
Physical Synthesis of Bus Matrix for High Bandwidth Low
Power On-chip Communications∗

Renshen Wang†, Evangeline Young‡, Ronald Graham† and Chung-Kuan Cheng†
†University of California, San Diego, La Jolla, CA 92093-0404

‡The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
{rewang, ckcheng, graham}@cs.ucsd.edu, fyyoung@cse.cuhk.edu.hk

ABSTRACT
As the thermal wall becomes the dominant factor limiting
VLSI circuit performance, and the interconnect wires be-
come the primary power consumer, power efficiency of on-
chip data throughput is nowadays a critical target for SoC
designers. Under this trend, bus matrices are mostly used
in current system-on-chips (SoCs) because of their simplicity
and good performance. We introduce a bus matrix synthe-
sis flow to optimize on-chip communications, to keep the low
delay of buses, reduce power by bus gating, and reduce wires
by wire sharing. The proposed algorithms are able to help
designers create high capability yet compact and efficient
bus matrices for future low power SoCs.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided design

General Terms
Algorithms, design, performance

Keywords
Bandwidth, power efficiency, wire efficiency

1. INTRODUCTION
Advances in process technology have enabled more com-

ponents integrated into a single silicon wafer as a system-
on-chip (SoC), thanks to the scaling of feature size under
Moore’s law. Meanwhile, clock frequencies of the compo-
nents as well as the system have stopped increasing due to
the “thermal wall” and power issues. As a result, higher
performance can only be extracted from parallelism, where
communication between components will be a possible bot-
tleneck for many applications. It is illustrated in [4] that
power consumption of local computation can be significantly
less than the power of moving data from component to com-
ponent on the chip. Therefore, efficient on-chip communica-
tion architectures will become another critical part in future
SoC designs.

∗This work is partially supported by NSF CCF-0811794 and
California Discovery program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$10.00.

1.1 Bus vs NoC
Bus and network-on-chip (NoC) are the two types of pop-

ular on-chip communication architectures. Bus has been
widely used for its speed and simplicity [16] [18], but lacks
the communication bandwidth to support parallelism. Bus
matrix [17] extends its bandwidth, but not in an efficient
way on power or wires [11] compared to NoC [5], which is
therefore regarded as a better choice for many applications
because of its bandwidth capacity, regularity and scalability.

However, NoC has relatively large delay, which is a criti-
cal disadvantage to system performance, because communi-
cations in NoC must take a series of hops on routers in the
network. Even with sophisticated routers [9] taking only one
clock cycle each hop, the total delay over a long path is still
significant. The accumulation of delay on hops is inevitable
due to the independency of routers, and it scales up with
the number of routers and system complexity. Therefore,
we believe bus based communication provides better perfor-
mance in delay-sensitive systems, because bus delay can be
minimized through centralized control and arbitration. On
the other hand, the weaknesses such as low bandwidth and
wire efficiency, are not intrinsic in bus. In this paper, we
address these issues on bus matrix to make it a capable and
efficient on-chip communication architecture.

1.2 Previous works
There is a large body of work on system-level communi-

cations, such as [2] [7] [8] [10] [11] [12] [14], etc. Most of the
works take approach by optimizing the bus topologies for
good bandwidth and/or power consumption. On the anal-
ysis of performance, usually a “communication constraint
graph” [8] is extracted from a specific application, and dif-
ferent topologies can be evaluated by estimative calculations
[8] or detailed simulations [10] [11].

Over the time, optimization on bus architectures have
been changing due to technology scaling and its effect on
signal transmissions. Long interconnections are relatively
scaling up [4] [6] on power and wires, therefore considered
as a more important minimization target. Physical synthe-
sis has not been emphasized in literature, but because of
these changes, on-chip physical locations of components are
becoming more and more relevant to both power and perfor-
mance of SoCs. On the performance side, delay is dictated
by propagation distance, bandwidth is limited by routing
congestion, and ultimately limited by power/thermal con-
straints. On the power side, wire capacitance is consuming
a higher portion of dynamic power.

Floorplans are considered in [10] to estimate delays, but

91

not power. Bus gating is introduced in [14] to minimize delay
and power within a given floorplan, but without the consid-
eration on performance with high bandwidth requirement.
Moreover, most previous works assume that the bus or bus
matrix are using tree structures. New objectives necessi-
tate explorations on more possibilities on topologies, which
are strongly correlated with geometrical properties, affecting
both wire routing and data routing.

