permutations, input complemen-
tations and output complementation.

We call an SP function n-universal if it can implement all SP functions with at
most n inputs. The goal of our work is to construct n-universal SP functions for
all n . 0. It was proved in Thakur and Wong [1996a; 1996b] that if a function f
can implement an SP function g, then f can implement every SP function that is
NPN-equivalent to g. Therefore, to construct an n-universal SP function, it
suffices to construct a function that can implement one function from each
NPN-equivalent class.

Example 2. Let f 5 (( x1 1 x2) x93 1 x94) x5x6, g1 5 y1y2y3 1 y4, and g2 5
( y92 1 y3 1 y94) y91. Putting y1 5 y2, y2 5 y93, y3 5 y4 and y4 5 y1 and taking the
complement of the output in g1 gives ( y2y93y4 1 y1)9 5 ( y92 1 y3 1 y94) y91 5 g2.
Therefore, g1 and g2 are NPN-equivalent. From Example 1, we know that f can
implement g1. Since g1 and g2 are NPN-equivalent, f should also be able to
implement g2. This is true since putting x1 5 y92, x2 5 y3, x3 5 0, x4 5 y4, x5 5
y91 and x6 5 1 in f gives (( y92 1 y3)1 1 y94) y91 z 1 5 ( y92 1 y3 1 y94) y91 5 g2.

An SP function with m inputs can be represented by a labelled tree with the
following properties:

(1) The internal nodes are labelled AND (p) or OR (1) and have at least two
children each. The node labels alternate between AND and OR on any path
from the root to the leaves.
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(2) The tree has m leaf nodes. Each leaf node is labelled by one of { x1, x91, . . . ,
xm, x9m} such that each variable appears exactly once in some phase.

The unlabelled tree of an SP function f is the tree obtained by removing the
node labels. Figure 1 shows an SP function and its labelled and unlabelled tree
representations. Clearly, any SP function yields a unique labelled tree (up to
isomorphism), but an unlabelled tree may correspond to many different SP
functions (by labelling the nodes differently). It was proved in Thakur and Wong
[1996a; 1996b] that two SP functions are NPN-equivalent if and only if their
unlabelled trees are identical up to isomorphism. This is illustrated by an
example in Figure 2. It follows immediately that there is a one-to-one correspon-
dence between the unlabelled trees with m leaves and the NPN-equivalent
classes of all m-input SP functions. We now define two operations, cutting and
contraction, on unlabelled trees:

Cutting. Two nodes a and b, such that a is a child of b, are selected. The
entire subtree rooted at a and the edge between a and b are removed.

Contraction. An internal node b, which has parent a and a single child c, is
selected. Node b is removed. If c is an internal node, the children of c are
made children of a and c is removed (nontrivial contraction). If c is a leaf, it
becomes a child of a (trivial contraction).

Let t and t9 be two unlabelled trees. We say that t implements t9 if t9 can be
obtained by applying a sequence of cutting or contraction operations to t. Let f
and g be two SP functions and let t and t9 be their respective unlabelled trees. It
was proved in Thakur and Wong [1996a; 1996b] that f implements g if and only if
t implements t9. (For example, in Figure 3, we have f implements g1 and the
unlabelled tree of f can also implement the unlabelled tree of g1.) As a result,
the following two problems are equivalent:

Universal SP Function Design Problem. Given an integer n . 0, find an SP
function f with the minimum number of inputs that can implement all SP
functions with at most n inputs.

Universal Tree Design Problem. Given an integer n . 0, construct an
unlabelled tree Tn with the minimum number of leaf nodes that can implement
all unlabelled trees with at most n leaves.

Since the above two problems are equivalent, we will work on the second one
from now onwards. Unless otherwise stated, all trees in the following are

FIG. 1. An SP function and its labelled and unlabelled tree representations.
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unlabelled. We now introduce a few more terminologies that will be useful in the
rest of the paper. A tree is n-universal if it can implement all unlabelled trees
with at most n leaf nodes. The size of a tree is defined as the number of leaf
nodes. The size of a Boolean function is defined as the number of variables in it.
A fan is a tree that has the root as the only internal node (Figure 4).

3. Constructing Universal Trees

There are two different methods to construct universal trees. The first method
(procedure Simple-Utree) constructs an universal tree Tn recursively from Tn/ 2
and Tn21. This method is simple and it gives optimal universal trees when n is
small. However, the sizes of the trees constructed grow very fast when n
increases. The second method (procedure Advanced-Utree) gives polynomial
size universal trees, though the construction is more complicated and is subopti-
mal when n is small. We will combine these two methods together in the final
algorithm.

