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ABSTRACT

Given a set of modules with flexibility in shape, we
show that there exists a slicing floorplan F such that
area(F) < min{(1 + WI;I), 2,(1+ @)}Atotat Where Acoral
is the total area of all the modules, Anaz is the maximum

24 . .
= vy and r > 2 is the shape flexibil-

ity of each module. Our result shows that slicing floorplans
can provably pack modules tightly.

module area, o =

1. INTRODUCTION

Floorplan design plays an important role in the design of
VLSI circuits in today’s deep submicron technology. A slic-
ing floorplan is a floorplan which can be obtained by re-
cursively dividing a rectangle into two parts with either a
vertical line or a horizontal line. Since slicing floorplans
have very simple solution representations (e.g. slicing tree
[4], Polish expression [6] etc.), it is easier to design efficient
strategies to search for optimal slicing floorplans. As a re-
sult, slicing floorplans are used in many existing floorplan-
ning systems [4, 3, 6, 5]. The only possible disadvantage
of slicing floorplans is that even the optimal one may not
pack the modules tightly and hence results in large chip
area. Although, there are empirical evidences showing that
slicing floorplans are quite good in packing modules tightly,
it is important to have assurance of their performance by
mathematical analysis.

Let R be a rectangle. We use height(R), width(R)
and area(R) to denote the height, the width and the
area of R respectively. The aspect ratio of R is the ra-
tio height(R)/width(R). A soft rectangle is one which can
have different shapes as long as the area remains the same.
The shape flexibility of a soft rectangle specifies the range
of its aspect ratio. A soft rectangle of area A is said to have
a shape flexibility r if and only if R can be represented by
any rectangle of area A as long as:
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height(R)
width(R) = ()

In our floorplan design problem, we are given n soft rect-
angles of area A; for i = 1,2,...,n and a shape flexibility r,
we want to obtain an upper bound on the area of the opti-
mal slicing floorplan. This is done by constructing a slicing
floorplan F' of these rectangles such that every rectangle
satisfies the aspect ratio constraint in (1) and the area of
Fis as small as possible. We use Atotat to denote 30" A
and use Amqz to denote maxi<cicn{A:i}. Our objective ig
to minimize the dead space in F,"A(F), which is defined as
A(F) = area(F) — Atotal

In this paper, we show an upper bound for the area of
the optimal slicing floorplan. We prove that if the rectan-
gles have a shape flexibility of r > 2, there exists a slic-
ing floorplan F of these rectangles such that area(F?) <

1¢
-

min{(1+ Zrp), §1 (1+)}Atotar where or = | [ 2maz. and

the shape of the constructed floorplan resembles a square
closely. The first term favors large r, e.g. when r = 9,

(1+ ) = 3 The second term gives a better bound

than the first one when r is small. The third term takes
into account the relative sizes of the areas and it gives a
good bound when all the areas are small comparing with
the total area, e.g. when r = 2 and Apax = -’-‘-{%{,ﬂ-, the
percentage of dead space in the optimal slicing floorplan is
at most 9%.

Finally, we have extended the result to the case where
r is slightly less than two, i.e. r = 2 — ¢ where ¢ is a
small positive number, We prove that there exists a slicing
floorplan in which dead space is min{2(1 + §), (14 o+
%)}Atotal-

We will prove the main result in section 2. Section 3 is
on the extended result and Section 4 gives some concluding
remarks.

2. MAIN RESULT

Our goal is to understand how good slicing floorplans arc
in packing soft modules. We have the following theorem:

Theorem 1 Given a set of soft rectangles of total are
Atotal, mazimum ared Amar and shape flexibility r > 2
there exists a slicing floorplan F of these rectangles suci
that

area(F) < min{(1 + -L—\}-F—J-), ;51-, 1+ o)}t (2
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Figure 1. Upper bound on the area of optimal slicing floor-
plan v.s. relative mazimum area. Assumer =2.

2A

2amaz. Moreover, we have
rAjotal

where oo =

area(F) < (1+ l\/_J =7 ) Atotals
area(F) < "'Atotah
area(F) < (1 + &) Atotal

14+ =

height(F) (5 v
= width(F) =) 1140
) =59

Figure 1 shows the relationships in (2). We assume that
r = 2, so the first term does not have any effect. The second
term dominates until -‘4’-'—"1- > 16. Then the upper bound
on the area of the optlmal slicing floorplan drops with in-
creasing 4 —-‘-ﬂﬂl- until reaching the lower bound A:ota1, when
all the areas are infinitely small comparing with A:otal.