1.3 Paper overview and contributions
In this work, we optimize bus matrix for bandwidth, power

and wires. We use ABMA AHB [16] or AMBA AXI [17] bus
architectures as representatives, since they are the most pop-
ular on-chip buses in industry. To reduce power, gated bus
proposed in [14] are used, and the topology is therefore based
on Steiner graphs instead of traditional tree structures.

The concept of gated bus on shortest-path Steiner graph
dramatically changes some previous conclusions on bus power
saving. In [11], the full AMBA AHB bus matrix makes a
crossbar like connection, ensures high bandwidth for master-
slave data transactions, but also consumes a lot of power.
With bus gating techniques, the full bus matrix can mini-
mize power while maintaining the high bandwidth, because
every connection can take a single shortest path which in-
volves minimal wires. This optimal crossbar connection,
however, may not be achievable because of the limited rout-
ing resource. The total wire length increases on the scale
of O(n2) if we naively route every master-to-slave connec-
tion. So we introduce optimization techniques based on the
Steiner graph to solve this problem, and provide a framework
to explore tradeoffs among power, bandwidth and wires.

In the rest of this paper, section 2 proposes problem for-
mulations for ideal bus matrices and tractable, place-and-
route friendly bus matrices. Section 3 proposes a heuristic
algorithm to further reduce routing congestion. Section 4
shows the experiments on the test cases in [14], and section
5 finalizes our conclusions.

S1
M1

Decoder
M2

Mux/de-mux
ArbiterMux/de-mux Mux/de-muxDecoder S2

ArbiterMux/de-mux
S3

ArbiterMux/de-mux
Matrix

Figure 1: Sketch of a power efficient full bus matrix

2. PROBLEM FORMULATIONS
Current bus architectures like AMBA AHB and AXI can

be flexibly reconfigured for on-chip communication patterns.
To represent the pattern, we use the “communication con-
straint graph” in [12]. Here with AMBA AHB protocols, it
is a bipartite graph G = (U, W, A) where U is the set of
masters, W is the set of slaves, and A is the set of arcs from
U to W . (u, w) ∈ A means master u will access slave w.

Figure 1 is the sketch of a full 2×3 bus matrix. This type
of full matrix guarantees maximum parallelism in SoCs, be-
cause the only limitation on the bandwidth is the through-
put of component units: Each master can only access one

slave at a time, and vice versa. And if we use bus gating
in [14] and add the multiplexers and demultiplexers, each
data transaction between a master and a slave only takes
one path, which can take the shortest Manhattan distance.
Thus, the bus matrix also guarantees high power efficiency.

The only problem with this full matrix is that all these
paths may take too much on-chip routing resource, possibly
impractical with a large SoC and intensive communications.
So our formulation below emphasize on wire length reduc-
tion, while maintaining the high bandwidth capabilities and
low power consumption.

2.1 Ideal bus matrix formulation
Given a bipartite communication graph G = (U, W, A) of

an SoC, and given that for every component v ∈ (U
⋃

W),
its physical location on P (v) ∈ R2 is determined by the
floorplan, our goal is to find a set of wires and control units
that can meet the communication demand, while each data
transaction takes the shortest Manhattan distance between
the master and slave. We denote the Manhattan distance
between a and b as ‖P (a) − P (b)‖1, and the set of paths
(same defition as in [12]) as Π.

Definition 1. For communication graph G = (U, W, A)
and location function P , an ideal bus matrix graph is a
weighted graph Θ = (V, E, ω) that
• U ⊆ V
• W ⊆ V
• For any A′ ⊆ A such that
∀ (ui, wi), (uj , wj)∈ A′, i 6= j ⇒ ui 6= uj and wi 6= wj ,
there is a set of paths Π′ ⊆ Π, such that
◦ |Π′| = |A′|
◦ ∀ r ∈ Π′, r ⊆ V

⋃
E

◦ ∀ (u, v) ∈ A′, ∃ r ∈ Π′ such that u ∈ r, v ∈ r, and∑
(i,j)∈r ‖P (i)− P (j)‖1 = ‖P (u)− P (v)‖1

◦ ∀ e ∈ E, |{r ∈ Π′ : e ∈ r}| ≤ ω(e)

The objective is to find the bus matrix graph with minimal
total wire length L(Θ) =

∑
(u,v)∈E ω((u, v))‖P (u)−P (v)‖1.

