
Multi-Voltage Floorplan Design
with Optimal Voltage Assignment

Qian Zaichen
Department of CSE

The Chinese University of Hong Kong
Shatin,N.T., Hong Kong

zcqian@cse.cuhk.edu.hk

Evangeline F.Y. Young
Department of CSE

The Chinese University of Hong Kong
Shatin,N.T., Hong Kong

fyyoung@cse.cuhk.edu.hk

ABSTRACT
1 In this paper, we study the multiple voltage assignment
(MVA) problem under timing constraints in floorplanning,
which is generally an NP-hard problem. We will present an
effective value-oriented branch-and-bound based algorithm
to solve it optimally in a reasonable amount of time. A
convex cost integer dual network flow approach is used to
obtain a feasible upper bound solution, while a lower bound
is obtained by a linear relaxation of a general formulation of
the problem. We then adopt a value-oriented breadth-first
branch-and-bound method with upper and lower bounds as
described above to search for the optimal solution. Favor-
able results can be obtained in comparison with previous
methods using a general linear programming solver. We in-
tegrate this algorithm into a multi-stage floorplanner. At the
first stage, an initial floorplan is obtained by simulated an-
nealing using the convex cost integer dual network flow ap-
proach as an evaluator. We then perform optimal voltage as-
signment to this initial floorplan. Finally, a post-processing
step is done to modify the floorplan slightly to optimize the
power network routing resource before invoking once more
the optimal voltage assignment step at the end. Experimen-
tal results show that we can improve over the most updated
work on this problem [7] by further reducing 6% of power
consumption while maintaining the performance on other
factors

Categories and Subject Descriptors
B.7.2 [Integrated Circuit]: Design Aid—Layout

General Terms
Algorithms, Performance

1The work described in this paper was partially supported
by a grant from the Research Council of the Hong Kong
Special Administrative Region, China (Project No. 418407).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’09, March 29–April 1, 2009, San Diego, California, USA.
Copyright 2009 ACM 978-1-60558-449-2/09/03 ...$5.00.

Keywords
multi-voltage assignment optimization branch-and-bound

1. INTRODUCTION
Multiple Supply Voltages (MSV) is developed to deal with

the power problem in today’s high performance circuits. In
MSV designs, modules lying on critical paths can be op-
erated at higher voltage levels to meet timing constraints,
while modules on noncritical paths will be operated at lower
voltages to reduce power consumption without affecting the
circuit performance. However, a number of issues must be
handled first before this approach becomes practical, for ex-
ample, voltage selection and assignment, MSV-aware floor-
planning and placement, etc. Among them, Multiple Volt-
age Assignment (MVA) is an important problem that has
attracted the attention of many researchers in the past few
years. Given a netlist of modules which can be operated at
several different supply voltages, the MVA problem is to as-
sign a supply voltage to each module to minimize the total
power consumption while satisfying the circuit’s timing con-
straints. In MSV designs, the timing slacks of the modules
are traded for power saving under a performance guaran-
tee of the circuit. Therefore, an efficient voltage assignment
method is desirable to minimize power consumption under
timing constraints. Besides, it is absolutely beneficial to
consider this multi-voltage design issue at the floorplanning
level so that those important physical information like in-
terconnect delay, module location (for estimating the power
network routing resources) and area overhead due to level
shifters, etc. can be taken into account in an early stage.

A number of previous works were on these MSV related
problems. MSV was considered at various design stages, in-
cluding the floorplanning and placement stage [3, 4], and the
post-floorplanning and post-placement stage [2, 5, 6]. In [9],
Lee et al. used a dynamic programming based algorithm
to solve the voltage assignment problem. In [7], Ma et al.
transformed this power assignment problem to a convex cost
integer dual network flow problem [8] which can be solved
in polynomial time. However, none of them can produce
optimal solution for the problem in general. Lee et al. [2]
formulated the problem as a mixed integer linear program
(MILP), and used a general linear programming solver to
obtain optimal solution but the runtime can be excessively
long. Chang and Pedram [11] proved that the MVA prob-
lem was an NP-hard problem, even if each module had only
two voltage choices (the two choices could be different for
different modules though).

