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ABSTRACT 

Given a set of modules with flexibility in shape, we 
show that there exists a slicing floorplan F such that 
area(F) 5 min{(l + & ), 2, (1 + cr)}Atotoz where Atotal 
is the total area of all the modules, A,,, is the maximum 

module area, (Y = 
J- 

;$;a; and r 2 2 is the shape flexibil- 

ity of each module. Our result shows that slicing floorplans 
can provably pack modules tightly. 

1. INTRODUCTION 

Floorplan design plays an important role in the design of 
VLSI circuits in today’s deep submicron technology. A sk- 
ing floorplan is a floorplan which can be obtained by re- 
cukively~dividing a rectangle into two parts with either a 
vertical line or a horizontal line. Since slicine: floor~lans 
have very simple solution representations (e.g.-slicing tree 
[4], Polish expression [6] etc.), it is easier to design efficient 
strategies to search for optimal slicing floorplans. As a re- 
sult, slicing floorplans are used in many existing floorplan- 
ning systems [4, 3, 6, 51. The only possible disadvantage 
of slicing floorplans is that even the optimal one may not 
pack the modules tightly and hence results in large chip 
area. Although, there are empirical evidences showing that 
slicing floorplans are quite good in packing modules tightly, 
it is important to have assurance of their performance by 
mathematical analysis. 

Let R be a rectangle. We use height(R), width(R) 
and area(R) to denote the height, the width and the 
area of R respectively. The aspect ratio of R is the ra- 
tio height(R)/width(R). A soft rectangle is one which can 
have different shapes as long as the area remains the same. 
The shape flexibility of a soft rectangle specifies the range 
of its aspect. ratio. A soft, rectangle of area A is said to have 
a shape flexibility r if and only if R can be represented by 
any rectangle of area A as long as: 
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In our floorplan design problem, we are given n soft rect- 
angles of area Ai for i = 1,2,. . . , n and a shape flexibility r) 
we want to obtain an upper bound on the area of the opti- 
mal slicing floorplan. This is done by constructing a slicing 
floorplan F of these rectangles such that every rectangle 
satisfies the aspect ratio constraint in (1) and the area of 
F is as small as possible. We use Atot. to denote ~~~, Ai 
and use Amos to denote m~~<i<,{Ai}. Our objective is 
to minimize the dead space in F,iI(F), which is defined as 
A(F) = area(F) - Atotoz 

In this paper, we show an upper bound for the area of 
the optimal slicing floorplan. We prove that if the rectan- 
gles have a shape flexibility of r 2 2, there exists a slic- 
ing floorplan F of these rectangles such that area(F) 5 

mid(l+‘&), 2, (lS~)}Atotaz where (Y = j/e, and 
the shape-if-the constructed floorplan resembles .n-square 
closely, The Ft term favors large r! e.g. when r = 9, 
(1+ &I = 3. The second term gves a better bound 
than the first one when r is small. The third term takes 
into account the relative sizes of the areas and it gives a 
good bound when all the <areas are small comparing with 
the total area, e.g. when r = 2 and A,,, = w, tha 
percentage of dead space in the optimal slicing floorplan is 
at most 9%. 

Finally, we have extended the result to the case where 
r is slightly less than two, i.e. r = 2 - e where e is a 
small positive number. We prove that there exists a slicing 
floorplan in which dead space is min{ f(l + f), (1 + cv + 
;)}Atoto~. 

We will prove the main result in section 2. Section 3 is 
on the extended result and Section 4 gives some concluding 
remarks. 

2. MAIN RESULT 

Our goal is to understand how good slicing floorplans arc 
in packing soft modules. We have the following theorem: 

Theorem 1 Given a set of soft rectangles of total arer 
Atotal, maximum area Am.l and shape fiexibility r > 2 
there exists a slicing floorplan F of these rectangles suci 
that 

area(F) 5 min{(l+ &,, ;, (1 +~)}Atorar (2 
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Figure 1. Upper bound on the orea of optimal slicingfloor- 
plan U.S. relative maximum area. Assume r = 2. 

where cv = 2&52. r4ot.1 * Moreover, we hove 

1 < hei9hV) i 
- width(F) 

Figure 1 shows the relationships in (2). We assume that 
r = 2, so the first term does not have any effect. The second 
term dominates until $$$ > 16. Then the upper bound 
on the area of the optimal slicing floorplan drops with in- 
cressing Amos ~JZLIL until reaching the lower bound Atotal, when 
all the areas are infinitely small comparing with Atotal. 