Due to the limited bandwidth on each single component,
there is no need for all the arcs in A to have disjoint paths.
Only for the subsets of A in which the arcs do not share any
vertices (A′), we require that the superposition of all the
paths are covered by the bus matrix, so any data transac-
tions not naturally conflicting can be simultaneously active.

This formulation defines an ideal high bandwidth and low
power on-chip communication solution. However, it is com-
putationally expensive to obtain the minimal cost of Θ, be-
cause the combinations of possible subsets A′ is exponential.
Even if we have a solution of graph Θ, it is still impractical
to store the paths of every Π′ in bus control units, or com-
pute the path set Π′ in real time for each subset A′. To make
it achievable with small silicon resource and high efficiency,
we change the formulation as follows.

2.2 Practical bus matrix formulation
Given a communication graph G = (U, W, A) and location

function P same as previous subsection, we assign a fixed
path ρ(a) ∈ Π for each arc a ∈ A, i.e. each pair of master-
slave always takes the same path when they are connected.

Definition 2. For communication graph G = (U, W, A)
and location function P , a bus matrix graph is a weighted
graph H = (V, E, ω) with a set of paths ρ : A 7→ Π that

92

• U ⊆ V
• W ⊆ V
• ∀ a ∈ A, ρ(a) ⊆ V

⋃
E

• ∀ (u, v) ∈ A,∑
(i,j)∈ρ(a) ‖P (i)− P (j)‖1 = ‖P (u)− P (v)‖1

• For any A′ ⊆ A such that
∀ (ui, wi), (uj , wj)∈ A′, i 6= j ⇒ ui 6= uj and wi 6= wj ,
we have ∀ e ∈ E, |{a ∈ A′ : e ∈ ρ(a)}| ≤ ω(e)

By this formulation, the fixed path for each arc in A can be
easily stored in control units, so the arbitration and control
can be implemented with small silicon footprint.

3. ALGORITHMS FOR BUS MATRIX SYN-
THESIS

The formulation in definition 2 is more suitable for opti-
mization of on-chip bus architectures. To find the minimal
total wire length, it is still a hard problem because the bus
matrix graph H should be a Steiner graph of G. Steiner
graph is defined in [1] and used in [14] to define the topol-
ogy of a gated bus, and is shown to be very effective for
power reduction on the basic AMBA AHB bus.

The shortest paths in [14] have the same power saving
effect in bus matrix, which is extended from the bus adding
multiple data transactions. Since the shortest-path Steiner
graph is also minimizing wire length, we adopt the same
topological structure of the Steiner graph and add weight
function ω to meet the communication requirement by G.

3.1 Graph generation
Finding the minimal shortest-path Steiner graph is NP-

hard, since the single-source case, minimal rectilinear Steiner
arborescence (MRSA) problem is NP-hard [13]. But we have
efficient heuristic algorithms to find solutions close to min-
imal [3] [14]. Once we have the Steiner graph SG = (V, E)
generated from communication graph G, each arc (u, v) in
G has a path of length exactly the Manhattan distance be-
tween P (u) and P (v). Also we have the path set Π which
contains the paths for all the arcs.

To allow multiple data transactions, some edges need larger
weight, i.e. multiple bus lines. Although on topological level
(as figure 1), it seems that we can only add all the paths into
the Steiner graph H, the actual number of wires needed on
each edge can be largely reduced. (u1 wi)(u2 wi) (u3 wi)u1 u2

u3w2
w1

w3v0
Figure 2: A 3× 3 bus matrix and its 12 paths

Figure 2 is an example of a bus matrix for communication
graph G = (U, W, A), where |U | = 3, |W | = 3, and |A| = 9,
so (ui, wj) ∈ A for all i, j. Graph H with |V | = 7 is shown
with edge weight drawn as number of parallel lines, and the
paths for all the arcs are denoted in the three subgraphs.

