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ABSTRACT 
In floorplanning, it is important to allow users to specify 

placement constraints. Floorplanning with pm-placed con- 
straint is considered recently in [3, 131. In this paper, we 
address a more general placement constraint called range 
constraint, in which a module must be placed within a 
given rectangular region in the floorplan. This is a more 
general formulation because any pre-placed constraint can 
be written as a range constraint. We extend the Wong-Liu 
algorithm [ll] to handle range constraint. Our main con- 
tribution is a novel shape curve computation which takes 
range constraint into consideration. Experimental results 
show that the extended floorplanner performs very well and, 
in particular, it out-performs the floorplauner in [13] when 
specialized to handle pm-placed modules. 

1. INTRODUCTION 
Floorplan design is an important step in the physical de- 
sign of VLSI circuits. It is the problem of placing a set of 
circuit modules on a chip to minimize total area and inter- 
connect cost. In this early stage of physical design, most 
of the modules are not yet designed and thus are flexible 
in shape (soft modules), while some may have been com- 
pletely designed and have a fixed shape (hard modules). 
There are two kinds of floorplans: slicing and non-slicing. 
Many existing floorplanners are based on slicing floorplans 
[l, 2, 7, 10, 111. There are several advantages of using slic- 
ing floorplans. Firstly, focusing only on slicing floorplans 
significantly reduces the search space which in turn leads 
to faster runtime, especially when the simulated annealing 
method is used. Secondly, the shape flexibility of the soft 
modules can be fully exploited to give a tight packing based 
on an efficient shape curve computation technique [8, 91. 
It has been shown mathematically that a tight packing is 
achievable [12] for slicing floorplans. 

There are some interesting results in the direction of non- 
slicing floorplans recently. Two methods, sequence-pair [4] 
and bound-sliceline-grid (BSG) [6], have been proposed for 
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placement of hard modules. The sequence-pair method has 
later been extended to handle pm-placed modules f3] and 
soft modules [5]. In order to handle soft modules, it has 
to solve mathematical programming problems to determine’ 
the exact shape of each module numerous times in the floor- 
planning process, and this results in long runtime. 

In floorplanning, it is important to allow users to specify 
placement constraints. Three common types of placement 
constraints are pm-placed constraint, boundary constraint 
and range constraint. For pre-placed constraint, we require 
a module to be placed exactly at certain position in the 
final floorplan. In fact, the problem of floorplanning with 
obstacles can be solved by treating the obstacles as pre- 
placed modules. This problem has been considered in both 
slicing and non-slicing floorplan [3, 5, IS]: For boundary 
constraint, we require a module to be placed along one of 
the four sides in the fmal floorpldni on the left, on the right, 
at the bottom or at the top. This is useful when users want 
to place some specific modules along the boundary for I/O 
connections. This problem is considered recently in a slic- 
ing floorplanner [14]. Pre-placed constraint is however very 
restrictive and sometimes, it is already sufiicient to allow 
users to restrict the placement of a module to within a cer- 
tain range. Therefore we consider the range constraint in 
which we require a module to be placed within a given rect- 
angular region in the final flo~rplan. Thii less restrictive 
constraint is more useful in practice but no previous work 
is reported on it before. Actually, the range constraint prob- ’ 
lem is a more general problem because any pre-placed con- 
straint can be written as a range constraint by specifying 
the rectangular region such that it has the same size as the 
module itself. 

