SLICING FLOORPLANS WITH RANGE CONSTRAINT*

E.Y. Young and D.F. Wong

Department of Computer Sciences
The University of Texas at Austin
fyyoung@cs.utexas.edu wong@cs.utexas.edu

ABSTRACT

In floorplanning, it is important to allow users to specify
placement constraints. Floorplanning with pre-placed con-
straint is considered recently in [3, 13]. In this paper, we
address a more general placement constraint called range
constraint, in which a module must be placed within a
given rectangular region in the floorplan. This is a more
general formulation because any pre-placed constraint can
be written as a range constraint. We extend the Wong-Liu
algorithm [11] to handle range constraint. Our main con-
tribution is a novel shape curve computation which takes
range constraint into consideration. Experimental results
show that the extended floorplanner performs very well and,

in particular, it out-performs the fioorplanner in [13] when -

specialized to handle pre-placed modules.

1. INTRODUCTION

Floorplan design is an important step in the physical de-
sign of VLSI circuits. It is the problem of placing a set of
circuit modules on a chip to minimize total area and inter-
connect cost. In this early stage of physical design, most
of the modules are not yet designed and thus are flexible
in shape (soft modules), while some may have been com-
pletely designed and have a fixed shape (hard modules).
There are two kinds of floorplans: slicing and non-slicing.
Many existing floorplanners are based on slicing floorplans
[1, 2, 7, 10, 11]. There are several advantages of using slic-
ing floorplans. Firstly, focusing only on slicing floorplans
significantly reduces the search space which in turn leads
to faster runtime, especially when the simulated annealing
method is used. Secondly, the shape flexibility of the soft
modules can be fully exploited to give a tight packing based
on an efficient shape curve computation technique {8, 9).
It has been shown mathematically that a tight packing is
achievable [12] for slicing floorplans.

There are some interesting results in the direction of non-
slicing floorplans recently. Two methods, sequence-pair [4]
and bound-sliceline-grid (BSG) [6], have been proposed for

*THIS WORK WAS PARTIALLY SUPPORTED BY A
GRANT FROM THE INTEL CORPORATION.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISPD '99 Monterey CA USA

Copyright ACM 1999 1-58113-089-9/99/04...$5.00

97

placement of hard modules. The sequence-pair method has
later been extended to handle pre-placed modules {3] and
soft modules [5]. In order to handie soft modules, it has
to solve mathematical programming problems to determine’
the exact shape of each module numerous times in the floor-
planning process, and this results in long runtime.

In floorplanning, it is important to allow users to specify
placement constraints. Three common types of placement
constraints are pre-placed constraint, boundary constraint
and range constraint. For pre-placed constraint, we require
a module to be placed exactly at certain position in the
final floorplan. In fact, the problem of floorplanning with
obstacles can be solved by treating the obstacles as'pre-
placed modules. This problem has beén considered in both
slicing and non-slicing floorplan [3, 5, 18]: For boundary
constraint, we require a module to be placed along one of
the four sides in the final floorplan: on the left, on the riglit,
at the bottom or at the top. This is useful when users want
to place some specific modules along the boundary for I/O
connections. This problem is considered recently in a slic-
ing floorplanner {14]. Pre-placed constraint is however very
restrictive and sometimes, it is already sufficient to allow
users to restrict the placement of a module to within a cer-
tain range. Therefore we consider the range constraint in
which we require a module to be placed within a given rect-
angular region in the final floorplan. This less restrictive
constraint is more useful in practice but no previous work
is reported on it before. Actually, the range constraint prob- °
lem is a more general problem because any pre-placed con-
straint can be written as a range constraint by specifying
the rectangular region such that it has the same size as the
module itself.