Theorem 1 follows directly from Lemma 1, Lemma 2 and
Lemma 3. Notice that Lemma 1 applies only when the
shape ﬂexxblhty r lS at lea.st four, but when 2 < r < 4, the
term (1+ 17=7) > 2 > £. Therefore Theorem 1 still holds.

We will prove Lemmas 1-3 in the following subsections.

2.1. A General Upper Bound

In the following, we want to show that if the shape flexibility
of the soft rectangles is at least four, there exxsts a slicing
floorplan F in which dead space is at most 7-— of Acotar.

The shape of F resembles a square as r increases in such a
way that 1 < %5'% <+ 17‘;]—) For example, when r =
9, F has at most §Atotar dead space and 1 < %{- <t

The analysis is done by constructing a simple slicing ﬂoor-
plan of those given soft rectangles. The areas are clas-

sified into groups such that area A is in group i when
—-5A<—;:rfort—.123 Anarea.Afromgroup

i will be represented by a rectangle R of width 1/r 7 and

height r s FHA. We pack the rectangles one at a time from
the largest to the smallest. When we pack a rectangle, it is
always put on the lowest possible level and is pushed to the
leftmost position on that level. Since the widths of the rect-
angles decrease by from one group to another, there
must be enough horizontal space when packing a rectangle.
No dead space occur in the final floorplan, except those
along the upper boundary. An example is shown in Fig-
ure 2 in which we assume that r = 9, so the widths of the
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rectangles decrease by + from one group to another, and
the nackinge is nerfect excent along the upper boundary.
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This result gives a relationship between the size of the
dead space and the shape flexibility r. It is obvious that
the amount of dead space will decrease with the flexibility
and it becomes infinitely small when the rectangles have
very large flexibility.

Lemma 1 Given a set of soft rectangles of total area Aiotal
and shape flexibility r > 4, there exists a slicing foorplan

SEZIOLL CE280 8 SR2CIRg JooOT PiCle

F of these rectangles such that

area(F) < (1 4 —=)Arotal

l.w/—.l

and
< height(F) 1
1< Siaw(p) < A
Proof In the following, we assume that the given shape

flexibility r is a perfect square. If this is not the case, we
will take r as the largest perfect square smaller than the
given shape flexibility. W.l.o.g. we assume that Atotal = 1.
The areas are classified into groups according to their sxzes
such that area A is in group i if and only if &+ <A< it
for ¢ = 1,2,3,... We will construct a shcmg floorplan F
by packmg the areas one at a time from the largest to the
smallest. F' has a width one. ( Note that the areas are
scaled to have Atotar = 1.} An area A from group i will

- —1 .
be represented bya rectangle Rof width 1 / 5 and height
height(R — height(R
7 A. Notice that height( 14,50 L < f;jw(,-‘} <
1 and the aspect ratio constraint is not vmla.ted During
packing, a rectangle is always put on the lowest possible

level and is pushed to the leftmost position on that level.
Since the widths of the rectangles decrease by 'r from one

group to another, there must be enough horizontal space
when packing a rectangle on the lowest possible level. The
packing is perfect except some dead space cccurs along the
irregular upper boundary. Consider the highest rectangle
R’ in F, its lower boundary must be at a level below one,
because Atotal > 1 otherwise. Thus the maximum height
of the rectangles gives an upper bound on the size of the
dead space. Table 1 tabulates the areas, the heights and
the widths of different groups. Since group 1 will not create
any dead space, the dead space size is upper bounded by

171""]—' It is not difficult to see that the final packing gives a
slicing floorplan. An example is shown in Figure 2.

(a}
Area A Width w Height h
1 1<4A<1 w=1 L<h<1
T 1 e | T
2 ;ﬁ-SA<; w—-‘7; -’:7'=_Sh<7-
5 | k<A<L | w=if | L<R<t
2 #SA<,.—2‘:I—_1' W= —Z=3 TiET Sh‘<2m-x
26+1 | i SA< o7 w= -7 T <h< %

Table 1. Classification of Areas in Lemma 1



Assume r =9, The numbers on the blocks
show the groups to which the blocks belong.
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Figure 2. A simple ezample on the slicing floorplans con-
structed by Lemma 1

The widths are halved from one group to another.

