
SLICING FLOORPLANS WITH RANGE CONSTRAINT*

F. Y. Young and D.F. Wong
Department of Computer Sciences
The University of Texas at Austin

fyyoung&s.utexas.edu wong&s.utexas.edu

ABSTRACT
In floorplanning, it is important to allow users to specify

placement constraints. Floorplanning with pm-placed con-
straint is considered recently in [3, 131. In this paper, we
address a more general placement constraint called range
constraint, in which a module must be placed within a
given rectangular region in the floorplan. This is a more
general formulation because any pre-placed constraint can
be written as a range constraint. We extend the Wong-Liu
algorithm [ll] to handle range constraint. Our main con-
tribution is a novel shape curve computation which takes
range constraint into consideration. Experimental results
show that the extended floorplanner performs very well and,
in particular, it out-performs the floorplauner in [13] when
specialized to handle pm-placed modules.

1. INTRODUCTION
Floorplan design is an important step in the physical de-
sign of VLSI circuits. It is the problem of placing a set of
circuit modules on a chip to minimize total area and inter-
connect cost. In this early stage of physical design, most
of the modules are not yet designed and thus are flexible
in shape (soft modules), while some may have been com-
pletely designed and have a fixed shape (hard modules).
There are two kinds of floorplans: slicing and non-slicing.
Many existing floorplanners are based on slicing floorplans
[l, 2, 7, 10, 111. There are several advantages of using slic-
ing floorplans. Firstly, focusing only on slicing floorplans
significantly reduces the search space which in turn leads
to faster runtime, especially when the simulated annealing
method is used. Secondly, the shape flexibility of the soft
modules can be fully exploited to give a tight packing based
on an efficient shape curve computation technique [8, 91.
It has been shown mathematically that a tight packing is
achievable [12] for slicing floorplans.

There are some interesting results in the direction of non-
slicing floorplans recently. Two methods, sequence-pair [4]
and bound-sliceline-grid (BSG) [6], have been proposed for

*THIS WORK WAS PARTIALLY SUPPORTED BY A
GRANT FROM THE INTEL COBPOEATION.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD ‘99 Monterey CA USA
Copyright ACM 1999 I-581 13-089-9/99/04...$5.00

placement of hard modules. The sequence-pair method has
later been extended to handle pm-placed modules f3] and
soft modules [5]. In order to handle soft modules, it has
to solve mathematical programming problems to determine’
the exact shape of each module numerous times in the floor-
planning process, and this results in long runtime.

In floorplanning, it is important to allow users to specify
placement constraints. Three common types of placement
constraints are pm-placed constraint, boundary constraint
and range constraint. For pre-placed constraint, we require
a module to be placed exactly at certain position in the
final floorplan. In fact, the problem of floorplanning with
obstacles can be solved by treating the obstacles as pre-
placed modules. This problem has been considered in both
slicing and non-slicing floorplan [3, 5, IS]: For boundary
constraint, we require a module to be placed along one of
the four sides in the fmal floorpldni on the left, on the right,
at the bottom or at the top. This is useful when users want
to place some specific modules along the boundary for I/O
connections. This problem is considered recently in a slic-
ing floorplanner [14]. Pre-placed constraint is however very
restrictive and sometimes, it is already sufiicient to allow
users to restrict the placement of a module to within a cer-
tain range. Therefore we consider the range constraint in
which we require a module to be placed within a given rect-
angular region in the final flo~rplan. Thii less restrictive
constraint is more useful in practice but no previous work
is reported on it before. Actually, the range constraint prob- ’
lem is a more general problem because any pre-placed con-
straint can be written as a range constraint by specifying
the rectangular region such that it has the same size as the
module itself.

In thii paper, we address thii more general range con-
straint problem by extending the Wong-Liu algorithm [II].
Our main contribution is a novel shape curve computation
which takes range constraint into consideration. When our
algorithm is specialized to handle pre-placed modules, we
out-perform the floorplanner in [13]. Note that the floor-
planner in [13] is also based on the Wong-Liu algorithm
[ll] by extending the shape curve computation to under-
stand pre-placed constraint using the notion of reference
point and a more complicated set of moves in the anneal-
ing process. In this paper, we use a simplier approach in
which only the original set of simple moves in [ll] is used.
Experimental results show that the extended floorplanner
performs very well. The rest of the paper is organized as
follows. We first define the problem formally in Section 2.
Section 3 provides a brief review of the Wong-Liu algorithm.
Section 4 presents our method to handle range constraint.
Experimental results are shown in Section 5.