3.1. SIMPLE-UTREE

Algorithm Simple-Utree: Construct a tree Tn that is n-universal.

Input: A positive integer n .

Output: A tree Tn that is n-universal.

Assumptions: All i-universal trees Ti for i 5 1, . . . , n 2 1 are known.

FIG. 2. Two SP functions are NPN-equivalent if and only if their unlabelled trees are identical up to
isomorphism.

FIG. 3. f implements g if and only if the unlabelled tree of f implements the unlabelled tree of g.
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Construction:

1. If n 5 1, construct Tn as a single node tree.

2. Else if n 5 3, 4, 5, construct Tn as in Figure 5(a) and (b).

3. Otherwise, construct Tn as in Figure 5(c).

3.1.1. Proof of Correctness. We want to prove that the Tn constructed by
Simple-Utree is n-universal for all n. This is done by induction. It is obvious that
T1 is 1-universal and T2 is 2-universal. Let t be any tree with n leaves where n .
2. We want to show that the Tn constructed by Simple-Utree can implement t.
Let t1, t2, . . . , t j be the subtrees at the root of t where j $ 2. We consider the
following three cases:

Case 1. One subtree has only one leaf while the other has n 2 1 leaves.
It is obvious that Tn can implement t by the inductive hypothesis.

Case 2. There exists one subtree g of m leaves where 2 # m # n/ 2.
This case does not apply to n 5 3 since n/ 2 , 2 when n 5 3. Let t 2 g
denotes the set of subtrees at the root of t except g. Since g has more than one
leaf, t 2 g has less than n 2 1 leaves. By the inductive hypothesis, we can
implement t 2 g by Tn21 (Figure 6), and implement g by Tn/ 2 (or by the left
subtree at the root of the tree shown in Figure 5(b) when n 5 4, 5).

Case 3. Otherwise.
There must be at least two single-leaf subtrees, g1 and g2, at the root of t.
When n 5 3, it is the case when the root has three single-leaf children and it
is obvious that T3 can implement this. Consider the case when n . 3. Let t 2
g1 2 g2 denotes the set of subtrees at the root of t except g1 and g2. Since g1
and g2 has one leaf each, t 2 g1 2 g2 has less than n 2 1 leaves. By the
inductive hypothesis, we can implement t 2 g1 2 g2 by Tn21, and implement
g1 and g2 by Tn/ 2 (or the left subtree at the root of the tree shown in Figure
5(b) when n 5 4, 5).

3.1.2. Analysis. Let f(n) be the size of the universal tree Tn constructed by
Simple-Utree. We will show that f(n) lies between n lg n/4 and n lg(n11)/ 2 when n
is large. From the construction, we know that f(1) 5 1, f(2) 5 2, f(3) 5 4,
f(4) 5 7, f(5) 5 10 and

f~n! 5 fS n

2 D 1 f~n 2 1! when n . 5.

FIG. 4. A fan.

421Universal Series-Parallel Boolean Functions



So, for n . 5,

f~n! 5 f~5! 1 2 O
i53

n/ 2

f~i! when n is odd,

f~n! 5 f~5! 1 fS n

2 D 1 2 O
i53

n/ 221

f~i! when n is even.

Therefore,

2 O
i51

n/ 221

f~i! # f~n! # 4 1 2 O
i51

n/ 2

f~i! for all n .

For simplicity, we assume that n is a positive power of 2. Then

f~n! $ 2 3
n

4
3 fSn

4D 5
n

2
3 fSn

4D $
n

2
3

n

8
3 fS n

16D $ · · · $ n lg n/4

f~n! # 2 3
n

2
3 fSn

2D 5 n 3 fSn

2D # n 3
n

2
3 fSn

4D # · · · # n (lg n11)/ 2.

Therefore,

n lg n/4 # f~n! # n lg~n11!/ 2

The n-universal trees constructed by Simple-Utree have small sizes when n
is small: f(1) 5 1, f(2) 5 2, f(3) 5 4, f(4) 5 7, f(5) 5 10, f(6) 5 14, and

FIG. 5. Construction of universal trees by Simple-Utree.