In this paper, we will first develop a technique that can

13

solve the general voltage assignment problem under timing
constraint optimally in a reasonable amount of time, assum-
ing that the delay-power curve for each module is convex [1].
Given a floorplanning result containing a netlist of modules,
a number of working voltage levels for each module with the
corresponding delays (delay choices can be continuous or
discrete in the real or integral domain), interconnect delays
and a timing constraint T , a voltage level will be assigned
to each module such that the maximum power saving is
achieved without violating the timing constraint. Secondly,
we develop a floorplanning strategy with this optimal volt-
age assignment technique that can perform better on power
saving than the most updated work [7] on the NSV-driven
floorplanning problem while maintaining the performance
on other factors.

In section 2, we present a general formulation of this volt-
age assignment problem. In section 3, we show how to solve
this problem optimally by using a value-oriented branch-
and-bound based algorithm. In section 4, we integrate this
optimal voltage assignment with floorplanning. In section 5,
we show the experimental results.

2. PROBLEM FORMULATION
We are given a set of n modules m1, m2,..., mn with

areas and aspect ratios. Each module mi is given ki choices
of supply voltage v

q
i , for 1 ≤ q ≤ ki, and the corresponding

delays d
q
i . We are also given the delay and power for one level

shifter that must be inserted in a signal line connecting a low
voltage cell to a high voltage cell and a timing requirement
Tcycle. (This is called the clock cycle time and is an upper
bound for all critical path delays.) In the following, we define
the multi-voltage floorplanning problem.

Definition 2.1. Multi-voltage Floorplanning - Given
a netlist of modules, each of which has multiple choices of
supply voltages and corresponding delays, and a clock cycle,
generate a floorplan with a voltage assignment to each mod-
ule such that the timing constraint is satisfied and a weighted
sum of the total power consumption (due to cells and level
shifters), power network routing resources, area and wire
length is minimized.

The power-delay trade-off in mi is represented by a delay-
power curve (DP Curve), {(d1

i , p
1
i), (d

2
i , p

2
i), ...(d

ki
i , p

ki
i)}, where

each pair (dq
i , p

q
i) for q = 1, 2, ..., ki is the corresponding de-

lay and power consumption when mi is operated at v
q
i . Note

that each d
q
i and p

q
i can be any real or integer number as

long as the DP-Curve (after piecewise linearization) is con-
vex. In our formulation, we use binary variable ui(q) to
represent whether mi works at voltage p

q
i : ui(q) = 1 if mi

works at voltage p
q
i and ui(q) = 0 otherwise. Therefore,

Σki
q=1ui(q) = 1.
We denote a netlist by a directed acyclic graph (DAG),

G = (V, E). Each vertex i ∈ V denotes a module mi, while
each directed edge (i, j) ∈ E denotes an interconnect from
mi to mj . In this DAG, each vertex is associated with a
DP curve representing the power-delay tradeoff of the corre-
sponding module, while each edge is attributed with a wire
delay. For each edge e(i, j), we use a binary variable LS(i, j)
to represent whethor a level shifter is needed. Let ϕ and ρ

denote the power consumption and delay respectively of one

1

2
3

5

4

0

(a)

1

2
3

5

4

(b)

Figure 1: DAG Transformation

level shifter.

LS(i, j) =

0 if a level shifter
is not needed on e(i, j)

1 if a level shifter
is needed on e(i, j)

The wire delay of e(i, j) is computed as

w(i, j) = δ · l(i, j)

where w(i, j) and l(i, j) are the wire delay and wire length
of e(i, j) and δ is a constant scaling factor.

Now we can define the voltage assignment problem as fol-
lows:

Definition 2.2. Voltage Assignment Problem - Given
a clock cycle time Tcycle and a DAG, G = (V, E), where
each vertex vi ∈ V is associated with a set of binary vari-
ables {ui(1), ui(2)..., ui(ki)} that indicate the working volt-
age of vi and each edge e(i, j) is associated with a wire delay
w(i, j) and a binary variable LS(i, j) to indicate the exis-
tence of a level shifter on e(i, j), select a proper value from
{0, 1} to each ui(q) where q = 1, 2, ..., ki for every vi such

that Σki
q=1ui(q) = 1 for each vi, the total power consump-

tion due to the cells and level shifters are minimized and the
timing constriant is satisfied.