97

2. PROBLEM DEFINITION

A module A is a rectangle of height h(A) and width w(A).
Let area(A) = h(A) x w(A) denote the area of A. The os-
pect ratio of A is defined as h(A)/w(A). A floorplan for n
modules consists of an enveloping rectangle subdivided by
horizontal and vertical line segments into n non-overlapping
rectangles such that each rectangle must be large enough to
accommodate the module assigned to it. A supermodule is
a sub-floorplan which contains one or more modules. There
are two kinds of floorplans: slicing and non-slicing. A slic-
ing floorplan is a floorplau which cau be obtained by recur-
sively cutting a rectangle into two parts by either a vertical
line or a horizontal line. A non-slicing floorplan is a floor-
plan whii is not slicin ,

gd
A module can either be hard or

sofr. The height and wi th of a hard module are fixed but
the module is free to rotate. The shape of a soft module
can be changed as long au the area remains a constant and
the aspect ratio is within a given range. We assume that
the fiaorplan iz in the ilrzt quadrant with its lower-left eor-
ner at the origin and we consider two types of placement
constraints:

Pre+laced constraint Given a hard module A with fixed
orientation and a point (sr, yr) in the first quadrant,
A must be placed with its lower left corner at (01, yl)
in the final floorplan.

Range constraint Given a hard module A and a rectan-
gular region Rr = {(z,y)lzl S 3: 5 zs,yr 5 Y 5 YZ),
A must be placed inside RI in the final floor-plan.

An example is shown in Figure 1. In Figure 1, module
A has size 3 x 2 and it must be placed with its lower left
comer at (3,2) (pre-placed constraint). Module I3 has size
1 x 1 and it must be placed within the dotted line region
((z, y)]l 5 z <.4,1 5 y 5 4) (range constraint). The
floorplan shown m Figure 1 is a feasible one in which both
constraints are satisfied.

In our problem, we are given two kinds of modules
M = Mf U MP where Mf contains modules which do not
have any constraint in placement and M,, contains mod-
ules which have either pre-placed constraint (P) or range
constraint (R). We assume that the pre-placed modules
are given as non-overlapping and all of them lie in the first
quadrant of the xy-plane. We also assume that they do
not form a non-slicing structure. (If they are given as non-
slicing, we can pre-process them by cutting their total oc-
cupied area into a slicing structure.) Notice that pm-placed
constraint is a special kind of range constraint in which the
module has no freedom of movement. (For example, in Fig-
ure 1, the pre-placed constraint for module A can be speci-
fied by a range constraint requiring the module to be placed
within the region {(z, y)]3 5 x 5 6,2 < y 5 4}.) Therefore
we will only focus on solving the more general range con-
straint problem. A pacLing is a non-overlap placement of
all the modules in M. A feosible packing is a packing in the
first quadrant such that all the placement constraints are
satisfied, and the widths and heights of all the soft modules
are consistent with their aspect ratio constraints and area
constraints. Our objective is to construct a feasible floor-
plan F to minimize A + XW where A is the total area of-the
packing, W is an estimation of the interconnect cost and X
is a user-specified constant which controls the relative im-
portance of A and W in the cost function. We require that
the aspect ratio of the final packing is between two given
numbers rmin and rmaz.

5
t F i.

! t

~

3 i,&
ni B i

i 1 I : ._.... ..*_ _........ 3
E: x

I 2 3 4 5 6

Figure 1. An example of the pre-placed constraint
and range constraint

pOlishorppr*on: 16+3S*Z+W+*

Figure 2. Sliaing tree representation and Polish ax-
pression representation of a slicing floorplan

3. WONG-LIU ALGORITHM

In this section, we briefly review the Wang-Liu slicing al-
gorithm [ll]. A slicing floorplan can be represented by au
oriented rooted binary tree, called a slicing tree (Figure 2).
Each internal node of the tree is labeled by a * or a -t-
operator, corresponding to a vertical or a horizontal cut re-
spectively. Each leaf corresponds to a basic module and is
labeled by a number from 1 to n. No dimensional informa-
tion on the position of each cut ls specified ln the slicing
tree. If we traverse a slicing tree in postorder, we obtain a
Polish expression. A Polish expression is said to be normal-
ized if there is no consecutive *‘s or +‘s in the sequence. It
is proved in [ll] that there is a l-l correspondence between
the set of normalized Polish expressions of length 2n - 1
and the set of slicing floorplans with n modules.