Although there are 9 different paths of data transactions,
only one edge has weight 3, (v0, w2) shared by path (u1 →

w2), (u2 → w3) and (u3 → w1). Any other edge does not
need 3 parallel bus lines even when it is covered by 3 or
more paths, because those paths can not be active at the
same time for sharing either a common ui or a common wi.
The weight required by each edge is the maximum subset A′

in definition 2. Regardless of the possible combinations on
A′, the maximum subset can be computed by the maximum
bipartite matching algorithm [15]. The bipartite graphs for
the 7 edges in figure 2 are shown in figure 3 below.u1u2u3 w1w2w3(u1, w1)

u1u2u3 w1w2w3 (w1, u2)
u1u2u3 w1w2w3 (u2, v0)u2u3 w1w2w3(v0, u1)

u1
u1u2u3 w1w2w3(v0, w2)

u1u2u3 w1w2w3 (w2, u3)
u1u2u3 w1w2w3 (u3, w3)

Figure 3: Bipartite graph of each edge in figure 2

Hence, the weight function ω is created by the subgraphs
of the communication graph G, so that each edge line is
shared by multiple paths whenever possible. And since the
topology of the shortest-path Steiner graph SG it based on
is also generated for sharing edges as much as possible, the
resulting bus matrix graph H = (V, E, ω) has a total cost
much lower than the sum of path lengths (11 vs 20 in the
example of figure 2).

3.2 Parallel segment merging for wire length
reduction

With more components in SoC, high bandwidth bus ma-
trix will need more wires to support parallelism in communi-
cations. Especially when components are placed in an irreg-
ular floorplan instead of cell arrays, the shortest-path Steiner
graph generated by the algorithm in [14] may contain a lot
of loops, which bring additional wires. As in figure 4(a),
there are long and narrow rectangles formed by graph edges,
where the long edges in parallel are necessarily constructed
in SG to support different shortest paths.

(a) (b) (c)
Figure 4: Segment merging

If we loosen the requirement on the path length of data
transactions, e.g. from the exact shortest distance to within
(1+ ε) Manhattan distance, then the long edges of a narrow
rectangle can be merged into a single edge. Assume the
rectangle has dimensions h×w, and the new edge is placed
in the middle of the parallel edges, the total wire length is
reduced by about h, while the lengths of transaction paths

93

will increase by at most w
2

+ w
2

= w. For long and narrow
rectangles with large h/w ratios, this operation can greatly
help reducing edges in the Steiner graph and reducing the
total wire length in the bus matrix, at a relatively low cost
of power increase.

The algorithm should iteratively find parallel double seg-
ments in the Steiner graph, calculate the potential of edge
length reduction ∆l and the possible path length increment
∆p in a merging. The parallel segments with largest ∆l/∆p
are merged in each iteration. Eventually, there will be no
positive ∆l found in the graph, and we have a series of
Steiner graphs with decreasing edge length and increasing
path lengths, where the best tradeoff can be selected.

To find these parallel segments, we illustrate the process
for scanning and combining vertical edges in figure 5. The
vertical line segments in the Steiner graph are first sorted by
their x coordinates as s1, s2, · · · , sk. Then for each pair of
segments si, sj (i < j) with a common y interval [y1, y2], if
between i and j there is no other vertical segment on [y1, y2],
do the following calculations.

...

...

...

cl
...

cr
h

cm...
w

y2
y1δ

...

Steiner graph SGSorted vertical line segments
Figure 5: Searching for mergeable parallel segments
(vertical only)

Let cl denote the count of horizontal lines connecting to
the left, cr the count connecting to the right, and cm the
count connecting si and sj in the middle. Assume cl < cr,
so the combined vertical segment may not be at the middle
but have an offset δ to the right of the midpoint.

The reduction in edge length ∆l is by removing a vertical
segment of length h, and making some changes in horizontal
segments. For the possible increment on path lengths ∆p,
since the left vertical segment is pushed right by w

2
+ δ, a

path may need to detour and add 2 times that distance. So

∆l

∆p
=

h + cmw − cl(
w
2

+ δ)− cr(
w
2
− δ)

w + 2δ

=
cr − cl

2
+

h− (cr − cm)w

w + 2δ

Offset δ can be decided by the right part h−(cr−cm)w
w+2δ

when

we try to maximize ∆l
∆p

. If h−(cr−cm)w ≥ 0, or h
w
≥ cr−cm,

then let δ = 0, so the merged vertical segment is placed at
the middle. Otherwise, h

w
< cr − cm, we let δ = w

2
which is

the maximum value it can take, and the merged segment is
at the right most position (assuming cl < cr).