For formulation simplicity, we will transform G = (V, E)
into a new graph Ḡ = (V̄ , Ē) by adding a virtual module
m0 as well as a set of virtual edges E0. Hence V̄ = V ∪{m0}
and Ē = E ∪E0. The set E0 contains (i) edges e(0, i) for all
mi which have no incoming edges in G and, (ii) edges e(i, 0)
for all mi which have no outgoing edges in G. An example is
shown in Figure 1 in which sub-figure (a) is the DAG G and
sub-figure (b) is the corresponding Ḡ. We will put u0(q) =
0 ∀q and put w(i, j) = 0 and LS(i, j) = 0 ∀e(i, j) ∈ E0.

According to the definition and notation above, the volt-
age assignment problem can be easily formulated into the
following mathematical program.

Minimize : Σvi∈V Σki
q=1p

q
i ui(q) + Σe(i,j)∈ELS(i, j) · ϕ

(1a)

Subject to :

Σki
q=1ui(q) = 1 ∀vi ∈ V (1b)

Σe(i,j)∈c(Σ
ki
q=1d

q
i ui(q) + ρLS(i, j) + w(i, j)) ≤ Tcycle

∀c ∈ Φk (1c)

LS(i, j) =

{

0
∑ki

q=1 v
q
i × ui(q) ≥

∑kj

q=1 v
q
j × uj(q)

1 otherwise

(1d)

ui(q) ∈ {0, 1}, q = 1, 2, ..., ki,∀vi ∈ V (1e)

14

O

2

1S
1

1

k

S
1

1S

1
(1) 1u

1
(2) 0u

1 1
() 0u k

1
(1) 0u

1
(2) 1u

1 1
() 0u k

1
(1) 0u

1
(2) 0u

1 1
() 1u k

1

2S
3

2

k

S
1
(1) 1u

1
(2) 0u

1 1
() 0u k

3
(1) 1u

3
(2) 0u

3 3
() 0u k

1
(1) 1u

1
(2) 0u

1 1
() 0u k

3
(1) 0u

3
(2) 0u

3 3
() 1u k

Figure 2: Sample of Branch-and-Bound Method

where Φk is the set of all cycles in Ḡ. The objective func-
tion (1a) is the sum of all modules’ and level shifters’ power.
Constraint (1b) is used to ensure that each module mi is
working at only one voltage level. Constraint (1c) is the
timing constraint that requires the delay of every path to be
smaller than the clock cycle.

3. A VALUE-ORIENTED
BRANCH-AND-BOUND ALGORITHM

In this section, we will show how to solve the MVA prob-
lem optimally. As we mentioned before, the MVA prob-
lem is an NP-hard problem, so we developed a branch-and-
bound based technique to solve it. We will first describe the
basic value-oriented branch-and-bound algorithm and then
explain how to compute the upper and lower bounds. The
branch-and-bound approach solves problems by searching
successive partitions of the solution space. As usual, we will
describe the searching process by a search tree in which an
internal node represent a set of solutions while a leaf node
represent a single solution.

3.1 Branching Rules
In our searching approach, we visit different parts of the

solution space by confining the value of some selected vari-
ables. An example is shown in Figure 2. Node zero rep-
resents the set of all solutions (an optimal one exists for
the original problem). In the first iteration, we may select
a module mi (we will describe the selection criteria in the
following) and branch to ki children nodes, which represent
the solution space of ki different subproblems where ki is the
number of supply voltage choices of module mi. W.l.o.g., we
assume that this mi is m1 in the following discussion. In fig-
ure 2, S1

1 is the first such subproblem which is obtained by
adding the following constraint (2) to constraints (1a)-(1e):

u1(1) = 1, u1(2) = 0, ..., u1(k1) = 0 (2)

Similarly, subproblem S1
2 is obtained by adding to constraints

(1a)-(1e) , (2) and a new constraint (3):

u3(1) = 1, u3(2) = 0, ..., u3(k3) = 0 (3)

In this way, we will branch out to many subproblems and
search the whole solution space of the original problem.