In this paper, we address this more general range con-
straint problem by extending the Wong-Liu algorithm [11].
Our main contribution is a novel shape curve computation
which takes range constraint into consideration. When our
algorithm is specialized to handle pre-placed modules, we
out-perform the floorplanner in [13]. Note that the floor-
planner in [13] is also based on the Wong-Liu algorithm
[11] by extending the shape curve computation to under-
stand pre-placed constraint using the notion of reference
point and a more complicated set of moves in the anneal-
ing process. In this paper, we use a simplier approach in
which only the original set of simple moves in [11] is used.
Experimental results show that the extended floorplanner
performs very well. The rest of the paper is organized as
follows. We first define the problem formally in Section 2.
Section 3 provides a brief review of the Wong-Liu algorithm.
Section 4 presents our method to handle range constraint.
Experimental results are shown in Section 5.

2. PROBLEM DEFINITION

A module A is a rectangle of height h(A) and width w(A).
Let area(A) = h(A) x w(A) denote the area of A. The as-
pect ratio of A is defined as h(A)/w(A). A floorplan for n
modules consists of an enveloping rectangle subdivided by
horizontal and vertical line segments into n non-overlapping
rectangles such that each rectangle must be large enough to
accommodate the module assigned to it. A supermodule is
a sub-floorplan which contains one or more modules. There
are two kinds of floorplans: slicing and non-slicing. A slic-
ing floorplan is a floorplan which can be obtained by recur-
sively cutting a rectangle into two parts by either a vertical
line or a horizontal line. A non-slicing floorplan is a floor-
plan which is not slicing. A module can either be hard or
soft. The height and width of a hard module are fixed but
the module is free to rotate, The shape of a soft module
can be changed as long as the area remains a constant and
the aspect ratio is within a given range. We assume that
the floorplan is in the first quadrant with its lower-left cor-
ner at the origin and we consider two types of placement
constraints:

Pre-placed constraint Given a hard module 4 with fixed
orientation and a point (#3,y1) in the first quadrant,
A must be placed with its lower left corner at (z1,y1)
in the final floorplan.

Range constraint Given a hard module A and a rectan-
gular region R1 = {(z,y)|z1 < = < za,;1 Sy < o}y
A must be placed inside R; in the final floorplan.

An example is shown in Figure 1. In Figure 1, module
A has size 3 x 2 and it must be placed with its lower left
corner at (3,2) (pre-placed constraint). Module B has size
1 x 1 and it must be placed within the dotted line region
{{z,9)]1 £ =z € 4,1 £ y < 4} (range constraint). The
floorplan shown in Figure 1 is a feasible one in which both
constraints are satisfied.

In our problem, we are given two kinds of modules
M = Mj; U M, where My contains modules which do not
have any constraint in placement and M, contains mod-
ules which have either pre-placed constraint (P) or range
constraint (R). We assume that the pre-placed modules
are given as non-overlapping and all of them lie in the first
quadrant of the xy-plane. We also assume that they do
not form a non-slicing structure. (If they are given as non-
slicing, we can pre-process them by cutting their total oc-
cupied area into a slicing structure.) Notice that pre-placed
constraint is a special kind of range constraint in which the
module has no freedom of movement. (For example, in Fig-
ure 1, the pre-placed constraint for module A can be speci-
fied by a range constraint requiring the module to be placed
within the region {(z,y)|3 < z < 6,2 <y < 4}.) Therefore
we will only focus on solving the more general range con-
straint problem. A packing is a non-overlap placement of
all the modules in M. A feasible packing is a packing in the
first quadrant such that all the placement constraints are
satisfied, and the widths and heights of all the soft modules
are consistent with their aspect ratio constraints and area
constraints. Our objective is to construct a feasible floor-
plan F to minimize A+ AW where A is the total area of the
packing, W is an estimation of the interconnect cost and A
is a user-specified constant which controls the relative im-
portance of A and W in the cost function. We require that
the aspect ratio of the final packing is between two given
numbers ryin and rpag.