Figure 4 shows the effect of a Steiner graph being pro-
cesses by the merging algorithm. All the long and narrow
rectangles are removed by the operations without signifi-
cantly increasing average length of data transactions. This
result is not surprising since we always choose the merg-
ing with maximum edge length reduction over path length
increment. More test cases are shown in section 4.

3.3 Overall optimization flow
Merging parallel segments can significantly reduce the to-

tal edge length in a Steiner graph. However, its effect on
the weighted bus matrix graph H will be smaller, since the
number of paths is not reduced, and less edges will generally
result in larger average edge weight. Nevertheless, the merg-
ings are still helpful for reducing the total cost of H. Also
with less edges, less switches are needed in the bus matrix
and the control overhead is reduced.

The overall optimization flow of bus matrix is shown be-
low. It generates a series of bus matrix graphs with maxi-
mum bandwidth capacity.

Table 1: Bus matrix physical synthesis

Given a communication graph G = (U, W, A),
and a location function P : U

⋃
W 7→ R2

1. Generate shortest-path Steiner graph SG = (V, E)
by the algorithm in [14];

2. Repeat
For each arc a = (u, v) ∈ A,

find a shortest path ρ(a) from u to v;
For each edge e ∈ E,

A′ ← {a ∈ A : e ∈ ρ(a)};
ω(e) ← Max match(A′);

Bus matrix graph Hi = (V, E, ω);
i ← i + 1;
Find the parallel segments with maximum ∆l

∆p
;

Merge the two segments into one in SG;
Until (SG has no parallel segments with ∆l > 0)

3. Evaluate all the bus matrix graphs {Hi}

To implement a bus matrix configuration from graph H =
(V, E, ω), we route ω(e) sets of bus wires on each edge, and
also put switches on each Steinter node. The switches will be
more complex than the single switch in [14], because there
are multiple bus lines per edge and multiple paths a time.
However, under current and future technology, crossbar con-
nection at a point can be implemented with small footprint
and low power. So the power on switches is generally low
and not counted in the average power of data transactions
in our experiments.

4. EXPERIMENTAL RESULTS
We implement the shortest-path Steiner graph generation,

the edge weight maximum matching, and the parallel seg-
ment merging heuristic. Test cases from [14] are used. On
the scale of these data sets, all the programs can finish run-
ning in no greater than a few minutes, so the platform in-
formation and running times are omitted.

In our test cases, we assume the maximum bandwidth
should be guaranteed, so the bus matrix can perform as a
crossbar switch. Based on this requirement, the objective
can be adjusted for different optimization targets depend-
ing on resource availability and designer’s choices. We also
assume the optimizations are performed on data bus, which
always require both master-to-slave and slave-to-master con-
nections. The address bus is slightly different, but can be
handled with the same principle.

4.1 Min-power bus matrix
Since most power consumption will be from the data trans-

actions on wires [4], the minimum power configuration is the

94

H1 from the algorithm with no parallel segment merging.
The total wire length is relatively high, but by extensive
wire sharing in section 3.1 and [14], our physical synthesis
provides much better results than directly routing the paths
from the communication graph G.

In each case (m, n), m is the number of masters and n is
the number of slaves. In the random cases T2∼T12, all the
components’ physical locations are distributed on a 1000 ×
1000 square. The total path length (

∑
Lp), average path

length (Lp), total edge length (
∑

Le, sum of all edge lengths
ignoring edge weight ω) and total wire length (

∑
Lwire) are

listed in the following table.

Table 2: Results for minimal power

Case(m, n)
∑

Lp Lp

∑
Le

∑
Lwire

T0 (3,16) 30500 635 5700 9300
T1 (3,16) 84200 1754 5700 10500
T2 (2,30) 40122 669 6961 10117
T3 (3,16) 33179 691 4240 7168
T4 (5,15) 51660 689 6524 14136
T5 (6,16) 66626 694 9427 23038
T6 (8,8) 44078 689 6631 14606
T7 (12,6) 47282 657 7456 15702
T8 (16,10) 109278 683 10453 32429
T9 (8,16) 79110 618 9529 27274
T10 (8,16) 95828 749 8828 27663
T11 (6,12) 48130 668 5946 14265
T12(12,12) 96276 669 9747 27497

From the table above, the total wire length in our min-
power bus matrix is about one third to one fourth of the
total path lengths, regardless of the number of masters or
slaves. This shows the efficiency of physical synthesis which
extensively exploits the physical location information of all
the on-chip components. When the on-chip routing resource
is able to accommodate all the wires, this min-power bus
matrix is always preferable.