Next, we will discuss selection criteria for braching cut. In [7],
the author presented an algorithm that can give an optimal
solution for the MVA problem when the voltage choices are
continuous. But this may not be true in many real applica-
tions. For example, in a problem with two supply voltage
choices for each module, e.g., module mi has two choices
(p1

i , d
1
i) and (p2

i , d
2
i), the approach in [7] may return a delay

value d
optimal
i for mi where d1

i ≤ d
optimal
i ≤ d2

i (assuming

d1
i < d2

i). Notice that if d
optimal
i is equal to d1

i or d2
i exactly,

we say that the solution is feasible; otherwise, it is infea-
sible. Therefore, to branch out from a node, we will select
the module with the lowest index whose solution returned
by [7] is infeasible. For instance, given a MVA problem, we
first solve it using the approach in [7] and obtain a solution
{(p∗

1, d
∗

1), (p
∗

2, d
∗

2), ..., (p
∗

k, d∗

k)} for module m1, m2, ...mk, we
will check starting from i = 1 to k whether module mi can
work at (p∗

i , d
∗

i), and select the first module whose solution
is infeasible to branch out to the children nodes. After se-
lecting one module mi, we will construct ki subproblems
with additional constraints to confine the voltage level of
mi where ki is the number of voltage choices for mi.

3.2 Upper Bounds
For a branch-and-bound based algorithm, tight upper and

lower bounds are important for efficiency. As we mentioned
above, the approach in [7] may produce infeasible solution,
because the convex cost integer dual network flow algorithm
may return voltage values lying between two feasible voltage
levels.

Table 1: NUMBER OF CELLS WITH INFEASI-
BLE VOLTAGE LEVELS

n10 n30 n50 n100 n200 n300
No. of cells with
infeasible voltage 3 6 9 5 21 13

We have collected some statistics (Table 1) that shows the
number of infeasible assignments voltages returned by the
approach in [7]. Since the number of infeasible voltages is
relatively small, one good and straight forward way to obtain
an upper bound for the searching process is to choose a
feasible solution as close as possible to the solution returned
by [7]. Given a solution {(p∗

1, d
∗

1), (p
∗

2, d
∗

2), ...(d
∗

n, d∗

n)} for
modules m1, m2, ...mn, n is the number of modules, if some
(p∗

i , d
∗

i) for 1 ≤ i ≤ n is not feasible, we can use the largest

possible di in (p
′

i, d
′

i) such that

(p
′

i, d
′

i) ∈ {(p1
i , d

1
i), (p

2
i , d

2
i), ...(p

ki
i , d

ki
i)}

and satisfying d
′

i ≤ d∗

i as the voltage level for mi.
After assigning supply voltages to all modules, we will

check for each net (i, j), whether a level shifter should be
inserted. We will then use the sum of the power consump-
tions due to the modules and the level shifters as an upper
bound. Note that we will do this computation whenever a
new node in the search tree is visited and will update the
upper bound (which is global) if a better one is found.

15

3.3 Lower Bounds
The lower bound is obtained by a linear relaxation of the

problem. Before we explain it, let us rebuild the formulation
of Problem (1). Let k be the total number of supply voltages
among all the modules. For example, if we have three mod-
ules m1, m2 and m3 where m1 has only one supply voltage
choice p1

1 = 1.0v, m2 has two, p1
2 = 1.0v and p2

2 = 1.2v,
and m3 has two, p1

3 = 1.1v and p1
3 = 1.4v, then we will

have k = 4 different voltage levels 1.0v, 1.1v, 1.2v, 1.4v for
all the modules. Now, we will substitute each ki in Prob-
lem (1) by k and replace ui(q) for q = 1, 2, ..., ki by ui(q)
for q = 1, 2, ..., k. For the above example, before this step,
module m3 will have k3 = 2 voltage choices, and after this
step, k = 4 but u3(1) and u3(3) are always zero because they
represent 1.0v and 1.2v respectively and m3 cannot work at
these two voltages.