Theorem 1 follows directly from Lemma 1, Lemma 2 and 
Lemma 3. Notice that Lemma 1 applies only when the 
shape flexibility r is at least four, but when 2 5 r < 4, the 
term(lt+j)>$>4. 5 Therefore Theorem 1 still holds. 
We will prove Lemmas 1-3 in the following subsections. 

2.1. A General Upper Bound 
In the following, we want to show that if the shape flexibiity 
of the soft rectangles is at least four, there exists a slicing 
floorplan F in which dead space is at most &J of Atotal. 
The shape of F ,resembles a square as r increases in such a 
way that 15 wf 5 (l+&). For example, when r = 

9, F has at most iAtotar dead space and 1 5 $$$$ 5 $ 

The analysis is done by constructing a simple slicing floor- 
plan of those given soft rectangles. The areas are clas- 
sified into groups such that area A is in group i when 
f 5 A < h for i = 1,2,3,... An area A from group 

i will be represented by a rectangle R of width l/r 1 and 

height r* A. We pack the rectangles one at a time from 
the largest to the smallest. When we pack a rectangle, it is 
always put on the lowest possible level and is pushed to the 
leftmost position on that level. Since the widths of the rect- 
angles decrease by & from one group to another, there 
must be enough horizontal space when packing a rectangle. 
No dead space occur in the final floorplan, except those 
along the upper boundary. An example is shown in Fig- 
ure 2 in which we assume that r = 9, so the widths of the 

rectangles decrease by 5 from one group to another, and 
the packing is perfect except along the upper boundary. 

This result gives a relationship between the size of the 
dead space and the shape flexibility r. It is obvious that 
the amount of dead space will decrease with the flexibility 
and it becomes infinitely small when the rectangles have 
very large flexibiity. 

Lemma 1 Given a set of soft rectangles of total area Atot,, 
and shape jletibility r 2 4, there exists o slicing floorplan 
F of these rectangles such that 

area(F) 2 (l+ &)Amt 

and 

1 < heW(F) < (1 : 1 
- width(F) - LA 

Proof In the following, we assume that the given shape 
flexibiity r is a perfect square. If this is not the case, we 
will take r as the largest perfect square smaller than the 
given shape flexibility. W.1.o.g. we assume that Atotal = 1. 
The areas are classified into groups according to their sizes 
suchthatareaAisingroupiifandonlyifssA<A 
for i = 1,2,3,... We will construct a slicing floorplan F 
by packing the areas one at a time from the largest to the 
smallest. F has a width one. ( Note that the areas are 
scaled to have Atotal = 1. ) An area A from group i will 

be represented by a rectangle R of width l/r e and height 

r%A. Notice that s$$$$l = r’-‘A, so b 5 m < 
1 and the aspect ratio constraint is not violated. During 
packing, a rectangle is always put on the lowest possible 
level and is pushed to the leftmost position on that level. 
Since the widths of the rectangles decrease by % from one 
group to another, there must be enough horizontal space 
when pacldng a rectangle on the lowest possible level. The 
packing is perfect except some dead space occurs along the 
irregular upper boundary. Consider the highest rectangle 
R’ in F, its lower boundary must be at a level below one, 
because Atotal > 1 otherwise. Thus the maximum height 
of the rectangles gives an upper bound on the size of the 
dead space. Table 1 tabulates the areas, the heights and 
the widths of d&rent groups. Since group 1 will not create 
any dead space, the dead space size is upper bounded by 
h. It is not diflkult to see that the final packing gives a 
slicing floorplan. An example is shown in Figure 2. 

0 

. . . . . . . . . . . . 
2i &9=--c 

1 
.a.-1 2*--I 

377 
2i+1 &ci<A<& w=+ +ilh<+ 

. . . . . . . . . . . . 

Table 1. Classification of Areas in Lemma 1 
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Asmer=9.Thcmnnbersonthcbloclcr 
show the groups lo which the blocks belong. 

1 < height(F) < 5 
- width(F) - 4 

Figure 2. A simple example on the slicing floorplons con- 
structed by Lemma 1 

Ths titbs are halved from one gmop lo another. 