1

Figure 3. A simple ezample on the slicing floorplans con-
structed by Lemma 2

2.2. A Better Bound for Small Shape Flexibility

The result of Lemma 1 gives a good upper bound when the
shape flexibility r is large. For small r, we can obtain a
better bound by modifying the packing strategy and post-
processing the constructed floorplan. The areas are also
classified into groups and areas in different groups are rep-
resented by rectangles of different widths. Again we pack
the rectangles one at a time from the largest to the smallest,
and we always put a rectangle on the lowest possible level
and push it to the leftmost position on that level. One big
difference from the proof of Lemma 1 is that the widths of
the rectangles now decrease by half from one group to an-
other. In Lemma 1, the widths of the rectangles are depen-
dent on r, but this is not the case here. Another difference
is that after packing all the rectangles, we need to do some
post-processing steps to rearrange some rectangles in order
to obtain the desired bound. Again no dead space occurs
in the interior, except those along the upper boundary. An
example is shown in Figure 3.

In the following, we assume that the shape flexibility r
is at least two, and we can construct a slicing floorplan in
which dead space is at most % of the total area Atotal.

Lemma 2 Given a set of soft rectangles of total area /Ag,,m(

and shape flezibility r > 2, there ezists a slicing floorplan
F of these rectangles such that

5
area(F) < ZAtotal

and
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height(F) <8
= width(F) ~ 4

Proof  W.lo.g. we assume that Atorar = 1. Again we
classify the areas into groups and an area A is in group i if
and only if 5=t < A < g5=x for i =1,2,3,... The widths
of the rectangles are hafved from one group to another.
Table 2 tabulates the areas, the widths and the heights of
different groups. Here we cannot obtain an upper bound of
1 directly from the height. Consider the highest rectangle

in the constructed floorplan F. Let the height of R be h
and the width be w. Suppose (1 — a)wh of R, where & < 1,
is above the unit level. It is easy to see from Figure 4 that:

l-a)wh < a(l—-w)h
@ > w

(3)
4
Therefore we can use (1 —w)h to upper bound the size of
the dead space. However (1 ~ w)h may exceed } in group
2 (when £ < A< 1) andin group 3 ( when {5 < A<
L1). we will post-process the packing in F' to obtain the
desired bound. Lets consider all the cases in which the
highest rectangle R have height h and width w such that
h(1—w) > &:
Case 1 The highest rectangle comes from group 2. There
are only two possibilities in which the highest rectangle
has an area between § and 1 exclusively:

Subcase (i) There are one rectangle of area & < Ay <
1 and one rectangle of area ;‘; < Az < %:
Let A1 = 3 + 7 where 0 < v < }. (z < ] since
A1 + Az > % 4z ) Consider three separate cases:
AL i-%
G+a)+(-5)3 =
bound is not exceeded.

Then height(A;) + height(A2) <
l4z+3-z=35. The

Az > % — £ and v/242 > §. ( That means A; can
be a rectangle of width §.) Then 1 — A; — Az <
1-(3+2)—(§-2)=4%- £ < L. Therefore all
the remaining rectangles have width w < ;:- We
can pack A, as a rectangle of width & ( Figure § ).
Then height(A1) + height(Az) < (& +2) + (5 =
z)/% < L. The bound is not exceeded.
Az > §$ — £ and V242 < §. ( That means the
longest side of Az cannot be £.) Then 42 < 3.
Since A2 > 2~%,2 > &. 1~A1~Az < 1—(5+z)—
8 . 2) =1 -2 < 3. Therefore all the remaining
rectangles have width w < -;-. We can pack Aj

as a rectangle of width £ ( Figure 6 ). ( Notice

that \/%3- < £ < v/24z.) Then height(A1) +
height(A2) < ( +2)+ /3 = +=2 < % The
bound is not exceeded.

Subcase (ii) There are three rectangles of area ; <
A<
Let Ay = 3 +2, A2 = } +y and As = ; + 7 where
z+y+z< 3 Wlog. let z <y < 2 Consider
two separate cases:

re s



z 4y < §. Then height(A;) + height(A2) <
(3 +2)/5+ (3 +y)/% < % So the bound is not

exceeqaedq,

z+y > . Since z+y > %, z < L. That means all
xz, y and z are less than }. Besides z-+y > &, thus
y> 'll—ﬁ and so as z. Consider z+y+2 > ++z > .
Therefore 1- A1 — A2 —As=1—(3+2)— (3 +
y)=(5+2) < g5, which means the total area of the
remaining rectangles is less than 1—‘6-. We shuffle the
positions of A; ( the smallest one ) and A; ( the
largest one ), and pack Az as a rectangle of width

% as in Figure 7. ( Notice that &% < z < , so

3 . /A - 3 . Iaa_
%(Ai\’.g'dudv—z"\szz\Al.) Then

height(Az2)+height(As) = (%+y)/i—+ (% +z)/§- =
z+2+ 3+ -‘%’i < %. The bound is not exceeded.
‘or the remaining rectangles, we can pack them in
the empty space sittin% beside Az, which has width
1 and height at least & ( because the height of As
is (;4+2)/5=%5+%>4+% =25). Since the
total area of the remaining rectangles is less than
15 We only need a space of 1 x (1 x 2) by arguing
inductively on the number og rectangles, where the
base case is the trivial condition that there is only
one rectangle,

Case 2 The highest rectangle comes from group 3:
Let 3= < A1 < ¥ be the area of the highest rectangle.