In [ll], Wong and Liu used the simulated annealing
method with the set of all normalized Polish expressions
as the solution space. In order to search the solution space
efficiently, they defined three types of moves (Ml, M2 and
M3) to transform a Polish expression into another. (Ml
exchanges two adjacent modules in the Polish expression,
e.g. 12 * 3+ becomes 21* 3+. M2 complements a maximal
sequence of operators, e.g. 1234 * +* becomes 123 + *+. M3
exchanges a module with its adjacent operator, e.g. 123 * +
becomes 12 * 3+.) Figure 3 shows a series of floorplan trans-
formations. They can make use of the flexibility of the soft
modules to select the “best” floorplan among all the equiv-
alent ones represented by the same slicing structures. This
is done by carrying out an efficient shape curve computa-
tion whenever a Polish expression is examined. The cost
function is A + XW where A is the total packing area and
W is the interconnect cost. This algorithm is very efficient
and the performance is very good. (For the same set of
benchmark data used by the sequence-pair based algorithm
in [5], the slicing floorplanner in [ll] can obtain comparable
results using only a fraction of the runtime. In fact, it gives
less than 1% dead space using no more than 7 seconds for
each test problem.) In this paper, we extend the Wong-Liu
algorithm to handle range constraint.

98

34*2+.5*1+

32*4+5* l+

32*45+* I+

32*45*+1+

Figure 3. Floorplan transformation in the Wong-
Liu algorithm

4. FLOORPLANNING WITH RANGE
CONSTRAINT

The Wong-Liu algorithm can fully exploit the flexibility of
the soft modules to select the “best” floorplan among all the
equivalent ones represented by the same slicing structures.
This is done by representing the shape of each module by a
shape curve. A shape curve is a piecewise linear decreasing
curve which represents the tradeoff between the height and
the width of a module. Starting from the basic modules at
the leaves of the slicing trees, the algorithm works upwards
to the root, computing the shape curve at each internal
node. At the end, the shape curve at the root represents all
the possible shapes of the final floorplan, and we select one
such that the aspect ratio is within the required bounds.

Now some of the basic modules at the leaves have place-
ment constraints. A key observation is that when we put
together two modules at least one of which has range con-
straint, the combined supermodule will also have range con-
straint. The range constraint information will thus be prop-
agated upward from the leaves to the root, and we need to
keep in the shape curves both the dimensional information,
i.e. the height and the width, and the placement constraint
information. Let X be a basic module or a supermodule
with range constraint, we use four variables to represent
the constraint:

l right(X): The shortest distance of the right boundary
of X from the y-axis.

l left(X): The longest distance of the left boundary of
X from the y-axis.

l top(X): The shortest distance of the upper boundary
of X from the z-axis.

l bottom(X): The longest distance of the lower boundary
of X from the z-axis.

An example is shown in Figure 4. In Figure 4, module X
has width w and height h and it is constrainted to be placed
inside the dotted line rectangle {(z,y))zl 5 z 5 za,y~ 5
y 5 ~2). Then right(X) = 21 + w, left(X) = zz - w,
top(X) = yl + h and bottom(X) = yz - h. Similarly we
work upwards from the basic modules at the leaves to the
root. We compute shape curve at each internal node from

‘1

Figure 4. An example of a module with range con-
straint

the shape curves of its two children, taking into account
the placement constraint information. Finally, the shape
curve at the root represents the possible shapes of the final
floorplan as well as its possible positions on the xy-plane.
Consider an internal node u in the slicing tree, let I’ and A
be the shape curves of its two children, we will combine r
and A point by point to obtain a shape curve for u. (Note
that l? and A are piecewise linear with a finite number of
corners.) For each pair of points pl and pl where pl E r
and pa E A, we combine the module represented by the
point pl with the module represented by the point pp to
obtain a module which will be represented by a point on
the resultant shape curve. We should co’mbine pairwise the
points on I’ and A. However, we found from practice that it
is mu& more efficient if we just add the two shape curves,
i.e. combining only those pairs of points with the same x
values, (if v corresponds to a + operation) or the same y
values (if IJ corresponds to a * operation), and there is no
degradation in performance. The details of combining two
modules with range constraints will be described in the next
section.

4.1. Combining Modules with Range Constraints

In thii section, we show how to compute the range con-
straint of the combined supermodule based on the range
constraints of its two children modules. We consider com-
bining two modules A and B vertically to get AB+, i.e.
putting module B above module A. The case where we com-
bine two modules horizontally to get AB* can be considered
similarly. Assuming that at least one of the two modules
has range constraint, there are three different cases:

4.1.1. Only A has range constraint
Module B has no placement constraint, so we can put

it above wherever module A is (Figure 5). Let X be the
combined supermodule, i.e. X = AB+, then h(X) =
h(A) + h(B), w(X) = max{w(A),w(B)), right(X) =
max{w(X),right(A)), left(X) = left(A), top(X) =
top(A) + h(B) and bottom(X) = bottom(A).

4.1.2. Only B has range constmint
There is a condition which must be satisfied in thii case,

which is, bottom(B) > h(A), because otherwise, module
A will be placed below the x-axis (Figure 6). If this con-
dition is satisfied, we can put module A below wherever
module B is as long as they are both in the first quad-
rant (Figure 7). Let X be the combined supermodule,
i.e. X = AB+, then h(X) = h(A) + h(B), w(X) =
max{w(A), w(B) ,

T
right(X) = max{w(X), right(B)},

left(X) = left B), top(X) = max{h(X), top(B)} ad
bottom(X) = bottom(B) -h(A).