98

Bl p
w E
A e i
pi dnl
1
<. x
o 3 4 5 6

Figure 1. An example of the pre-placed constraint
and range constraint

TR AN
1 /\«./\,

Polish exprossion: 16435%2+4%744¢ 3 3

Figure 2, Slicing tree representation and Polish ex-
pression representation of a slicing floorplan

3. WONG-LIU ALGORITHM

In this section, we briefly review the Wong-Liu slicing al-
gorithm [11}. A slicing floorplan can be represented by an
oriented rooted binary tree, called a slicing tree (Figure 2).
Each internal node of the tree is labeled by a * or a +
operator, corresponding to a vertical or a horizontal cut re-
spectively. Each leaf corresponds to a basic module and is
labeled by a number from 1 to n. No dimensional informa-
tion on the position of each cut is specified in the slicing
tree. If we traverse a slicing tree in postorder, we obtain a
Polish expression. A Polish expression is said to be normal-
ized if there is no consecutive #’s or +'s in the sequence. It
is proved in [11] that there is a 1-1 correspondence between
the set of normalized Polish expressions of length 2n — 1
and the set of slicing floorplans with n modules.

In [11], Wong and Liu used the simulated annealing
method with the set of all normalized Polish expressions
as the solution space. In order to search the solution space
efficiently, they defined three types of moves (M1, M2 and
M3) to transform a Polish expression into another. (M1
exchanges two adjacent modules in the Polish expression,
e.g. 12 # 3+ becomes 21 * 3+. M2 complements a maximal
sequence of operators, e.g. 1234%++ becomes 123+ *-+. M3
exchanges a module with its adjacent operator, e.g. 123 %+
becomes 12+3+.) Figure 3 shows a series of floorplan trans-
formations. They can make use of the flexibility of the soft
modules to select the “best” floorplan among all the equiv-
alent ones represented by the same slicing structures. This
is done by carrying out an efficient shape curve computa-
tion whenever a Polish expression is examined. The cost
function is A + AW where A is the total packing area and
W is the interconnect cost. This algorithm is very efficient
and the performance is very good. (For the same set of
benchmark data used by the sequence-pair based algorithm
in [5], the slicing floorplanner in [11] can obtain comparable
results using only a fraction of the runtime. In fact, it gives
less than 1% dead space using no more than 7 seconds for
each test problem.) In this paper, we extend the Wong-Liu
algorithm to handle range constraint.

1
3]?4 s 34%245%1+
|
| ™1
1
A1) 32%a45%14
1|2 7
| M3
1
1
5 29% A, %1 2
,‘ 2 o TJT T
4
| .
‘ M2z
1
T
415 32%45%+1+
3] 2

4. FLOORPLANNING WITH RANGE

CONSTRAINT

The Wong-Liu algorithm can fully exploit the flexibility of

the soft modules to select the “best” floorplan among all the

equivalent ones represented by the same slxcmg structures.
This is done by representing the shape of each module by a
shape curve. A shape curve is a piecewise linear decreasing
curve which represents the tradeoff between the height and
the width of a module. Starting from the basic modules at
the leaves of the slicing trees, the algorithm works upwards
to the root, computmg the shape curve at each internal
node. At the end, the shape curve at the root represents all
the possible shapes of the final floorplan, and we select one
such that the aspect ratio is within the required bounds.
Now some of the basic modules at the leaves have place-
ment constraints. A key observation is that when we put
together two modules at least one of which has range con-
straint, the combined supermodule will also have range con-
straint. The range constraint information will thus be prop-
agated upward from the leaves to the root, and we need to
keep in the shape curves both the dimensional information,

H +h
i.e. the height and the width, and the placement constraint

information. Let X be a basic module or a supermodule
with range constraint, we use four variables to represent
the constraint:

e right(X): The shortest distance of the right boundary
of X from the y-axis.