In thii paper, we address thii more general range con- 
straint problem by extending the Wong-Liu algorithm [II]. 
Our main contribution is a novel shape curve computation 
which takes range constraint into consideration. When our 
algorithm is specialized to handle pre-placed modules, we 
out-perform the floorplanner in [13]. Note that the floor- 
planner in [13] is also based on the Wong-Liu algorithm 
[ll] by extending the shape curve computation to under- 
stand pre-placed constraint using the notion of reference 
point and a more complicated set of moves in the anneal- 
ing process. In this paper, we use a simplier approach in 
which only the original set of simple moves in [ll] is used. 
Experimental results show that the extended floorplanner 
performs very well. The rest of the paper is organized as 
follows. We first define the problem formally in Section 2. 
Section 3 provides a brief review of the Wong-Liu algorithm. 
Section 4 presents our method to handle range constraint. 
Experimental results are shown in Section 5. 
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2. PROBLEM DEFINITION 

A module A is a rectangle of height h(A) and width w(A). 
Let area(A) = h(A) x w(A) denote the area of A. The os- 
pect ratio of A is defined as h(A)/w(A). A floorplan for n 
modules consists of an enveloping rectangle subdivided by 
horizontal and vertical line segments into n non-overlapping 
rectangles such that each rectangle must be large enough to 
accommodate the module assigned to it. A supermodule is 
a sub-floorplan which contains one or more modules. There 
are two kinds of floorplans: slicing and non-slicing. A slic- 
ing floorplan is a floorplau which cau be obtained by recur- 
sively cutting a rectangle into two parts by either a vertical 
line or a horizontal line. A non-slicing floorplan is a floor- 
plan whii is not slicin , 

gd 
A module can either be hard or 

sofr. The height and wi th of a hard module are fixed but 
the module is free to rotate. The shape of a soft module 
can be changed as long au the area remains a constant and 
the aspect ratio is within a given range. We assume that 
the fiaorplan iz in the ilrzt quadrant with its lower-left eor- 
ner at the origin and we consider two types of placement 
constraints: 

Pre+laced constraint Given a hard module A with fixed 
orientation and a point (sr, yr) in the first quadrant, 
A must be placed with its lower left corner at (01, yl) 
in the final floorplan. 

Range constraint Given a hard module A and a rectan- 
gular region Rr = {(z,y)lzl S 3: 5 zs,yr 5 Y 5 YZ), 
A must be placed inside RI in the final floor-plan. 

An example is shown in Figure 1. In Figure 1, module 
A has size 3 x 2 and it must be placed with its lower left 
comer at (3,2) (pre-placed constraint). Module I3 has size 
1 x 1 and it must be placed within the dotted line region 
((z, y)]l 5 z <.4,1 5 y 5 4) (range constraint). The 
floorplan shown m Figure 1 is a feasible one in which both 
constraints are satisfied. 

In our problem, we are given two kinds of modules 
M = Mf U MP where Mf contains modules which do not 
have any constraint in placement and M,, contains mod- 
ules which have either pre-placed constraint (P) or range 
constraint (R). We assume that the pre-placed modules 
are given as non-overlapping and all of them lie in the first 
quadrant of the xy-plane. We also assume that they do 
not form a non-slicing structure. (If they are given as non- 
slicing, we can pre-process them by cutting their total oc- 
cupied area into a slicing structure.) Notice that pm-placed 
constraint is a special kind of range constraint in which the 
module has no freedom of movement. (For example, in Fig- 
ure 1, the pre-placed constraint for module A can be speci- 
fied by a range constraint requiring the module to be placed 
within the region {(z, y)]3 5 x 5 6,2 < y 5 4}.) Therefore 
we will only focus on solving the more general range con- 
straint problem. A pacLing is a non-overlap placement of 
all the modules in M. A feosible packing is a packing in the 
first quadrant such that all the placement constraints are 
satisfied, and the widths and heights of all the soft modules 
are consistent with their aspect ratio constraints and area 
constraints. Our objective is to construct a feasible floor- 
plan F to minimize A + XW where A is the total area of-the 
packing, W is an estimation of the interconnect cost and X 
is a user-specified constant which controls the relative im- 
portance of A and W in the cost function. We require that 
the aspect ratio of the final packing is between two given 
numbers rmin and rmaz. 
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Figure 1. An example of the pre-placed constraint 
and range constraint 
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Figure 2. Sliaing tree representation and Polish ax- 
pression representation of a slicing floorplan 