Subcase (i) Besides A1, a width of at least 1 is above

the unit level in the final packing ( Figure 8(a) ).
Let (1 — o) of Ay is above the unit level where

a <1 Then (1-a)hx ;<2 s0oa>1, and
(1~a@)h £ } x & = 1. The bound is not exceeded.
Subcase (ii) Besides A1, a width of less than 1 is

above the unit level in the final packing ( Fig-
ure 8(b) ). Consider two separate cases:

Except A1, no f5 < Az < % in the region above the
unit level ( shaded in Figure 9(a) ). Since v/24; <
%) we can pack A; as a rectangle of width /24,

( Figure 9 ). Besides /4L < %, 50 the bound is
not exceeded.

Another 35 < A2 < % in the region above the unit
level ( shaded in Figure 10(a) ). Let the height
of A2 be h' and (1 — a) of Az is above the unit

level where o < 1. Then (1 —a)h' x + x 2 < 2B
so o> %and (1—a)h' < % xL =L Thus the
height of Az does not exceed the %ound. Similarly,
we can pack A; as a rectangle of width v/24; < 1
( Figure 10 ). Since /4L < 1, the bound is not
exceeded by A; neither.

O
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1

Figure 4. An ezample showing the relationship in equa-
tion (3)

The remaining
sectangles
are put here
Ay '
A
l Put Ay down 2
1 1 ¥4—
Ay Ay
—_— —
(2) ®)

Figure 5. A post-processing step in case 1 (i) of Lemma 2

The remaining
rectangles
are put here

PutA g dovn

—
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Figure 6. A post-processing step in case 1(3) of Lemma 2

The remamning
reclangles
arc put hers

withA 3 and
patAy down

—— 3/4

A
' ! Shuffle A ' A3

Az

A3z A, A

—————e

@ ®)

| —

Figure 7. A post-processing step in case 1(ii) of Lemma 2
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Ay
37
PutA, down

Area A Width w Height h B=h(1-w) 1
1| L1<A<I1 w=1 | £<h<1 0 '_I
2 <AL w=z T <h<1 t<B<z "
3 | <A<l | w=f | *<h<i | 5 <B<y 1
4| 2-<A<=m | w=¢ |g<h<3 -@SB<Z—? 7
5 | s <A<py | w=1 | m<h<g o < B< %

Table 2. Classification of Areas in Lemma 2

Thehighest A widh of atleast 12 Thehighest A widih of less thas 12
nacufglc above the unit Jevel mda‘nsk above the unit level

1o A0

lAl__‘___|<1/z|

ol el o= 1/4~>

1
) ®

Figure 8. An ezample showing the situation in case 2(i)
and case 2(ii) of Lemma 2

2.3. Another Bound Considering the Relative
Sizes of the Areas

In the above analyses, we did not take into account the
relative sizes of the rectangles. It should be reasonable
to predict a better packing if all the rectangles are small
comparing with Atotar. We will consider this factor in the
following.

The floorplan is divided into columns of equal width w
initially where the value W depends on Amas. We classify
the areas into groups such that area A is in group i when
;Ylf:—r <AL -;;pl_f:—r fori=1,2,8,... An area A from group
i is represented as a rectangle R of width ;‘%— and height

2-24  Note that the widths of the rectangles decrease by
hﬁ from one group to another. Then we pack the areas one
at a time from the largest to the smallest, using the same
strategy, i.e. pack the rectangle on the lowest possible level
( among all the columns ) and push it to the rightmost
position “within that column”. An example is shown in

Figure 11 in which we assume that [@J = 3, so there
are totally three columns. Again no dead space occurs in
the interior, except those along the upper boundary.