o left(X): The longest distance of the left boundary of
X from the y-axis

e top(X): The shortest distance of the upper boundary
of X from the z-axis.
o bottom(X): The longest distance of the lower boundary

of X from the m-av-e

O A eIn vaes &

An example is shown in Figure 4. In Figure 4, module X

hac width 2 and heicht h and it is constrainted fg he nlaced

AL FYALLUVAL W piiNg uulbuu & CQil\A AV AT VWL VA WsilAVwA W ~ pa W\lv“
inside the dotted line rectangle {(z,y)|z1 < z < z2,41 <
y < y2}. Then right(X) = z1 + w, left(X) = z2 — w,
top(X) = y1 + h and bottom(X) = y2 — h. Similarly we
work upwards from the basic modules at the leaves to the
root. We compute shape curve at each internal node from

©

y2

y2-h right(X) =x) + w
(X)) =x2-w

yi+h top(X)=yl +h
Pottom(X) = y2 - h

vl

i x
T xtew 2w x2

Figure 4. An example of a module with range con-

Sll'ullllv

the shape curves of its two children, taking into account
the placement constraint information. Finally, the shape
curve at the root represents the possible shapes of the final

'ﬂnnrv\]cn as nvn" its nnce-k‘n ncitinne wer_mnlan
we L

UL il AL a.g pvo VIVALD cll- thv AJ'PI“LIU
Consider an internal node v in the slicing tree, let I' and A
be the shape curves of its two children, we will combine I'
and A point by point to obtain a shape curve for v. (Note

that I and A are plecemse linear with a finite number of
rmmpre\ For each pair of points p; and p3 where p; € T

and p; G A, we combine the module represented by the
point p1 with the module represented by the point p; to
obtain a module which will be represented by a point on
the resultant shape curve. We should combine pairwise the
points on I and A. However, we found from practice that it
is much more efficient if we Just add the two shape curves,
i.e. combining only those pairs of points with the same z
values, (if v corresponds to a + operation) or the same y
values (if v corresponds to a * operation), and there is no
degradation in performance. The details of combining two
modules with range constraints will be described in the next
section.

Voo

4.1. Combining Modules with Range Constraints

1n an bel,mun, we bl.I.UW uuw llU bumpubc buc qu&\: con-
straint of the combined supermodule based on the range
constraints of its two children modules. We consider com-
bining two modules A and B vertically to get AB+, i.e.
putting module B above module A. The case where we com-

Tt s baern 22 ndslaa hanionntall. &
OINE ¢WO MoOAaui€s Norizoniauny vo get AB3= can be considered

similarly. Assuming that at least one of the two modules
has range constraint, there are three different cases:

4.1.1. Only A has range constraint

Moduie B has no piacement constraint, so we can put

" it above wherever module 4 is (Figure 5). Let X be the

(<]

i.e. X = AB+, then h(X)
max{w(A),w(B)} right(X)
left(A), top(X)

ttom(A).

combined supermodule,
h{A) + h(B), w(X)
ma.x{w(X),rtght(A)}, left(X)

top{A) + h(B) and boitom(X) =

4.1.2. Only B has range constraint

There is a condition which must be satisfied in this case,
which is, bottom(B) > h(A), because otherwise, module
A will be placed below the x-axis (Figure 6). If this con-
dition is satisfied, we can put module A below wherever
module B ig as lnmr as they are both in the first quad-

rant (Figure, 7). Lot X be the combined supermodule,
h(A) + h(B), w(X) =

ie. X = AB+, then h(X)
max{w(A),w(B)}, right(X) = max{w(X),right(B)},
left(X) = left(B), top(X) max{h(X),top(B)} and

bottom(X) = bottom(B) — h(A

4.1.3. Both A and B have range constraints

There is a condition which must be satisfied in this case,
which is, bottom(B) > top(A), because otherwise, A and
B will overlap vertically (Figure 8). If this condition is
satisfied, we can compute X = AB-+ by considering the
vertical and the horizontal directions separately:

Vertical Direction We consider two different cases:

Case 1 Assume that the range of A does not overlap
with the range of B vertically as shown in Figure 9.
‘We want to put A and B as close to each other as
possible, so h(X) = top(B)—bottom(A). The com-
bined supermodule X is fixed in position vertically.
top(X) = top(B) and bottom(X) = bottom(A).