In the linear relaxation, we first replace (1e) by

0 ≤ ui(q) ≤ 1, q = 1, 2, ..., k,∀vi ∈ V

Then we can substitute (1d) by

LS(ij) ≥ ui(q1) + uj(q2) − 1

∀e(i, j) ∈ E,∀q1∀q2 s.t. (0 ≤ q1, q2 ≤ k) ∧ (q2 > q1)
(4)

So Problem (1) becomes the following after this linear re-
laxation step:

Minimize : Σvi∈V Σk
q=1p

q
i ui(q) + Σe(i,j)∈ELS(i, j) · ϕ

(5a)

Subject to :

Σk
q=1ui(q) = 1 ∀vi ∈ V (5b)

Σe(i,j)∈c(Σ
k
q=1d

q
i ui(q) + ρLS(i, j) + w(i, j)) ≤ Tcycle

∀c ∈ Φk (5c)

LS(i, j) ≥ ui(q1) + uj(q2) − 1

∀e(i, j) ∈ E,∀q1∀q2 s.t. (0 ≤ q1, q2 ≤ k) ∧ (q2 > q1)
(5d)

0 ≤ LS(i, j) ≤ 1, ∀e(i, j) ∈ E (5e)

0 ≤ ui(q) ≤ 1, q = 1, 2, ..., k, ∀vi ∈ V (5f)

Note that the optimal solution to Problem (1) is included in
the solution space of Problem (5), so the power consumption
of the optimal solution of (5) is a lower bound for our Prob-
lem (1). Problem (5) is a simple linear program which can
be solved easily with the simplex algorithm in polynomial
time to give a lower bound to our original problem.

3.4 Pruning Rules and Value-Oriented
Searching Rules

With the upper and lower bounds obtained above, we can
construct our pruning rules. Some nodes with their subtrees
together will never contribute an optimal solution, and good
pruning rules help to find such nodes to reduce runtime. If a
node is infeasible, that is, we cannot find a feasible solution
satisfying the timing constraint even assuming a continuous
domain for the module voltages (this can be verified by in-
voking the approach in [7]), it will be pruned. Besides, if
a node’s lower bound is greater than or equal to the global
upper bound, it will also be pruned. This is correct since
we can never find a better solution by traversing into its
subtree.

With the above bounds and pruning rules, we can search
the solution space faster. Our value-oriented branch-and-
bound searching algorithm is divided into rounds. In each
round, we set a target which is used as a threshold to decide
whether a node should be visited in this round. For example,
in the first round, the target will be computed as:

target = α(Oupbound + Olowbound)

where 0 ≤ α ≤ 1 is a constant (set to 0.6 in our experiments),
and Oupbound and Olowbound are the upper and lower bounds
of the original problem (node 0 in Figure 2). When we reach
a node S, we will check whether Slowbound < target where
Slowbound is the lower bound at S. If so, we will continue to
visit the subtree of S; otherwise, this node S will be marked
and will not be visited in this round (may be visited in the
following rounds). After one round, the value of target will
be updated as target = target+C where C is a constant (set
to 5% of Oupbound in our experiments). Note that a subtree
which is explored in a previous round will not be repeatedly
visited in any subsequent rounds. In general, this value-
oriented searching strategy will search nodes with smaller
lower bounds in earlier rounds and we can upper bound the
deviation of a solution obtained from such value-oriented
search from the true optimal solution. This idea is derived
from the target-oriented brand-and-bound algorithm in [10],

In our value-oriented branch-and-bound algorithm, There
are two conditions under which we can stop searching: (i)
a feasible solution is found at a node of which the objective
function value is equal to the smallest lower bound (obtained
by the linear relaxation) ever seen during the search; (ii) all
possible nodes are visited and searched.

Putting all the above steps together, we have the follow-
ing pseudo-code for our value-oriented brand-and-bound al-
gorithm:

Algorithm 1 VALUE-ORIENTED BRANCH-AND-
BOUND
1: // Procedure to find optimal solution to the voltage as-

signment problem
2: PMV A //solution to the multiple voltage assignment

problem assuming continuous domain for voltage choices
3: pool = ∅ // a queue for searching nodes
4: basket = ∅ // a stack for searching nodes
5: node0 = construct first node from PMV A