We can show that the dead space in the resulting floor-

plan is at most ,/%ﬁ'ﬁgﬁ of Atotat. For example, when
ota

Ak,
Jﬁl A | ..mﬁ
e Put A1 down

s |
| |

—_—

® ®

] —————

Figure 9. A post-processing step in case 2(ii) of Lemma 2

|

Figure 10. A post-processing step in case 2(ii) of Lemma
2

r =2, Amaz = ﬁ{-g{,“‘-, the percentage of dead space is at
most 9%. Therefore, the smaller the maximum area com-
paring with the total, the better can be the packing. This
result gives a good bound when all the areas are small in
comparison with the total area.

———

@ ®

—_——

Lemma 3 Given a set of soft rectangles of total area Atotal,
mazimum ared Amaz and shape flexibilityr > 2, there exist:
a slicing floorplan F of these rectangles such that

area(F) < (1 + a)Atotal
where o = 1/ 24maz. . Moreover, we have

rAtotal
height(F) 1+«
1< Giden(p) S T-2F

Proof  We construct a slicing floorplan F by dividing if
into columns of fixed width W and packing the rectangle:
into these columns simultaneously. The areas are agair
classified into groups. The areas, the widths and the heighti
of different groups are shown in Table 3. We use a simila
packing technique as before. Given a rectangle, we alway.
put it on the lowest possible level ( among all the columns

and push it to the leftmost position on that level “withii
the same column” ( Figure 11 ).

If we set W = \]{"—-m&“, the height is at most 1/ ?—"““:i',
in every group. T erefore we can upper bound the size ¢

the dead space by hX, where X = [@] x W is th
width of the floorplan F:

4 Atotal

A(F) < hl_-——v—V——'J x W
S __Lr"_i \Y Atotal
2Amax
= 4 ’ Atota
rAtotal total
= adtiotal
where o = %ﬁf:'-. Consider the aspect ratio of the fin

floorplan, it must be at least one since the width of Fis

most 1/Atotar. Also,
5‘+“!Agplnl
height(F) < Atotat—=W

width(F) ~  /Atotat = W
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Assume l._le =3, The number on cach

block shows the group to which the block belongs.
) ' ' '

' 1 ]
[ [ e
123 3l33‘
2| 2[5 2 2
— — 2|,
212 2],
1
1
! 1
w w w
X

Figure 11. An example on the slicing floorplans con-
structed by Lemma 3

1+a
1—7==.=W 2
( Ato!al)
_ l4ao
Toa-xp
[u]
Area A Width w | Height k
1 !%;i < A< Amaz w=W h < 51?%?‘L
2 | <A< | w=¥ | h<W¥
3 | ¥ocA< | w="% | h<¥
A AW [w=® [ hel
Table 3. Classification of Areas in Lemma 8

3. EXTENSION

In the previous analyses, we require the shape flexibility r
to be at least two. This is justified by our assumption that
each rectangle has a considerable amount of flexibility in
its shape, In this section, we modify the packing technique
slightly to accommodate the case when r = 2 — € where €
is a small positive number. We are able to obtain a similar
result as before. Due to the limitation in space, we will not
show the proof here.

Theorem 2 Given a set of soft rectangles of total area
Atotal, mazimum area Amas and shape flezibilityr =2 —¢
where € is a small positive number, there ezists a slicing
floorplan F such that

area(F) < min{i—(l + g-), 1+o+ ;‘)}Atotol

where o = f—ﬁmﬂ-. Moreover, we have
fotal
height(F) '3'(1 + ';‘) area(F) £ %(1 + $)Acotals

<

S wanm S\ it

area(F) < (1+ o+ £)Atotal-

149

4. CONCLUDING REMARKS

Experimental results show that slicing floorplans can actu-
ally do better than what we have proved mathematically.
We applied the system in [6] to 25 test problems, each with
100 soft rectangles of shape flexibility two. On the aver-
age, 2.2% of dead space was obtained. We have also ap-
plied the system to the same 25 test problems using a cost
function which takes into consideration both the area and
the wiring. On the average, we obtained 4.9% dead space,
which is higher than before but still quite reasonable. These
show that slicing floorplans are good. We hope to be able
to incorporate wiring into our analyses in the future.
Finally, note that our problem is quite different from 2-
D bin packing [2, 1]. In 2-D bin packing, one considers
packing hard rectangles ( no flexibility in shape ) into a
long strip of a constant width and the aim is to minimize
the total height. Since the width of the strip is fixed and is
independent of the areas of the rectangles, so the resulted
packing is usually a long narrow piece with very large aspect
ratio. However, we want the resulting shape to be close to a
square in floorplan design and the width is thus dependent
on the total area of the rectangles. Another difference is
that 2-D bin packing considers packing hard rectangles, so
their analyses do not take into account the shape flexibility
which is, on the contrary, an important issue in our case.
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