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ABSTRACT
In this paper, the problem of bus-driven floorplanning is

addressed. Given a set of blocks and the bus specification
(the width of each bus and the blocks that the bus need to go
through), we will generate a floorplan solution such that all
the buses go through its blocks, with the area of the floorplan
and the total area of the buses minimized. The approach pro-
posed is based on a Simulated Annealing framework. Using
the sequence pair representation, we derived the necessary
conditions for feasible buses, for which we allow 0-bend, one-
bend, or two-bend. Then, we will check whether there are
buses that cannot be placed at the same time. Finally, a so-
lution will be generated giving the coordinates of the modules
and the buses. Comparing with the results of the algorithm
by Xiang et al. [5], the dead space of the floorplan obtained
is reduced. Besides, our algorithm can handle buses going
through many blocks. For example, if the buses have to go
through more than 10 blocks, [5] is not able to generate any
solution while our algorithm can still generate solutions of
good quality.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuit]: Design Aids – Placement and Routing

General Terms: Algorithms, Design

Keywords: Floorplanning, VLSI CAD, Bus planning

1. INTRODUCTION
The floorplanning problem is to plan the positions and

shapes of the modules at the beginning of the design cy-
cle to optimize the circuit performance. Interconnect-driven
floorplanning is considered to be one of the most important
problems in physical design todays. As the complexity of
chip design increases, the amount of interconnections be-
tween different modules on a chip becomes huge. Bus is a
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collection of wires, which occupies more spaces than a sin-
gle wire. Bus routing has become more and more important
as the complexity of chip design increases. In order to ease
bus routing and avoid unnecessary iterations of the physical
design cycle, it would be favourable to incorporate this bus
routing problem in the early designing phases.
Bus-driven floorplanning considers the placement of buses.

Buses are of different widths and need to go through differ-
ent sets of modules. Therefore, the positions of the modules
will affect the placement of the buses. The objective of the
problem is to obtain a bus-routable floorplan such that the
area of the chip and the total area of the buses are mini-
mized.
In [2], the authors tried to enforce the abutment constraint

based on the Corner Block List (CBL) representation. They
showed that the abutment information of the blocks can be
deduced from the CBL representation. By applying this
abutment constraint to the sub-modules of a L(T)-shaped
block, rectilinear blocks can be placed. However, the blocks
on a bus are not necessarily abutted. Thus, their approach
cannot be used to solve the bus driven-floorplanning prob-
lem.
In [1], the authors proposed a unified method to han-

dle different kinds of placement constraints, including pre-
placed constraint, range constraint, boundary constraint,
alignment, abutment and clustering constraint, etc. All
these constraints were modelled as a collection of “rela-
tive placement constraint” and “absolute placement con-
straint”, and were enforced by inserting edges in the con-
straint graphs. However, this approach is not suitable for
bus-driven floorplanning as for a bus, the order in which
the blocks are placed is not fixed. Besides, we do not know
beforehand whether a bus will be 0-bend, 1-bend, or 2-bend.
Basing on the sequence pair representation, the authors

of [4] proposed a method to enforce the alignment con-
straint and some other performance constraints. Although
the alignment constraint mentioned in this paper is not ap-
plicable in the bus-driven floorplanning problem, the in-
tuitive idea of deducing the approximate positions of the
blocks by looking at the sequence pair is very helpful. In
[5], the authors have made use of this to design an intact
algorithm to solve the bus-driven floorplanning problem.
In [5], the authors aimed at solving the bus-driven floor-

planning problem, based on a simulated annealing frame-
work. Each candidate floorplanning solution would be checked
in an evaluation step to see if the buses are feasible, i.e., the
required set of blocks can be passed through by a 0-bend
bus. Sequence pair representation was used. One major
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drawback of this approach is that, only horizontal and ver-
tical buses are considered and the solution quality will dete-
riorate if the number of blocks involved in each bus is large.
Our proposed algorithm has made a significant improvement
over [5] by allowing 0-bend, 1-bend, and 2-bend buses.
In this paper, this bus-driven floorplanning problem will

be re-visited. Unlike [5], our proposed algorithm allows 0-
bend, 1-bend, and 2-bend buses. To have a 1-bend bus,
one via is used and thus, it can be considered as a 1-via
bus. Experimental results have proven that our algorithm
can generate solutions with higher quality especially when
the number of blocks in each bus is large. For example, if
the buses have to go through more than 10 blocks, [5] is not
able to generate any solution while our algorithm can still
generate solutions of good quality.
The rest of the paper is organized as follows. A formal

definition of the problem will be given in Section 2. After
that, an algorithm is proposed to solve the problem, and the
details will be discussed in Section 3. Experimental results
will be presented in Section 4. Finally, a conclusion will be
given in Section 5.