4.2 Min-wire bus matrix
On large cases, especially when the components are irreg-

ularly placed, we often need to reduce wires by the merging
algorithm in section 3.2. In the same test cases as above, we
run the algorithm of table 1 and take the Hi with minimum
total wire length. The results are in table 3.

Table 3: Results for minimal total wire length

Case(m, n)
∑

Lp Lp

∑
Le

∑
Lwire

T0 (3,16) 31500 656 5000 9200
T1 (3,16) 84200 1754 5700 10500
T2 (2,30) 42654 710 4171 8931
T3 (3,16) 33185 691 4240 7168
T4 (5,15) 56340 751 4190 10911
T5 (6,16) 69494 724 6777 18232
T6 (8,8) 48234 754 4812 12445
T7 (12,6) 48154 669 6202 12988
T8 (16,10) 116602 729 7584 23732
T9 (8,16) 83108 649 6717 20761
T10 (8,16) 101702 795 5359 18492
T11 (6,12) 48440 672 5735 13271
T12(12,12) 100832 700 7717 21348

Based on the bus matrices of minimal power, there is a
relatively large deviation on the effects of wire length re-

duction. From no reduction at all on the highly regular T1
case, to about 33% of reduction on the T10 case. On most
random cases, about 1/4 to 1/6 reduction on the wire length
from the min-power bus matrix can be achieved.

Compared to the reduction on wire length, the increase
on the average path length is much smaller, ranging from 0
to 9% and mostly under 5%. On the T8 case where 27% of
wire length is reduced, the average path length is increased
by 6.7%. The two corresponding bus matrix graphs H1 and
H18 of T8 are shown in figure 6 below, where the thickness
of each edge e indicates its weight ω(e). We can see from the
figure that most high weight edges are in the central area
of the chip, because most paths need to go through this
area in order to be shortest. Comparison between the two
graphs shows how edges can be combined and redundancy
be reduced for a compact and efficient bus matrix.

H1 H18
Figure 6: Min-power & min-wire on the T8 case

T7 T8

Figure 7: Total wire length vs total edge length

By further observation on these cases, we have interesting
curves on the total wire length of H1, H2, H3, · · · . Usually, in
the first few mergings, the wire length is decreasing because
the wires can be shared by more paths. In later steps, it
will go up again because the average length of the paths
is increasing and cancel out the wire sharing benefits. The
minimal wire length point may vary largely depending on
the distribution of masters and slaves. The curves of T7
and T8 are drawn in figure 7, where the total edge lengths
are on horizontal axes, and the total wire lengths on vertical
axes. The two graphs of T8 in figure 6 correspond to the
highest point and the lowest point in the right chart.

4.3 Tradeoffs on power, wire and bandwidth
The wire merging algorithm provides more space efficient

bus matrices at the cost of only a small increase on power
consumption. Between the min-power and min-wire bus ma-
trices, more choices are available on the tradeoff. Since we
generally increase average path length by parallel segment
merging, by figure 7 we should make the power-wire trade-
off on the right half of T7’s curve, while on T8 it should be

95

the entire curve. The results are in figure 8. The shape of
a tradeoff curve like these largely depends on the detailed
configuration of the Steiner graph generated from the system
floorplan.

T7 T8

Figure 8: Total wire length vs average path length

If allowed by the system performance requirement, band-
width capability can also be added into the tradeoff. With-
out compromise, the bus matrix should have the capacity
of handling min(m, n) data transactions at the same time.
Of course we can save wire/power by reducing this capacity.
For bandwidth capacity k, each edge e will need min(ω(e), k)
copies of bus wires. If we need only one transaction a time,
the total edge length in table 2 and 3 will be the exact total
wire length. For more detailed results, we put in figure 9 the
curves of total wire length for different bandwidth capaci-
ties on the two bus matrices in figure 6. The two curves are
generally similar, from which we can observe the weights on
all the edges in H1 and H18.