Case 2 Assyme that the range of A and B over-
lap vertically as shown in Figure 10. In or-
der to have the smallest combined area, we will
put B right above A, so h(X) = h(A4) + h(B).
For top(X), it is constrainted by either top(A)
or top(B), so top(X) = max{top(B),top(4) +
h(B)}. Similarly, bottom(X) is constrainted by
either bottom(A) or bottom(B), so bottom(X) =
min{bottom(A), bottom(B) — h(A)}.

Combining the above two cases, we obtain h(X)

max{top(B) — bottom(A),h(A) + h(B)}, top(X)

max{top(B),top(A) + h(B)} and bottom(X)
min{bottom(A), bottom(B) — h(A)}.

Horizontal Direction Again, we consider two different
cases:

o

Case 1 Assume that the range of A does not over-
lap with the range of B horizontally as shown in
Figure 11. We will put A and B as close to each
other as possible. If the range of A is on the
right, w(X) = right(A) — left(B), right(X) =
right(A) and left(X) = left(B). Otherwise,
w(X) = right(B) — left(A), right(X) = right(B)
and left(X) = left(A). Putting them together
w(X) = max{right(A) — left(B),right(B) -
left(A)}, right(X) = max{right(A),right(B)}
and left(X) = min{left(A),left(B)}.

Case 2 Assume that the ranges of A and B overlap
horizontally as shown in Figure 12. If the length
of the overlap in the z-direction is greater than
either w(A) or w(B) (Figure 12(a-c)), w(X) =
max{w(A), w(B)}. Otherwise (Figure 12(d)), we
will put A and B as close to each other as pos-
sible, so w(z) = right(A) — left(B) if the range
of A is on the right, and w(z) = right(B) -
left(A) otherwise. Putting them together,
w(X) = max{right(4) — left(B),right(B) -
left(A),w(A),w(B)}. For right(X), it is con-
strainted by either right(A) or right(B), so
right(X) = max{right(A),right(B)}. Simi-
larly left(X) is constrainted by either left(A) or
left(B), so left(X) = min{left(A),left(B)}.

Combining the above two cases, we ob-
tain right(X) = max{right(A),right(B)}, left(X) =
min{left(A),left(B)} and w(X) = max{right(A) —
left(B), right(B) — left(A), w(A), w(B)}.

The following formulae summarize the above discussion
for the case when both A and B have range constraints.
The formulae for the case of putting module B horizontally
on the right of A can be derived similarly:

b/
range of A
hottom(A)
1Op(A)}--
_ﬁi right(A) leR(A)

Figure 5. Only module A has range constraint in

AB+
Y

range of B

bottom(B)

I ‘
Figure 6. The necessary condition when only mod-
ule B has range constraint in AB+
1. X=AB+

Necessary condition: bottom(B) > top(A)
Computations:

w(X) = max{right(A)— left(B),right(B) ~

left(A), w(A), w(B)}

h(X) = max{top(B) — bottom(A),h(A) + h(B)}

top(X) = max{top(B),top(A)+ h(B)}
bottom(X) = min{bottom(A),bottom(B)~ h(A)}
right(X) = max{right(A),right(B)}
left(X) = min{left(A),left(B)}
2. X = ABx
Necessary condition: left(b) > right(A)
Computations:

w(X) = max{right(B) - left(A),w(A)+ w(B)}

R(X) = max{top(A)— bottom(B),top(B) —
bottom(A), h{A), h(B)}
top(X) = max{top(A),top(B)}
bottom(X) min{bottom(A), bottom(B)}
right(X) max{right(B), right(A) + w(B)}
left(X) = min{left(A),left(B)— w(A)}