2. PROBLEM FORMULATION
We assume that there are two layers reserved for bus-

routing, one for placing horizontal buses and the other for
vertical buses. The bus-driven floorplanning problem can be
defined as follows.
Given the following:

1. A set of n blocks B = {b0, b1, · · · , bn−1}, where each
block bi is associated with a width wi and a height hi,
where wi, hi ∈ R+.

2. A set of m buses U = {u0, u1, · · · , um−1}, where each
bus ui has a width ti, ti ∈ R+, and goes through a set
of blocks Bi, Bi ⊆ B.

Our task is to decide the position of each block and the
route of each bus, such that all the buses are 0-bend, 1-bend,
or 2-bend and each bus ui can go through all its blocks.
There should be no overlapping between any two blocks.
Besides, as there are only two layers for bus routing, we have
to ensure that there is no overlapping between the horizontal
(vertical) components of the buses. The goal is to minimize
the chip area and the total bus area.
We will define the meaning of “going through” here. For

a horizontal component of a bus ui to go through a set
of blocks {A,B,C}, the vertical overlapping between the
blocks has to be greater than or equal to the bus width ti
of ui. An example is shown in Figure 1. The condition for
a vertical component of a bus to go through a set of blocks
can be defined similarly.

3. METHODOLOGY
Simulated annealing (SA) will be used to derive a solu-

tion. The candidate solution will be evaluated according to
1)the number of buses it can accommodate, 2)the total area
of the buses, and 3)the total area of the floorplan. There
are three main steps to evaluate a solution. The first step
is to determine the shape of the buses by examining the se-
quence pair. After that, a bus ordering is found. Finally,
the flooplan is realized by calculating the coordinates of the
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Figure 1: Bus ui goes through block A, block B, and
block C.
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Figure 2: (a) A 1-bend bus. (b) A 3-bend bus.

blocks and the buses. Details of each step will be presented
in the following sections.

3.1 Shape Validation
We can deduce the shape of a bus by looking at the se-

quence pair representation of the floorplan. As we allow
buses of at most two bends, buses that cannot be realized
in two bends will be considered as infeasible, and will be
excluded from further checking. A penalty will be added for
each infeasible bus.
For example, given a sequence pair (FGHICDEAB,

ABCDEFGHI), a bus ui that need to go through blocks
{D,E,G} can be realized as a 1-bend bus. Another bus uj

that need to go through blocks {A,C,D,E,G,H, I} has to
be realized as a bus of at least three bends (Figure 2), and
that will be marked as infeasible. The aim of this step is to
find out all the infeasible buses, and to determine the shape
of each feasible bus.
Given a bus ui that need to go throughBi = {b1, b2, · · · , bk},

we will first extract those blocks in Bi from the sequence
pair, without altering their relative positions. For example,
if we are checking a bus that goes through blocks {A,B,E}
from the sequence pair (ADBCE, EBCAD), we will first
extract spi = (ABE, EBA) from the sequence pair. Then,
we will work on spi to check whether ui can be realized as
a 0-bend, 1-bend, or 2-bend bus one after another.

3.1.1 0-Bend Bus Checking
A 0-bend bus is actually a horizontal bus or a vertical bus.

For a bus ui to be 0-bend, the orders of the blocks in the two
sequences of spi have to be either the same (horizontal bus)
or reversed (vertical bus). Let (α, β) be the sequence pair
of spi, α and β are in reversed order if α = βR, where XR

is the reverse of string X. For example, given a sequence
pair (DEFABC, ABCDEF ) and a bus u0 that has to go
through the blocks {A,B,C}, the first step is to extract the
corresponding blocks from the sequence pair: sp0 =(ABC,
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Figure 3: Two valid 0-bend buses, {A,B,C} and
{C, F}.