6: put node0 into pool

7: while (pool is not empty) do
8: nodex = get a node from pool

9: push nodex into basket

10: while (basket is not empty) do
11: nodex = Pop node out of basket

12: if (nodex can be cut) then
13: continue
14: end if
15: if (nodex can be stored in the pool for subsequent

iterations) then
16: store nodex in pool

17: continue
18: end if
19: branch at nodex

20: push all subproblems into basket

21: end while
22: end while

16

4. FLOORPLANNING
We integrated the above optimal voltage assignment algo-

rithm into the floorplanning step. Our floorplanner is multi-
stage. In the first stage, we will invoke the simulated an-
nealing based floorplanner in [4] to give an initial floorplan.
After an initial floorplan is generated, we will perform our
optimal voltage assignment on it. Finally, a post-processing
step will be performed to incrementally change the floorplan
to reduce the network routing resources before a final opti-
mal voltage assignment is performed once again. The post-
processing step is done by invoking an ordinary simulated
annealing based floorplanner which will move blocks around
to minimize an objective function which is a weighted sum
of area, wire length and power network routing resources
(no power consumption in the cost function). After this
fast floorplanning step, the timing constraint may be vio-
lated, so we need to perform once again the optimal voltage
assignment to assign a final voltage to each block. The floor-
planner [7] is used to produce the initial floorplan because
their approach is very similar in nature with our optimal
voltage assignment method and the second stage thus will
not make a large number of block voltage changes, which,
basically, will invalidate and waste the optimization done in
the first stage. To verify this point, we have done a sim-
ple experiment to compare the results of the minimum cost
network flow approach used in [7] and our optimal voltage
assignment method. We randomly generate 10 floorplans for
each benchmark and compare our approach (called VOBB)
and [7] in terms of average power consumption and the num-
ber of modules with different voltage assignments. The re-
sults are shown in Table 2.

5. EXPERIMENTAL RESULTS
We implemented our algorithms in the C programming

language and experimented on a PC with an Intel 2.6GHz
CPU and 1 GB memory. We have done two sets of experi-
ments as described below.

5.1 OPTIMAL VOLTAGE ASSIGNMENT
In this set of experiments, we want to compare our op-

timal voltage assignment method with the most updated
previous work [2] that also tried to solve the same problem
optimally using MILP. A general linear programming solver
called lp solve is used in [2]. The results are shown in Ta-
ble 3. The run time limit for each data set is ten hours, and
an asterisk indicates that the program does not run to the
end after 10 hours (so, the solution is suboptimal). Our tech-
nique can obtain optimal solutions in a reasonable amount
of time for most testbenches and has out-performed [2] quite
a lot. During the experiments, we found that the runtime
depends more on the complexity of the circuit rather than
the number of modules. The word “complexity” here means
the total number of constraints (1c). In the experimental
results, the runtime for n200 is even longer than that for
n300 2. For larger problem instances, we can set a thresh-
old difference between the global upper bound and the lower
bound at the end of each round e.t. the target, during the
seaching process. When the difference is smaller than the
threshold, we will accept the upper bound as the final result.

2We have also tried to rectify (1c) using edge-based timing
constraints [12], but we found that this new formulation did
not have any advantages over our formulation.

5.2 FLOORPLANNING RESULTS
In this set of experiments, we compare the results of our

multi-stage floorplanner with those in [7]. The results are
shown in Table 4. We can see that our floorplanner can
out-perform [7] in almost all aspects except having around
0.8% more deadspaces. Our floorplanner can give a floorplan
with about 6% more power saving using about 50% less level
shifters.

6. CONCLUSION
In this paper, we proposed a method to solve the Multi-

ple Voltage Assignment problem optimally, and integrated
it into a floorplanner. We show that the general MVA prob-
lem under timing constraints can be solved optimally by
our value-oriented branch-and-bound based algorithm in a
reasonable amount of time, by constructing proper upper
bounds and lower bounds. We embed this technique into a
floorplanner to produce multi-voltage aware floorplans. Ex-
perimental results show that our floorplanner can save about
6% more power compared with the most updated results on
this problem using around 30% less level shifters.

7. REFERENCES
[1] W.R. Davis, A-.M. Sule and H-. Hua, “Multi-Parameter

Power Minimization of Synthesized Datapaths”,
Proceedings of the ISVLSI, 2004.

[2] W.-P.Lee, H.-Y. Liu and Y.-W. Chang, “An ILP Algorithm
for Post-Floorplanning Voltage-Island Generation
Considering Power-Network Planning”, Proceedings of
International Conference on Computer-Aided Design,
2007.