Figure 3. A simple example on the slicing jioorplons con- 
structed by Lemma 2 

2.2. A Better Bound for Small Shape Flexibility 
The result of Lemma 1 gives a good upper bound when the 
shape flexibility r is large. For small r, we can obtain a 
better bound by modifying the packing strategy and post- 
processing the constructed floorplan. The areas are also 
classified into groups and areas in different groups are rep- 
resented by rectangles of different widths. Again we pack 
the rectangles one at a time from the largest to the smallest, 
and we always put a rectangle on the lowest, possible level 
and push it to the leftmost position on that level. One big 
difference from the proof of Lemma 1 is that the widths of 
the rectangles now decrease by half from one group to an- 
other. In Lemma 1, the widths of the rectangles are depen- 
dent on r, but this is not the case here. Another difference 
is that after packing all the rectangles, we need to do some 
post-processing steps to rearrange some rectangles in order 
to obtain the desired bound. Again no dead space occurs 
in the interior, except those along the upper boundary. An 
example is shown in Figure 3. 

In the following, we assume that the shape flexibiity r 
is at, least two, and we can construct a slicing floorplan in 
which dead space is at, most i of the total area Atotal. 

Lemma 2 Given o set of soft rectangles of total oreo’Atotal 
and shape flexibility r 2 2, there exists o slicing floorplan 
F of these rectangles such that 

and 

urea(F) 5 iAt.r.l 

Proof W.1.o.g. we assume that Atotal = 1. Again wc 
classify the arfas into groups and an area A is in group i if 
andonlyif T<A< Tfori=l 2 3 The widths 
of the rectz$ies are ha!kd from oni &&’ to another. 
Table 2 tabulates the areas, the widths and the heights of 
different groups. Here we cannot obtain an upper bound of 
1. directly from the height. Consider the highest rectangle 
fr in the constructed floorplan F. Let the height of R be h 
and the width be 1~. Suppose (1 - a)wh of R, where o( < 1, 
is above the unit level. It is easy to see from Figure 4 that: 

(I-a)wh 5 a(l-w)h (3) 
CY 2 w (4 

Therefore we can use (1- w)h to upper bound the size of 
the dead space. However (1 - w)h may exceed b in group 

2 ( when 4 < A < 9 ) and in group 3 ( when & < A < 
1. ). we will post-process the packing in F to obtain the 
&sired bound. Lets consider all the cases in which the 
highest rectangle R have height. h and width UJ such that 
h(l- UJ) > $: 
Case 1 The highest rectangle comes from group 2. There 

are only two possibilities in which the highest rectangle 
has an area between 4 and $ exclusively: 

Subcase (i) There are one rectangle of area a 5 Al 5 
1 and one rectangle of area i < AZ < 3: 
Let AI = 4 +x where 0 5 x < i. ( x < i since 
A1 + Al > f +x ) Consider three separate case% 

A2 5 t-z. Then height(Al) + height(Az) ,< 

~&-t-t’;,‘,~~ --$;$id= f t 2: t $ - x = $. The 
0 

AZ>;+ and m 2 $, ( Thaf means A2 can 
be a rectangle of width $; ) Then 1 - AI - A2 < 
I-(i+x)-(g-$)=F-$s$. Thercforeall 
the remaining rectangles have width VJ < $. We 
can pack A2 as a rectangle of width $ ( Figure 5 ). 
Then height(Al) + height(Az) < (a + x) + (i - 
x)/4 5 5. The bound is not exceeded. 

AZ>;-: anda< $. ( That, means the 
longest side of A2 cannot be Q. ) Then A2 < & 
Since AZ > c-z, x > 6. l-Al-A2 < l-($-i-~)- 

( ;-+$-s<&. Therefore all the remaining 
rectangles have width w 5 i. We can pack A2 
as a rectangle of width i ( Figure 6 ). ( Notice 

that % < g 
d- 

< a. ) Then height(Ar) + 

height(A2) < (4 $ z) $ s/$ = s +X < 5. The 
bound is not exceeded. 