ABC). As the blocks appear in the same order in both
sequences, it can be concluded that u0 can be realized using
a 0-bend horizontal bus. For another bus u1 that has to go
through the blocks {C,F}, the extracted sp1 is (FC, CF ).
As the blocks appear in reversed order in the two sequences,
it can be realized using a 0-bend vertical bus. This example
is illustrated in Figure 3.

3.1.2 1-Bend Bus Checking
1-bend bus is also called L-shaped bus. For a bus to be

1-bend, a necessary condition is that it consists of one ver-
tical component and one horizontal component. This can
be checked easily by identifying the longest common subse-
quence (LCS) in spi first, and then check if the remaining
blocks (after removing the blocks in the LCS) in the two
sequences are in reversed order.
We have to identify the longest common subsequence to

form the horizontal component of an L-shaped bus. It must
be the LCS but not any common subsequence in spi because
if taking the longest common subsequence as the horizontal
component fails to form a valid L-shape, taking any other
shorter subsequences will also fail. Let l1 be the longest
common subsequence of spi and l2 be another common sub-
sequence of shorter length. We can analyze the situation by
looking at the two different cases. The first case is that l2
is not a substring of l1. Then, a valid L-shape can never be
formed with l2 as the horizontal component because there
exist at least two blocks n1 and n2 which are in l1 but not
in l2, and these two blocks must be in left-right relation-
ship with each other. This implies two separate horizontal
components and thus, a valid L-shape cannot be formed.
Another case is that l2 is a substring of l1. Choosing l2 as
the horizontal component may prevent a valid L-shape to be
formed as those blocks in l1 must be in left-right relation-
ship with each other. Therefore, we will pick the longest
common subsequence as the horizontal component.
If there exist more than one longest common subsequence

l1 and l3, picking either one of them will be the same. Let’s
consider the three different cases according to the number
of blocks in l1 but not in l3. The first case is that there exist
more than one blocks in l1 but not in l3 (i.e., there exist
more than one blocks in l3 but not in l1). Then, the blocks
in l1 but not in l3 will form a horizontal component, and the
blocks in l3 but not in l1 will also form another horizontal
component. Thus, a valid L-shape cannot be formed no
matter which one we pick. The second case is that there
is only one block x that is in l1 but not in l3 (i.e., there is
also another block y that is in l3 but not in l1), and that
block appears in the middle of l1, i.e., x is neither the first
nor the last block in l1. Note that the position of x in l1

A B C
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E

F

u3

Figure 4: A valid 1-bend bus {A,B,C,D}

must be the same as that of y in l3. In this case, a T-shape,
which is invalid, will be formed if we take l1 as the horizontal
component, as y will be in upper-lower relationship with x.
Notice that we cannot take l3 as the horizontal component
neither in this second case for a similar reason. The last
case is that there is only one block x that is in l1 but not
in l3, and that x is the first block or the last block of l1.
A valid 1-bend shape may be formed as x can participate
in the vertical component and act as a ‘joint’ of the two
components. In the last case, picking either l1 and l3 will be
the same. In the following steps, we will regard the first and
the last block of the longest common subsequence as in the
vertical component and will keep them for checking whether
the vertical component is on the left or on the right of the
horizontal component.
Note that even if a bus is consisted of one vertical com-

ponent and one horizontal component only, there are still
several possibilities. The blocks may be in T-shape or +-
shape which we consider as invalid. Let {a0, a1, · · · , ax}
be the set of blocks that form the vertical component, and
{b0, b1, · · · , by} be the set of blocks that form the horizontal
component. If there exists a block bi that has to be on the
left of aj for some j ∈ {0, 1, · · · , x}, and a block bk that
has to be on the right of al for some l ∈ {0, 1, · · · , x}, this
bus is in T-shape (or ⊥-shape or +-shape) and is invalid. If
there exists a block ai that has to be on top of bj for some
j ∈ {0, 1, · · · , y}, and a block ak that has to be at the bot-
tom of bl for some l ∈ {0, 1, · · · , y}, this bus is in �-shape
(or 	-shape or +-shape) and is also invalid.
Let’s look at an example. Given a sequence pair (DEFABC,