FIG. 6. Use Tn21 to implement t 2 g.
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f(7) 5 18. Actually, they are the smallest possible when n # 7 according to the
lower bound proof in Section 4. Unfortunately, the above results show that their
sizes increase very fast with n, so we will turn to a different method to construct
the universal trees for large n.

3.2. ADVANCED-UTREE. In Advanced-Utree, the construction of an n-univer-
sal tree has a parameter k which optimal value varies with n. We can put this
parameter as different values for different n to get the best possible result. An
example of a construction is shown in Figure 7.

Algorithm Advanced-Utree: Construct a tree Tn which is n-universal.

Input: A positive integer n .

Output: A tree Tn which is n-universal.

Assumptions: All i-universal trees Ti for i 5 1, . . . , n 2 1 are known.

Construction:

1. If n # 3, construct Tn as in Figure 8(a).

2. Else for k 5 1, . . . , n 2 1:

(a) Construct Ak recursively as in Figure 8(c).
(b) Construct Tn

k as in Figure 8(b).
(c) Count the number of leaf nodes in Tn

k .

3. Put Tn as the smallest size Tn
k for k 5 1, . . . , n 2 1.

3.2.1. Proof of Correctness. We can easily show that T1, T2 and T3 are correct
by exhaustively enumerating all the trees they can generate. For n . 3, we
consider a tree t with n leaves and we show how we can generate t from the Tn

k

constructed by our method for any k 5 1, . . . , n 2 1. Assume that the tree t is
given in such a way that at any node v, its children subtrees are arranged from
left to right in nonascending order of their sizes, where the size is measured by
the total number of leaves. The leaf nodes are labelled from 1 to n from left to
right and we call the sequence of edges from the root to the leaf labelled 1 the
trunk of t. The following two steps show that we can construct t from Tn:

(1) We want to find a subtree (ta) in t which can be implemented by the bottom
part of Tn (i.e., the Tn2k and the two Tn/ 2’s). There are two different cases

FIG. 7. T4
1 constructed by Advanced-Utree.
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according to the number of leaves in the leftmost fan in t. (Refer to Figure 4
for the definition of a fan.)

Case (i) The leftmost fan has at least (n 2 k) leaves (Figure 9). Then ta is
this leftmost fan.

Case (ii) Otherwise, we count the leaves from 1 to n 2 k 2 1. Assume that
this (n 2 k 2 1)st leaf is in subtree y attached to the trunk of t. If y is not
counted completely, ta is everything from the leftmost subtree up to and
including y (Figure 10). If y is counted completely, we include in ta the
subtree z right to y along the trunk (Figure 11). Notice that both y and z
must have at most n/ 2 leaves because, otherwise, t will have more than
n leaves.

We want to show that the subtrees Tn2k and Tn/ 2’s at the bottom of Tn
k can

generate ta in t. In case (i) above, this is obvious since ta is a fan with at most
n 2 1 leaves and the two Tn/ 2’s in Tn

k can generate ta. In case (ii), both y
and z have at most n/ 2 leaves, so we can generate the rightmost subtree of
ta ( y or z) by one of the two Tn/ 2’s in Tn

k and generate the remaining
portion of ta (has less than n 2 k leaves) by the Tn2k (similar to Figure 6).
Notice that Tn can give either form as shown in Figure 12. We choose
between case (a) and case (b) in Figure 12 depending on the parity of the
level number of the root of ta in t.

(2) Let k1 be the size of the remaining portion of t. Then k1 5 n 2 size(ta).
Note that k1 is at most k since ta has at least n 2 k leaves. Then we count
the leaves in t again starting from the first subtree next to ta until the
k1/ 2th. Assume that this k1/ 2th leaf is in subtree w attached to the trunk
of t. Notice that w has at most k leaves, so it can be implemented by either
one of the Tk’s at the middle of Ak, depending on the parity of the level
number of the root of w in t. We can repeat this process recursively in the
lower half and in the upper half of the remaining portion of t, making use of
the two Ak/ 2’s in Ak, until the whole tree t is implemented.

FIG. 8. Construction of universal trees by Advanced-Utree.
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3.2.2. Analysis. We use f(k) to denote the size of Tk in the following analysis.
From the construction, we know that f(1) 5 1, f(2) 5 2, f(3) 5 4 and for n . 3:

f~n! 5 f~n 2 k! 1 2fS n

2 D 1 2 O
j50

i

2 jfS k

2 j D ,

where 2 i # k , 2 i11. We want to show by induction that:

f~n! # n2.376 (1)

FIG. 9. The leftmost fan has at least (n 2 k) leaves.