[3] J.Hu, Y.Shin, N.Dhanwada, and R. Marculescu,
“Architecting Voltage Islands in Core-based
System-on-a-chip Designs”, Proceedings of International
Symposium on Low Power Electronics and Design,
pp.180-185, 2004

[4] Q. Ma and Evangeline FY. Young, “Voltage Island-Driven
Floorplanning”, Proceedings of International Conference
on Computer-Aided Design, pp.644-648, 2007.

[5] W.-K. Mak and J.-W. Chen, “Voltage Island Generation
under Performance Requirement for SoC Designs”,
Proceedings of Asia and South Pacific Design Automation
Conference, 2007.

[6] H. Wu, D.F. Wong, and I.-M. Liu, “Timing-Constrained
and Voltage-Island-Aware Voltage Assignment”,
Proceedings of Design Automation Conference, pp.429-432,
2006.

[7] Q. Ma and Evangeline FY. Young, “Network Flow Based
Power Optimization Under Timing Constraints in
MSV-Driven Floorplanning” Proceedings of International
Conference on Computer-Aided Design, 2008.

[8] R.K Ahuja, D.S. Hochbaum, and J.B. Orlin, “Solving The
Convex Cost Integer Dual Network Flow Problem”,
management Science , 49(7):950-964, July 2003.

[9] W.-P Lee, H.-Y.Liu, and Y.-W. Chang, “Voltage Island
Aware Floorplanning for Power and Timing Optimization”,
Proceedings of Asia and South Pacific Design Automation
Conference, 2006.

[10] V. Stix, “Target-Oriented Branch and Bound Method for
Global Optimization”, Journal of Global Optimization,
26:261-277, 2003.

[11] J.-M. Chang, M. Pedram, “Energy Minimization Using
Multiple Supply Voltages”, IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, VOL.5, NO.4, DECEMBER 1997.

[12] C.Chen, C.C.N.Chu, and D.F. Wong, “ Fast and exact
simultaneous gate and wire sizing by Lagrangian
relaxation”, IEEE Trans. CAD, 18(7):1014-1025, July 1999.

17

Table 2: VOLTAGE ASSIGNMENT COMPARISONS BETWEEN VOBB AND [7]
Testbenches Power Ratio Average No. of Blocks

[7] VOBB with Different Voltages
n10 202709 185270 91.4% 1.7
n30 162534 155853 95.9% 2.9
n50 166931 157163 94.1% 7.8
n100 137608 126855 92.2% 9.9

Table 3: COMPARISONS BETWEEN VOBB AND [2]
Power Run time

Testbenches VOBB [2] VOBB [2]
n10 169058 169058 1.2 s 0.0 s
n30 143460 143460 12.1 s 10 h
n50 138983 138983 35.0 s 11.1 m
n100 113231 *117761 10.0 m 10 h
n200 *119229 *116341 10 h 10 h
n300 142641 *143041 32.4 m 10 h

Average 137767 138107 - -

Table 4: FLOORPLANNING RESULT COMPARISONS BETWEEN OUR VOBB-BASED FLOORPLAN-
NER AND [7]

Data Max Power Power Cost with Power Saving Power Network Level Shifter Dead Space Wire
Set (MaxP) Level Shifters (P) (%) Routing Resources Number (%) Length

VOBB [7] VOBB [7] VOBB [7] VOBB [7] VOBB [7] VOBB [7]
n10 216841 169058 189942 22.04 12.40 1373 1530 8 4 2.12 1.77 6920.7 7781.3
n30 205650 143460 151483 30.24 26.34 1354 1577 21 25 7.05 9.12 28814.2 29283.0
n50 195140 138983 153084 28.78 21.76 1662 1641 32 34 10.82 9.72 64532.2 64623.6
n100 180022 113231 120850 37.10 33.09 1446 1528 50 77 9.59 8.64 116552.8 116681.6
n200 177633 121222 130489 31.76 26.54 1626 1584 94 129 14.30 12.49 198205.8 210457.2
n300 273499 142641 161464 47.85 40.96 1690 1806 30 92 12.52 10.37 229116.1 240326.2

Average - 138099 151219 32.96 26.85 1525 1611 39 60 9.46 8.68 107357.0 111525.5

18