Subcase (ii) There are three rectangles of area i < 
A < 3: 
LetA1=;$x,Aq=ff~andAg=ftzwhere 

tSY+zS+. W.l.0.g. let x < y 2 3. Consider 
two separate cases: 

146 

.-- .,.- .__-,* --c- . ,_ <, ,. __--- __-.- .--- , ~_, ._-..- I ._ ;_ ; “‘..‘_;: 1 .,i... _ 1:. ‘,“,,:8,.,’ . : * _ ,\ ,A .* I 



-.~-_-__- _~~ _~_ . --- -- __.-- _ 

x+y 5 +. Then height(Al) + height(Az) 5 
i$ctegl/$ f (i -t y)/$ 5 0. So the bound is not 

z+y>~.Sinces+y>~,z<~.Thatmeansah 
x,gandz are less than 6. Besides x + y > i, thus 

Y> & and so as z. Consider x+y+z > ++z > $. 
Therefore 1 - A1 - A2 
Y)-(&l-g < &, 

-As=l-(++t)-((4-b 
which means the total area of the 

remaining rectangles is less than h. We shuffle the 
positions of Al ( the smallest one ) and A3 ( the 
largest one ), and pack As as a rectangle of width 
$ as in Figure 7. ( Notice that $ < z < i, so 

$ < AI < $ and < $ < a. ) Then 

hcight(Az)+height(As) = ($+y)/$+($+z)/f = 
is not exceeded. 

the empty space sitting beside AJ, which has width 
e and height at least z ( because the height of As 
is(“-j-z)/$=i+y>++&== 
totd area of the remaining t2 )- Since the rect.ang es is less than 
&, we only need a space of L x (f x $) by arguing 
mductively on the number o i! rectangles, where the 
base case is the trivial condition that there is only 
one rectangle, 

Case 2 The highest rectangle comes from group 8: 
Let, & < A1 < $ be the area of the highest rectangle. 

Subcase (i) Besides Al, a width of at least f is above 
the unit level in the final packing ( Figure 8(a) ). 
Let (1 - cr) of Al is above the unit level where 
;, < lj, TJre;,‘t - c$h x f 5 9, so cy 2 f, and 

-a l-* T’=;i* The bound is not exceeded. 

Subcaso (ii) Besides AI, a width of less than f is 
above the unit level in the final packing ( Fig- 
ure 8(b) ). Consider two separate cases: 

Esccpt Al, no & < A2 < a in the region above the 
unit level ( shaded in Figure 9(a) ). Since m < 
fr, we can pack Al as a rectangle of width a 

( Figure 9 ). Besides fi < $, so the bound is 

not exceeded. 

Another 8 < A2 < $ in the region above the unit 
level ( shaded in Figure 10(a) ). Let the height 
of A2 be h’ and (1 - a) of A2 is above the unit 
level where cr < 1. Then (1 - a)h’ x f x 2 2 ?$, 
60 CY > 1 and (1 - cr)h’ 2 f x 1. = 4. Thus the 
heighcof?Az does not exceed the kound. Similarly, 
we can pack A1 as a rectangle of width a < i 

( Figure 10 ). Since < i, the bound is not 

exceeded by A1 neither. 

0 

Amax CArnY 
! ::x.. 
J 

Ml 

:._;.: ‘+..I y_ ; I,,. 
w- 

I 

I-II I- 
Figure 4. An example showing the relationship in equa- 
tion (3) 

PotA doun 

I 
I 
I 

I 
-1- 

Figure 5. A post-processing step in case l(i) of Lemma z 

I ---------- ---____-___ 
A2 

1 

I B Al 

-1- 

PutA draw, 

I 

-1- 

(4 @I 

Figure 6. A post-processing step in case I(i) of Lemma 2 

-1- 

Figure 7. A post-processing step in case l(ii) of Lemma 2 
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TabIe 2. Classification of Areas in Lemma 2 

Figure 8. An example showing the situation in case 2(i) 
and case 2(ii) of Lemma 2 

2.3. Another Bound Considering the Relative 
Sizes of the Areas 

In the above analyses, we did not take into account the 
relative sizes of the rectangles. It should be reasonable 
to predict a better packing if all the rectangles are small 
comparing with Atot,+ We will consider this factor in the 
following. 