FIG. 10. Subtree y is not completely counted.

FIG. 11. Subtree y is completely counted.
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It is obvious that Eq. (1) is true for n 5 1, 2, 3. For n . 3, we will choose k to
minimize f(n). Actually, k can be any positive integer smaller than n and we will
put k 5 0.3n to give a tight upper bound for f(n):

f~n! # f~0.7n! 1 2fS n

2 D
1 2S f~0.3n! 1 2fS 0.3n

2 D 1 22fS 0.3n

22 D 1 · · · 1 2 if~1!D . (2)

By the inductive hypothesis, we can put f(k) # k2.376 to the right hand side of
Eq. (2):

f~n! # ~0.7n!2.376 1 2~0.5n!2.376 1 2~0.3n!2.376 1
~0.3n!2.376

21.376
1

~0.3n!2.376

~21.376!2

1 · · ·

5 ~0.7n!2.376 1 2 3 ~0.5n!2.376

1 2 3 0.32.376S 1 1
1

21.376
1

1

~21.376!2
1

1

~21.376!3
1 · · ·Dn2.376

5 ~0.7n!2.376 1 2 3 ~0.5n!2.376 1 2 3 0.32.376 3
1

1 2 ~1/ 21.376!
n2.376

# n2.376

3.3. COMBINED ALGORITHM. We combine these two methods together in the
algorithm UTREE:

Algorithm UTREE: Construct a tree Tn which is n-universal.

Input: A positive integer n .

Output: A tree Tn which is n-universal.

Construction:

1. If n , 15, construct Tn by Simple-Utree(n).

2. Else, construct Tn by Advanced-Utree(n).

THEOREM 1. UTREE constructs optimal n-universal trees when n # 7 and the
size f(n) of the construction grows polynomially with n:

f~n! # n2.376.

FIG. 12. Tn
k can give two possible forms to implement ta in t.
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Table I compares the sizes of the constructions by UTREE with the lower
bounds for small n. The lower bounds are obtained from Theorem 2 in Section 4.
Figure 13 displays the constructed trees for n 5 1, . . . , 7 and Table II shows
one corresponding universal SP function for each of them.

4. Lower Bound on the Universal Tree Design Problem

THEOREM 2. The size of an n-universal tree is at least

O
k51

n/ 2 n

k
1 O

k51

~n21!/ 2 n 2 1

k
2

n

2
2

n 2 1

2
1 1.

PROOF. Let T be an n-universal tree. Since T is n-universal, it must be able to
implement any tree t with n leaves. Here, we consider some special trees with
fans (Figure 4). In Figure 4 node u is the root of the fan and v1, v2, . . . , vk are
the children of u. To give a fan by cutting and contraction, T must contain a
structure as shown in Figure 14. Let u9, v91, v92, . . . , v9k be the nodes in T which
gives u, v1, v2, . . . , vk in the resulting tree t. We call those subtrees in T rooted
at u9, v91, v92, . . . , v9k bubbles (possibly a single node subtree) and the lowest
common ancestors of these nodes intersections. Since trivial contractions (Refer
to Section 2 for the definitions of trivial contraction and nontrivial contraction.)
can be replaced by cuttings, we will consider cuttings and nontrivial contractions
only. In nontrivial contractions, the levels are always reduced by two in each step,
so the parities of the distances between any two nodes will remain unchanged
after any sequence of cuttings or contractions. Therefore, the roots of the
bubbles must be at odd distances from the intersections while the intersections
must be at even distances from each other in T. We use “e” to denote an even
distance (possibly 0) and use “d” to denote an odd distance. It is obvious that the
bubbles do not overlap and the parity of the level number of u9 in T is the same
as that of u in t. We make use of the following three observations throughout the
proof:

Observation 1. For any vertex w in t, let w9 be its corresponding vertex in the
original universal tree T, then the parity of the level number of w in t is the same
as that of w9 in T.

TABLE I. COMPARING THE SIZES OF THE UNIVERSAL SP FUNCTIONS GENERATED BY UTREE WITH

THE LOWER BOUNDS
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Observation 2. For any two vertices u and v in t, let w 5 lca(u, v) and w9 5
lca(u9, v9) where u9 and v9 are the corresponding vertices of u and v in the
original universal tree T, then the parity of the level number of w in t is the same
as that of w9 in T.