3. WONG-LIU ALGORITHM 

In this section, we briefly review the Wang-Liu slicing al- 
gorithm [ll]. A slicing floorplan can be represented by au 
oriented rooted binary tree, called a slicing tree (Figure 2). 
Each internal node of the tree is labeled by a * or a -t- 
operator, corresponding to a vertical or a horizontal cut re- 
spectively. Each leaf corresponds to a basic module and is 
labeled by a number from 1 to n. No dimensional informa- 
tion on the position of each cut ls specified ln the slicing 
tree. If we traverse a slicing tree in postorder, we obtain a 
Polish expression. A Polish expression is said to be normal- 
ized if there is no consecutive *‘s or +‘s in the sequence. It 
is proved in [ll] that there is a l-l correspondence between 
the set of normalized Polish expressions of length 2n - 1 
and the set of slicing floorplans with n modules. 

In [ll], Wong and Liu used the simulated annealing 
method with the set of all normalized Polish expressions 
as the solution space. In order to search the solution space 
efficiently, they defined three types of moves (Ml, M2 and 
M3) to transform a Polish expression into another. (Ml 
exchanges two adjacent modules in the Polish expression, 
e.g. 12 * 3+ becomes 21* 3+. M2 complements a maximal 
sequence of operators, e.g. 1234 * +* becomes 123 + *+. M3 
exchanges a module with its adjacent operator, e.g. 123 * + 
becomes 12 * 3+.) Figure 3 shows a series of floorplan trans- 
formations. They can make use of the flexibility of the soft 
modules to select the “best” floorplan among all the equiv- 
alent ones represented by the same slicing structures. This 
is done by carrying out an efficient shape curve computa- 
tion whenever a Polish expression is examined. The cost 
function is A + XW where A is the total packing area and 
W is the interconnect cost. This algorithm is very efficient 
and the performance is very good. (For the same set of 
benchmark data used by the sequence-pair based algorithm 
in [5], the slicing floorplanner in [ll] can obtain comparable 
results using only a fraction of the runtime. In fact, it gives 
less than 1% dead space using no more than 7 seconds for 
each test problem.) In this paper, we extend the Wong-Liu 
algorithm to handle range constraint. 
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34*2+.5*1+ 

32*4+5* l+ 

32*45+* I+ 

32*45*+1+ 

Figure 3. Floorplan transformation in the Wong- 
Liu algorithm 

4. FLOORPLANNING WITH RANGE 
CONSTRAINT 

The Wong-Liu algorithm can fully exploit the flexibility of 
the soft modules to select the “best” floorplan among all the 
equivalent ones represented by the same slicing structures. 
This is done by representing the shape of each module by a 
shape curve. A shape curve is a piecewise linear decreasing 
curve which represents the tradeoff between the height and 
the width of a module. Starting from the basic modules at 
the leaves of the slicing trees, the algorithm works upwards 
to the root, computing the shape curve at each internal 
node. At the end, the shape curve at the root represents all 
the possible shapes of the final floorplan, and we select one 
such that the aspect ratio is within the required bounds. 

Now some of the basic modules at the leaves have place- 
ment constraints. A key observation is that when we put 
together two modules at least one of which has range con- 
straint, the combined supermodule will also have range con- 
straint. The range constraint information will thus be prop- 
agated upward from the leaves to the root, and we need to 
keep in the shape curves both the dimensional information, 
i.e. the height and the width, and the placement constraint 
information. Let X be a basic module or a supermodule 
with range constraint, we use four variables to represent 
the constraint: 

l right(X): The shortest distance of the right boundary 
of X from the y-axis. 

l left(X): The longest distance of the left boundary of 
X from the y-axis. 

l top(X): The shortest distance of the upper boundary 
of X from the z-axis. 

l bottom(X): The longest distance of the lower boundary 
of X from the z-axis. 