4.2. Moves and Cost Function

We use the same set of moves (M1 M2 and M3) as in [11].
The cost function is defined as A + AW + yD where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree. In our current implementa-
tion, W is the half perimeter estimation of the interconnect
cost. Clearly, this term can be replaced by any more sophis-
ticated interconnect cost estimation. D is a penalty term
which is zero when the packing is feasible, and is otherwise

range of B

== ,
right(B) lefi(B)

Figure 7. Only module B has range constraint in
AB+

top(A)
bottom(B)

_6‘

Figure 8. The necessary condition when both A and
B have range constraints in AB+

top(B)

bottom(A)

Figure 9. The ranges of A and B do not overlap
vertically.

-— range of B

t— range of A

Figure 10. The ranges of A and B overlap vertically.

101

HEE $
Tight(A)

T 1en®)
Figure 11. The ranges of A and B do not overlap
horizontally.

@ y by

overlap in x > wi{A) and w(B) wiA) > overlap in x > w(B)

([0

© ¥ wi(B) > overlap in x > w{A) @y w(A) and w{B) > overlap in x

[l [

Figure 12. The ranges of A and B overlap horizon-
tally.

an estimation of the total distance of the modules which
have range constraints from their desired positions. Notice
that if a Polish expression does not correspond to a feasible
packing, we will pack the modules in the usual way as if
there is no range constraint and the penalty term D will
be the total distance of the modules which have range con-

straints from the centers of the ranges they are constrainted
to. This gives a good estimation of how far the modules are
from their desired positions. D will drop to zero as the
annealing process proceeds. A and « are constants which
control the relative importance of the three terms. X is
usually set such that the area term and the interconnect
term are approximately balanced.

Qxlmalely alalllc

Our floorplanner | Floorplanner in [13]
Data n # pre- | % Dead Time % Dead Time
placed space | (sec) space (sec)
apte-pc 9 2 1.78 3.51 2.9 4.94
xerox-pc | 10 2 1.15 2.66 1.7 2.75
hp-pc 11 2 1.04 3.51 6.6 3.96
ami33-pc | 33 4 1.66 85.28 4.0 270.7
amid9-pc | 49 4 1.21 204.64 6.6 336.9
Table 1. Results of testing the pre-placed con-

straint. Columns 4 and 5 are obtained by our floor-
planner. Columns 6 and 7 are results from [13].

5. EXPERIMENTAL RESULTS

We tested our floorplanner on a set of MCNC benchmarks.
For each experiment, the starting temperature is decided
such that an acceptance ratio is 100% at the beginning. The

Data n_| Dead space (%) | Time (sec)
ami33-rcl 33 0.81 57.03
ami33-rc2 33 1.89 46.32
ami33-rc3 33 2.64 53.66
ami33-rc4 33 0.83 46.82
ami33-rch 33 1.64 65.40
amid0-rci_| 49 156 103.51
amid9-rc2 49 2.12 143.99
amid9-rc3 49 3.44 149.98
ami49-rc4 49 3.72 88.10
ami49-rch 49 | 4.86 104.52
playout-rcl | 62 1.67 236.98

playout-rc2 | 62 2.72 225.82
playout-rc3 | 62 4.96 238.28
playout-rc4 | 62 3.62 244.87
playout-rcs | 62 2.01 208.32

Table 2. Results of testing the range constraint.

temperature is lowered at a constant rate and the number
of iterations in one temperature step is proportional to the
number of modules.” All the experiments were carried out
on a 300 MHz Pentium II Intel processor.

We carried out two sets of experiments. For the first
set, we want to compare the results in terms of handling
pre-placed constraint with that in [13} We use exactly the
same data as in [13] and the comparisons are shown in Ta-
ble 1. Columns 4 and 5 are obtained by our floorplanner
and columns 6 and 7 are results from [13].