Observation 3. Consider a structure as shown in Figure 15 in the original
universal tree T. Because the nontrivial contraction can only reduce the distances
between v and u by two in each step, we must remove A totally in order to move

FIG. 13. Universal trees Tn constructed by UTREE for n 5 1, . . . , 7.
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B up to v or remove B totally to move A up to v. Therefore, we can never get the
structures as shown in Figure 16 in the resulting tree t.

The proof has three parts: the first part considers trees with fans at even levels,
the second part consider trees with fans at odd levels, and the third part puts
them together.

Part I

(1) Consider a tree t with a fan of n leaves at the root (Figure 17(a)). There
must be a subtree D0 in the original universal tree T that gives this fan by
cuttings and contractions (Figure 17(b)).

(2) Consider a tree t with two fans of (n 2 1)/ 2 leaves at level two (Figure
18(a)). There must be two disjoint subtrees A and B in T that give these two
fans (Figure 18(b)). There can be two possibilities:

Case (1). At least one of A or B is disjoint from D0. Let’s call it D1.
Case (2) Both A and B are contained in D0. We claim that at least one of

A or B does not contain any bubble of D0. If the opposite is true, there
exist a bubble x and a bubble y in D0 such that A contains x and B

TABLE II. UNIVERSAL SP FUNCTIONS CONSTRUCTED BY UTREE FOR n 5 1, . . . , 7

FIG. 14. Structure in the original tree that gives a fan.
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contains y. But this is impossible because according to Observation 3, if x
and y are contained in A and B, respectively, they cannot be both moved
up to the root to give the fan as described in Figure 17(a). So at least one
of A or B does not contain any bubble of D0 and lets call it D1.

Combining the above two cases, we can describe T by either ((D0)(D1)) or
((D0(D1))), where the parentheses show containments and the bubbles in
the D9is are all disjoint.

(3) Consider a tree t with three fans of (n 2 1)/3 leaves at level two (Figure
19(a)). There must be three disjoint subtrees A, B and C in T that give these
three fans (Figure 19(b)). There can be several possibilities:

Case (1). Assuming that T is ((D0)(D1)). There are two subcases:
Subcase (i). At least one of A, B, or C is outside D0 and D1. Let’s call it

D2. Therefore, T is ((D0)(D1)(D2)).
Subcase (ii). At least two of A, B, or C are contained in one of D0 or

D1. Without loss of generality, let B and C be contained in D0 (Figure
20). Similar to the argument above, at least one of B or C does not
contain any bubble of D0. Let’s call it D2. Therefore, T is
((D0(D2))(D1)).

Case (2). Assuming that T is ((D0(D1))). There are three subcases:
Subcase (i). At least one of A, B or C is outside D0. Let’s call it D2.

Therefore, T is ((D0(D1))(D2)).
Subcase (ii). At least two of A, B or C are outside D1. Without loss of

generality, let B and C be outside D1 (Figure 21). Similarly, we can
argue that at least one of B or C does not contain any bubble of D0.
Let’s call it D2. Therefore, T is ((D0(D1)(D2))).

Subcase (iii). At least two of A, B or C are inside D1. Without loss of
generality, let B and C be inside D1 (Figure 22). Similarly, we can argue

FIG. 15. Tree structure considered in observation 3.

FIG. 16. These tree structures cannot be obtained from the structure in Figure 15.
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that at least one of B or C does not contain any bubble from D0 or D1.
Let’s call it D1. Therefore, T is ((D0(D1(D2)))).

Combining the above three cases, we can describe T by either
((D0)(D1)(D2)), ((D0(D2))(D1)), ((D0)(D1(D2))), ((D0(D1))(D2)),
((D0(D1)(D2))) or ((D0(D1(D2)))).

FIG. 17. A fan at the root.

FIG. 18. Two fans at level two.

FIG. 19. Three fans at level two.