An example is shown in Figure 4. In Figure 4, module X 
has width w and height h and it is constrainted to be placed 
inside the dotted line rectangle {(z,y))zl 5 z 5 za,y~ 5 
y 5 ~2). Then right(X) = 21 + w, left(X) = zz - w, 
top(X) = yl + h and bottom(X) = yz - h. Similarly we 
work upwards from the basic modules at the leaves to the 
root. We compute shape curve at each internal node from 
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Figure 4. An example of a module with range con- 
straint 

the shape curves of its two children, taking into account 
the placement constraint information. Finally, the shape 
curve at the root represents the possible shapes of the final 
floorplan as well as its possible positions on the xy-plane. 
Consider an internal node u in the slicing tree, let I’ and A 
be the shape curves of its two children, we will combine r 
and A point by point to obtain a shape curve for u. (Note 
that l? and A are piecewise linear with a finite number of 
corners.) For each pair of points pl and pl where pl E r 
and pa E A, we combine the module represented by the 
point pl with the module represented by the point pp to 
obtain a module which will be represented by a point on 
the resultant shape curve. We should co’mbine pairwise the 
points on I’ and A. However, we found from practice that it 
is mu& more efficient if we just add the two shape curves, 
i.e. combining only those pairs of points with the same x 
values, (if v corresponds to a + operation) or the same y 
values (if IJ corresponds to a * operation), and there is no 
degradation in performance. The details of combining two 
modules with range constraints will be described in the next 
section. 

4.1. Combining Modules with Range Constraints 

In thii section, we show how to compute the range con- 
straint of the combined supermodule based on the range 
constraints of its two children modules. We consider com- 
bining two modules A and B vertically to get AB+, i.e. 
putting module B above module A. The case where we com- 
bine two modules horizontally to get AB* can be considered 
similarly. Assuming that at least one of the two modules 
has range constraint, there are three different cases: 

4.1.1. Only A has range constraint 
Module B has no placement constraint, so we can put 

it above wherever module A is (Figure 5). Let X be the 
combined supermodule, i.e. X = AB+, then h(X) = 
h(A) + h(B), w(X) = max{w(A),w(B)), right(X) = 
max{w(X),right(A)), left(X) = left(A), top(X) = 
top(A) + h(B) and bottom(X) = bottom(A). 

4.1.2. Only B has range constmint 
There is a condition which must be satisfied in thii case, 

which is, bottom(B) > h(A), because otherwise, module 
A will be placed below the x-axis (Figure 6). If this con- 
dition is satisfied, we can put module A below wherever 
module B is as long as they are both in the first quad- 
rant (Figure 7). Let X be the combined supermodule, 
i.e. X = AB+, then h(X) = h(A) + h(B), w(X) = 
max{w(A), w(B) , 

T 
right(X) = max{w(X), right(B)}, 

left(X) = left B), top(X) = max{h(X), top(B)} ad 
bottom(X) = bottom(B) -h(A). 
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4.1.3. Both A and B have range constraints 
There is a condition which must be satisfied in this case, 

which is, bottom(B) 2 top(A), because otherwise, A and 
B will overlap vertically (Figure 8). If this condition is 
satisfied, we can compute X = ABs by considering the 
vertical and the horizontal directions separately: 

Vertical Direction We consider two different cases: 

Case 1 Assume that the range of A does not overlap 
with the range of B vertically as shown in Figure 9. 
We want to put A and B as close to each other as 
possible, so h(X) = top(B) -bottom(A). The com- 
bined supermodule X is fixed in position vertically. 
top(X) = top(B) and bottom(X) = bottom(A). 

Case 2 Assume that the range of A and B over- 
lap vertically as shown in Figure 10. In or- 
der to have the smallest combined area, we will 
put B right above A, so h(X) = h(A) + h(E). 
For top(X), it is constrainted by either top(A) 
or top@% SO top(X) = m={top(W,top(A) + 
h(B)}. Similarly, bottom(X) is constrainted by 
either bottom(A) or bottom(B), so bottom(X) = 
min{bottom(A),bottom(B) -h(A)}. 