The floorplan is divided into columns of equal width W 
initially where the value W depends on A,,,. We classify 
the areas into groups such that area A is in group I when 
q < A < & for i = 1,2,3,. . . An area A from group 
i”‘is ie&sented as a rectangle R of width 5 and height 

a. Note that the widths of the rectangles decrease by 
h8f rom one group to another. Then we pack the areas one 
at a time from the largest to the smallest, using the same 
strategy, i.e. pack the rectangle on the lowest possible level 
( among all the columns ) and push it to the rightmost 
position “within that cohnnn”. An example is shown in 

Figure 11 in which we assume that 1 *] = 3, so there 
are totally three columns. Again no dead space occurs in 
the interior, except those along the upper boundary. 

We can show that the dead space in the resulting floor- 

plan is at most of Atotal. For example, when 

@) 

Figure 9. A post-processing step in case 2(ii) of Lemma 2 

Figure 10. A post-processing step in case 2(ii) of Lemma 
2 

r = 2, A,,, = w, the percentage of dead space is at 
most 9%. Therefore, the smaller the maximum area com- 
paring with the total, the better can be the paclcing. Tl$ 
result gives a good bound when all the areas are small in 
comparison with the total area. 

Lemma 3 Given a set of soft rectangles of total area AM~I, 
maximum area Amo, and shapejlexibilityr > 2, there exist1 
a slicing jloorplan F of these rectangles such that 

area(F) 2 (I+ a)Atoto~ 

where CY = Moreover, we have 

1 < height(F) < 1 +cr 
- width(F) - (1- y)” 

Proof We construct a slicing floorplan F by dividing il 
into columns of fixed width W and packing the rectangles 
into these columns simultaneously. The areas are a&air 
classified into groups. The areas, the widths and the height 
of different groups are shown in Table 3. We use a simile 
packing technique as before. Given a rectangle, we alway’ 
put it on the lowest possible level ( among all the columns 
and push it to the leftmost position on that level “withh 
the same column” ( Figure 11 ). 

If we set W = (‘ fz theheight is at most e 
in every group. T ere ore’we can upper bound the size c P 

the dead space by hX, where X = 1 *J X W is th 
width of the floorplan F: 

= 

= hotaz 

where cr = Consider the aspect ratio of the fin’ 

t be at least one since the width of F is 4 

height(F) -$5%% 
width(F) s dxz-w 
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Figure 11. An example on the slicing floorplans con- 
structed by Lemma 3 

1+a 
= (l-$yy2 

1+cr 
= (l-32 

Table 3. Classification of Areas in Lemma 3 

3. EXTENSION 

In the previous analyses, we require the shape fletibility r 
to be at least two. This is justified by our assumption that 
each rectangle has a considerable amount of flexibility in 
its shape. In this section, we modify the packing technique 
slightly to accommodate the case when r = 2 - c where e 
is a small positive number. We are able to obtain a similar 
result as before. Due to the limitation in space, we will not 
show the proof here. 

Theorem 2 Giuen a set of soft rectangles of total area 
Atotal, maximum area A,,, and shape jkxibility r = 2 - e 
where c is a small positive number, there exists a slicing 
Poorplan F such that 

area(F) 5 min{z(l + i), (1 + cy + i)}Atot.~ 

where f,v = 2A d= Moreover, we have r4ot.1 ’ 

4. CONCLUDING REMARKS 
Experimental results show that slicing floorplans can actu- 
ally do better than what we have proved mathematically. 
We applied the system in [6] to 25 test problems, each with 
100 soft rectangles of shape flexibility two. On the aver- 
age, 2.2% of dead space was obtained. We have also ap- 
plied the system to the same 25 test problems using a cost 
function which takes into consideration both the area and 
the wiring. On the average, we obtained 4.9% dead space, 
which is higher than before but still quite reasonable. These 
show that slicing floorplans are good. We hope to be able 
to incorporate wiring into our analyses in the future. 

Finally, note that our problem is quite different from 2- 
D bm packing [2, 11. In 2-D bin packing, one considers 
packing hard rectangles ( no flexibility in shape ) into a 
long strip of a constant width and the aim is to minimize 
the total height. Since the width of the strip is fixed and is 
independent of the areas of the rectangles, so the resulted 
packing is usually a long narrow piece with very large aspect 
ratio. However, we want the resulting shape to be close to a 
square in floorplan design and the width is thus dependent 
on the total area of the rectangles. Another difference is 
that 2-D bm pa&ing considers packing hard rectangles, so 
their analyses do not take into account the shape flexibility 
which is, on the contrary, an important issue in our case. 
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