FIG. 20. B and C in D0.
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We can repeat the above process (n 2 1)/ 2 times, considering trees with
fans of different sizes (Figure 23). In the kth step, we consider a tree t with A1,
A2, . . . , Ak of equal size at level two (Figure 24). At the beginning of this step,
there are already k 2 1 disjoint subtrees D0, D1, . . . , Dk22 in any possible
structure of T. This step is done if at least one of the A1, A2, . . . , Ak is outside
any of the D0, D1, . . . , Dk22. Otherwise, there must be a subtree Dj, where 0 #
j # k 2 2, which contains at least two of the A1, A2, . . . , Ak. Without loss of
generality, let A1 and A2 are contained in Dj “directly,” that is, there is no Di

where 0 # i # k 2 2 which contains A1 and A2 and Dj contains Di. We can
similarly argue that at least one of A1 or A2 (call it Dk21) which does not contain
any bubble from Dj or from any D’s which contains Dj. Therefore, T can be
described as (. . .(Dj(Dk21). . .). . .). We can conclude that T must contain at
least ((k51

(n21)/ 2 (n 2 1)/k 1 1) disjoint bubbles at the even levels after
repeating the above process (n 2 1)/ 2 times.

Part II. Part II is very similar to Part I, except that we consider fans at level
one. We can show that a universal tree T must contain at least ((k51

n/ 2 n/k 2
1) disjoint bubbles at the odd levels.

Part III. The above two parts show that there are at least (k51
(n21)/ 2 (n 2

1)/k 1 1 disjoint bubbles at the even levels and at least (k51
n/ 2 n/k 2 1

disjoint bubbles at the odd levels. We cannot simply add them up because there
may be overlappings between the bubbles at the even levels and the bubbles at
the odd levels. Let D be the set of subtrees from Part I, which contain bubbles at
even levels and let E be the set of subtrees from Part II, which contain bubbles at
odd levels. If a bubble x in a Di [ D overlaps with a bubble y in a Ej [ E, it
must be the case that one bubble “contains” the other (Figure 25) because the
root of x and the root of y are at different levels. In this case, we cannot treat x

FIG. 21. B and C in D0 but not in D1.

FIG. 22. B and C in D1 and D1 in D0.
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and y separately in the counting process. In the following, we observe some
properties when two bubbles overlap and this allows us to count the maximum
number of overlappings between bubbles. Suppose Di [ D and Ej [ E, we use
overlap(Di, Ej) to denote that there exists a bubble in Di that contains a bubble
in Ej and use overlap(Ej, Di) to denote that there exists a bubble in Ej, which
contains a bubble in Di.

We proved two claims to show that each pair of Di [ D and Ej [ E can have
at most one overlapping:

CLAIM 1. overlap(Di, Ej) 3 ¬overlap(Ej, Di) where Di [ D and Ej [ E.

PROOF. Let x1, x2 be bubbles in Ej and let y1, y2 be bubbles in Di. Assume
that y1 contains x1 and x2 contains y2 as shown in Figure 26(a). As explained in
Figure 14, the intersection u must be at odd distances from the roots of x1, x2,
y1, and y2. But this is impossible since the distance between the roots of x1 and
y1 and the distance between the roots of x2 and y2 are both odd. e

CLAIM 2. Every pair of Di and Ej can overlap at most once where Di [ D and
Ej [ E.

FIG. 23. Different cases considered in Part I.

FIG. 24. k fans at level two.

FIG. 25. Bubble y in bubble x.
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PROOF. Let x1, x2 be bubbles in Ej and let y1, y2 be bubbles in Di. Assume
that y1 contains x1 and y2 contains x2 as shown in Figure 26(b). Similar to the
argument above, this is impossible since the intersection u should be at odd
distances to the roots of all the bubbles. e

Therefore, for any pair of Di [ D and Ej [ E, they have at most one bubble
overlaps. We use innermost(Ei) to denote the innermost Dj [ D, which contains
Ei. Similarly innermost(Di) denotes the innermost Ej [ E, which contains Di.
Because of the properties of the nested structure in D and E that bubbles of an
outside subtree will not fall into any of the subtrees nested inside, there is no
overlapping between Ei and those subtrees in D outside innermost(Ei) nor
between Di and those subtrees in E outside innermost(Di). Therefore, the
number of leaves in T is at least:

S O
k51

~n21!/ 2 n 2 1

k
1 1D 1 S O

k51

n/ 2 n

k
2 1D 2 S n

2
1

n 2 1

2
2 1D

where the term inside the last parenthesis is the maximum number of overlap-
pings and the “1” is due to the fact that the outermost subtree has no outside
subtree to overlap with. Therefore

Size~T! $ O
k51

~n21!/ 2 n 2 1

k
1 O

k51

n/ 2 n

k
2

n

2
2

n 2 1

2
1 1

5 V~n ln n! e
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