H18H1

Figure 9: Wirelength vs bandwidth on the T8 case

By figures 7, 8 and 9, the overall design of SoC commu-
nications are very flexible. Solutions optimized by our bus
matrix synthesis algorithm are applicable to various design
choices. With more detailed communication patterns of the
SoCs, such as specific sets of simultaneous master activities
from simulation or testing results, the maximum matching
can be more effective in reducing wire lengths and/or in-
creasing bandwidth capacities.

5. CONCLUSIONS
We optimize the AMBA AHB bus matrix architecture

for on-chip communications. Compared to network-on-chip
(NoC), it has great advantage on delay, with a similar total
bandwidth capacity. On power efficiency, it is also at advan-
tage since the data is always taking the shortest (or close to
shortest) path with minimal control overhead.

Under the goal of maximizing data throughput and min-
imizing data movement on chip [4], we devise algorithms
which extensively exploit the physical design space, a neces-
sity for a thorough optimization on power efficiency. The

results show promising potentials of bus matrices in future
low power SoCs. More possibilities on formulations and al-
gorithms are to be explored on bus matrix architectures.

6. REFERENCES
[1] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse

distance preservers and additive spanners. SIAM
Journal on Discrete Math., pages 1029–1055, 2005.

[2] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and
T. F. Chen. Segmented bus design for low power
systems. IEEE Trans. VLSI Systems, 7(1):25–29, 1999.

[3] J. Cong, A. B. Kahng, and K.-S. Leung. Efficient
algorithms for the minimum shortest path Steiner
arborescence problem with applications to VLSI
physical design. IEEE Trans. Computer-Aided Design,
17(1):24–39, Jan. 1998.

[4] W. Dally. Keynote: The end of denial architecture and
the rise of throughput computing. ACM/IEEE Design
Automation Conf., 2009.

[5] W. Dally and B. Towles. Route packets, not wires:
on-chip interconnection network. ACM/IEEE Design
Automation Conf., 2001.

[6] R. Ho, K. W. Mai, and M. A. Horowitz. The future of
wires. Proceedings IEEE, 89:490–504, 2001.

[7] K. Lahiri and A. Raghunathan. Power analysis of
system-level on-chip communication architectures.
Int’l Conf. Hardware-Software Codesign and System
Synthesis, pages 236–241, 2004.

[8] K. Lahiri, A. Raghunathan, and S. Dey. Power
analysis of system-level on-chip communication
architectures. Int’l Conf. Computer-Aided Design,
pages 424–430, 2000.

[9] R. Mullins, A. West, and S. Moore. Low-latency
virtual-channel routers for on-chip networks. IEEE
Int’l Symp. Computer Architecture, 2004.

[10] S. Pasricha, N. Dutt, E. Bozorgzadeh, and
M. Ben-Romdhane. Floorplan-aware automated
synthesis of bus-based communication architectures.
ACM/IEEE Design Automation Conf., 2005.

[11] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt.
System-level power-performance trade-offs in bus
matrix communication architecture synthesis. Int’l
Conf. Hardware-Software Codesign and System
Synthesis, pages 300–305, 2006.

[12] A. Pinto, L. Carloni, and A. Sangiovanni-vincentelli.
Constraint-drive communication synthesis.
ACM/IEEE Design Automation Conf., 2002.

[13] W. Shi and S. Chen. The rectilinear Steiner
arborescence problem is NP-complete. ACM-SIAM
Symp. on Discrete Algorithms, pages 780–787, 2000.

[14] R. Wang, N.-C. Chou, B. Salefski, and C.-K. Cheng.
Low power gated bus synthesis using shortest-path
Steiner graph for system-on-chip communications.
ACM/IEEE Design Automation Conf., 2009.

[15] D. West. Introduction to Graph Theory. Prentice Hall,
1999.

[16] Amba 2.0 specification. http://www.arm.com/products
/solutions/AMBA Spec.html, 1999.

[17] Amba 3 specification. http://www.arm.com/products
/solutions/axi spec.html, 2003.

[18] Coreconnect bus architecture. IBM White Paper, 1999.

96