Combining the above two cases, we obtain h(X) = 
max top(B) - bottom(A),h(A) + h(B)}, top(X) = 
max top(B),@(A) + h(B)} and bottom(X) = 1 
min(bottom(A),bottona(B) - h(A)}. 

Horisontal Direction Again, we consider two different 
cmes: 

Case 1 Assume that the range of A does not over- 
lap with the range of B horizontally as shown in 
Figure 11. We will put A and B as close to each 
other as possible. If the range of A is on the 
right, w(X) = right(A) - left(B), right(X) = 
right(A) and left(X) = left(B). Otherwise, 
w(X) = right(B) - left(A), right(X) = right(B) 
and Zeft(X) = 
w(X) = 

left(A). Putting them together 
- 

left(A)), 
max right(A) 

right X) I 
left(B), right(B) - 

= max{right(A),right(B)} 
and left(X) = min{left(A),Zeft(B)}. 

Case 2 Assume that the ranges of A and B overlap 
horizontally as shown in Figure 12. If the length 
of the overlap in the z-direction is greater than 
either w(A) or w(B) (Figure 12(a-c)), w(X) = 
max{w(A), w(B)}. Otherwise (Figure 12(d)), we 
will put A and B as close to each other as pos- 
sible, so w(z) = right(A) - left(B) if the range 
of A is on the right, and w(z) = right(B) - 
left(A) otherwise. 
4-v 

Putting them together, 
= max{right(A) - left(B), right(B) - 

left(A),w(A),w(B)}. For right(X), it is con- 
strainted by either right(A) or right(B), 50 
right(X) = max{right(A),right(B)}. Simi- 
larly left(X) is constrainted by either left(A) or 
left(B), so left(X) = min{left(A),left(B)}. 

Combining the above two cases, we ob- 
tain right(X) = max{right(A),right(B)}, left(X) = 
min{left(A),left(B)} and w(X) = max{right(A) - 
left(B),right(B) - left(A),w(A), w(B)). 

The following formulae summarize the above discussion 
for the case when both A and B have range constraints. 
The formulae for the case of putting module B horizontally 
on the right of A can be derived similarly: 
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Figure 6. Only module A has range constraint in 
AB+ 

x 

Figure 6. The necessary condition when only mod- 
B has range constraint in AB+ uIe 

1. X=AB+ 

2. 

Necessary condition: bottom(B) 2 top(A) 
Computations: 

w(X) = max{right(A) - Zeft(B),right(B) - 
left(A), w(A), w(B)) 

h(X) = max{top(B) - bottom(A),h(A) + h(B)} 
top(X) = mWop@), ~or-0) + h(B)1 

bottom(X) = min{bottom(A),bottom(B) - h(A)} 
right(X) = max{right(A), right(B)} 
lefW = min{left(A),left(B)] 

X=AB* 

Necessary condition: left(b) 2 right(A) 
Computations: 

w(X) = 
h(X) = 

top(X) = 
bottom(X) = 

right(X) = 
left(X) = 

max{right(B) - left(A),w(A) + w(B)} 
max{top(A) - bottom(B),top(B) - 
bottom(A), h(A), h(B)) 

m=ttw(A), W4B)l 
min{bottom(A), bottom(B)} 
max{right(B),right(A) + w(B)} 
min{left(A),Zeft(B) -w(A)) 

4.2. Moves and Cost Function 
We use the same set of moves (Ml M2 and M3) as in (111. 
The cost function is defined as A + XW + yD where A is 
the total area of the packing obtained from the shape curve 
at the root of the slicing tree. In our current implementa- 
tion, W is the half perimeter estimation of the interconnect 
cost. Clearly, this term can be replaced by any more sophis- 
ticated interconnect cost estimation. D is a penalty term 
which is zero when the packing is feasible, and is otherwise 