99

4.1.3. Both A and B have range constraints
There is a condition which must be satisfied in this case,

which is, bottom(B) 2 top(A), because otherwise, A and
B will overlap vertically (Figure 8). If this condition is
satisfied, we can compute X = ABs by considering the
vertical and the horizontal directions separately:

Vertical Direction We consider two different cases:

Case 1 Assume that the range of A does not overlap
with the range of B vertically as shown in Figure 9.
We want to put A and B as close to each other as
possible, so h(X) = top(B) -bottom(A). The com-
bined supermodule X is fixed in position vertically.
top(X) = top(B) and bottom(X) = bottom(A).

Case 2 Assume that the range of A and B over-
lap vertically as shown in Figure 10. In or-
der to have the smallest combined area, we will
put B right above A, so h(X) = h(A) + h(E).
For top(X), it is constrainted by either top(A)
or top@% SO top(X) = m={top(W,top(A) +
h(B)}. Similarly, bottom(X) is constrainted by
either bottom(A) or bottom(B), so bottom(X) =
min{bottom(A),bottom(B) -h(A)}.

Combining the above two cases, we obtain h(X) =
max top(B) - bottom(A),h(A) + h(B)}, top(X) =
max top(B),@(A) + h(B)} and bottom(X) = 1
min(bottom(A),bottona(B) - h(A)}.

Horisontal Direction Again, we consider two different
cmes:

Case 1 Assume that the range of A does not over-
lap with the range of B horizontally as shown in
Figure 11. We will put A and B as close to each
other as possible. If the range of A is on the
right, w(X) = right(A) - left(B), right(X) =
right(A) and left(X) = left(B). Otherwise,
w(X) = right(B) - left(A), right(X) = right(B)
and Zeft(X) =
w(X) =

left(A). Putting them together
-

left(A)),
max right(A)

right X) I
left(B), right(B) -

= max{right(A),right(B)}
and left(X) = min{left(A),Zeft(B)}.

Case 2 Assume that the ranges of A and B overlap
horizontally as shown in Figure 12. If the length
of the overlap in the z-direction is greater than
either w(A) or w(B) (Figure 12(a-c)), w(X) =
max{w(A), w(B)}. Otherwise (Figure 12(d)), we
will put A and B as close to each other as pos-
sible, so w(z) = right(A) - left(B) if the range
of A is on the right, and w(z) = right(B) -
left(A) otherwise.
4-v

Putting them together,
= max{right(A) - left(B), right(B) -

left(A),w(A),w(B)}. For right(X), it is con-
strainted by either right(A) or right(B), 50
right(X) = max{right(A),right(B)}. Simi-
larly left(X) is constrainted by either left(A) or
left(B), so left(X) = min{left(A),left(B)}.

Combining the above two cases, we ob-
tain right(X) = max{right(A),right(B)}, left(X) =
min{left(A),left(B)} and w(X) = max{right(A) -
left(B),right(B) - left(A),w(A), w(B)).

The following formulae summarize the above discussion
for the case when both A and B have range constraints.
The formulae for the case of putting module B horizontally
on the right of A can be derived similarly:

100

Figure 6. Only module A has range constraint in
AB+

x

Figure 6. The necessary condition when only mod-
B has range constraint in AB+ uIe

1. X=AB+

2.

Necessary condition: bottom(B) 2 top(A)
Computations:

w(X) = max{right(A) - Zeft(B),right(B) -
left(A), w(A), w(B))

h(X) = max{top(B) - bottom(A),h(A) + h(B)}
top(X) = mWop@), ~or-0) + h(B)1

bottom(X) = min{bottom(A),bottom(B) - h(A)}
right(X) = max{right(A), right(B)}
lefW = min{left(A),left(B)]

X=AB*

Necessary condition: left(b) 2 right(A)
Computations:

w(X) =
h(X) =

top(X) =
bottom(X) =

right(X) =
left(X) =

max{right(B) - left(A),w(A) + w(B)}
max{top(A) - bottom(B),top(B) -
bottom(A), h(A), h(B))

m=ttw(A), W4B)l
min{bottom(A), bottom(B)}
max{right(B),right(A) + w(B)}
min{left(A),Zeft(B) -w(A))

4.2. Moves and Cost Function
We use the same set of moves (Ml M2 and M3) as in (111.
The cost function is defined as A + XW + yD where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree. In our current implementa-
tion, W is the half perimeter estimation of the interconnect
cost. Clearly, this term can be replaced by any more sophis-
ticated interconnect cost estimation. D is a penalty term
which is zero when the packing is feasible, and is otherwise