In the second set of experiments, we work on the three
largest MCNC benchmarks, ami33, ami49 and playout. We
selected three modules from each benchmark and derived
fifteen data by imposing different range constraints on the
selected modules. The three selected modules are hard
modules while all the other modules have shape flexibility
that their aspect ratio can range between 0.25 and 4. The
results are shown in Table 2. Figure 13 is the result packing
of ami33-rc5 where module 1, 2 and 3 are constrainted to
be placed within the dotted line rectangle. Figure 14 is the
result packing of ami49-rc5 where module 1, 2 and 3 are
constrainted to be placed above the dotted line. We can
see from Table 2 that the performance in both quality and
execution time are very good.

‘We can conclude from the above experimental results that
the extended slicing floorplanner can handie pre-placed con-
straint and range constraint very well. Although the current
estimation of the interconnect cost is very simple, we can
always replace it with a more sophisticated one given the
efficiency of our algorithm.

ACKNOWLEDGEMENT
We want to thank Dr. Hannah Yang at the Intel Corpora—
tion for her helpful discussions.

REFERENCES

{1] K. Bazargan, S. Kim, and M. Sarrafzadeh. Nostradamus: A
floorplanner of uncertain design. International Symposium on
Physical Design, pages 18-23, 1998.

D.P. Lapotin and S.W. Director. Mason: A global floor-
planning tool. Proceedings IEEE International Conference on
Computer-Aided Design, pages 143—-145, 1985.

H. Murata, K. Fujiyoushi, and M. Kaneko. VLSI/PCB place-
ment with obstacles based on sequence-pair. International Sym-
posium on Physical Design, pages 26-31, 1997.

H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani.
Rectangle-packing-based module placement. Proceedings IEEE
International Conference on Computer-Aided Design, pages
472-479, 1995.

(2]

8]

14

102

Figure 13. Result packing of ami33-rc5. Module
1, 2 and 3 are constrainted to be placed within the
dotted rectangle.

Figure 14. Result packing of ami49-rc6. Module
1, 2 and 3 are constrainted to be placed above the
dotted horizontal line.

[6] H. Murata and Ernest S. Kuh. Sequence-pair based placement
method for hard/soft/pre-placed modules. International Sym-
posium on Physical Design, pages 167-172, 1998.

S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani. Module
placement on BSG-structure and IC layout applications. Pro-
ceedings IEEE International Conference on Computer-Aided
Design, pages 484-491, 1996.

R.H.J.M. Otten. Automatic floorplan design. Proceedings of
the 19th ACM/IEEE Design Automation Conference, pages
261-267, 1982.

R.H.J.M. Otten. Efficient floorplan optimization. IEEE In-
ternational Conference on Computer Design, pages 499-502,
1983.

L. Stockmeyer. Optimal orientations of cells in slicing floorplan
designs. Information and Control, 59:91-101, 1983.

T. Tamanouchi, K. Tamakashi, and T. Kambe. Hybrid floor-
planning based on partial clustering and module restructuring.
Proceedings IEEE International Conference on Computer-
Aided Design, pages 478-483, 1996.

D.F. Wong and C.L. Liu. A new algorithm for floorplan de-
sign. Proceedings of the 29vrd ACM/IEEE Design Automation
Conference, pages 101-107, 1986.

F.Y. Young and D.F. Wong. How good are slicing floorplans.
Integration, the VLSI journal, 23:61-73, 1997. Also appeared
in ISPD-97.

F.Y. Young and D.F. Wong. Slicing floorplans with pre-
placed modules. Proceedings IEEE International Conference
on Computer-Aided Design, pages 252-258, 1098.

F.Y. Young and D.F. Wong. Slicing floorplans with bound-
ary constraints. JEEE Asia South Pacific Design Automation
Conference, pages 17-20, 1999.

(6]

(7

8]

o]

[10)

11

[12)

{13]

[14]