ABCDEF ) and a bus u3 that has to go through the blocks
{A,B,C,D}, the first step is to extract the correspond-
ing blocks sp3 from the sequence pair, which is (DABC,
ABCD). As it failed the 0-bend checking, the next step is
to check if it can be realized as a 1-bend bus. The LCS
of sp3 is ABC, ABC will then be taken as the horizontal
component of u3 and B will be removed from sp3. Then
we have to check whether the remaining block D can form
a vertical component with the block A or C. As the blocks
A and D appear in reversed order in sp3, AD is regarded
as the vertical component of u3 (Note that C and D also
appear in reversed order and we can choose either A and
D or C and D). After checking, u3 is classified as a valid
1-bend bus. This example is illustrated in Figure 4.
Let’s look at another example. given the same sequence

pair (DEFABC, ABCDEF ) and another bus u4 that has
to go through the blocks {A,B,E, F}, we first extract the
corresponding blocks sp4 from the sequence pair, which is
(EFAB, ABEF ). The LCS is AB or EF . As there exist
more than one longest common subsequence and there are
more than one different symbols between them, it is not a
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Figure 5: Bus u4 cannot be realized as a 1-bend bus.
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Figure 6: In some cases, a T-shaped bus can be
changed into a valid 2-bend bus.

valid 1-bend bus and will proceed to the 2-bend checking.
This example is illustrated in Figure 5.
In this 2-bend checking, some buses may be identified to

be T-shaped but we will not mark it as infeasible yet since
it may form a valid 2-bend bus by adjusting the positions of
some blocks. An example is illustrated in Figure 6.

3.1.3 2-Bend Bus Checking
If the bus is found to be neither 0-bend nor 1-bend, we

will check whether it is a 2-bend bus. There are several
kinds of 2-bend buses, Z-shape, mirrored Z-shape, C-shape,
or mirrored C-shape. There will be two horizontal (vertical)
components and one vertical (horizontal) component in the
bus, denoted by HVH and VHV respectively. Assuming the
case of HVH, we will first identify the vertical component
of the bus. Let the extracted sequence pair spi of bus ui

be (α, β), where α and β are strings of blocks. The vertical
component can be found by finding the longest common
subsequence in (α, βR), where βR denotes the reverse of the
string β.
Similar to 1-bend checking, the first block and the last

block of the longest common subsequence will be kept for
horizontal component checking. Besides, we have to pick
the longest common subsequence but not any other subse-
quence, and if there are more than one longest common sub-
sequences, picking any one of them will do. The argument
is similar to that in 1-bend checking.
After identifying the vertical component, we will classify

the remaining blocks of the bus into different relationships
with the vertical component. For example, block A from
the bus (ABCDEF,FEDABC) will be classified as in the
set Upper, as A is on top of all the blocks in the vertical
component. On the other hand, block F will be classified
as in the set Lower, as F is below all the blocks in the ver-
tical component. We can deduce these relationships easily
from the sequence pair. There are totally eight position sets
that are defined in a similar fashion, 1)Upper, 2)UpperLeft,
3)Left, 4)LowerLeft, 5)Lower, 6)LowerRight, 7)Right, and
8)UpperRight.
There are four valid shapes for the case of HVH: Z-shape,

mirrored Z-shape, C-shape, and mirrored C-shape. In or-

Empty set

Components of H2 (the
lower horizontal component)

Components of H1 (the
upper horizontal component)

Components of H1 or H2

Upper

Lower

Left

Right

UpperRight

UpperLeft

LowerRight

LowerLeft

Figure 7: The necessary conditions of the position
sets to form a valid 2-bend shape.

der to form a valid shape, some of the position sets have
to be emptied. For example, to form a mirrored Z-shape,
there should be no block on the upper-left and lower-right of
the vertical component. Thus, the sets UpperLeft and Low-
erRight have to be emptied. The blocks in the set Upper,
UpperRight, and Right will form one horizontal component,
and the blocks in the set Lower, LowerLeft, and Left will
form another horizontal component. Details are shown in
Figure 7. The last step is to check both horizontal com-
ponents to ensure that the blocks in each component can
indeed align horizontally, i.e., the blocks appear in the same
order in both sequences of spi.
The shape validation step for 0-bend, 1-bend, and 2-bend

buses can be incorporated into one whole process. The over-
all algorithm is shown in Figure 8.

3.2 Bus Ordering
In this step, we aim at determining an ordering between

the valid buses, and removing those that have conflicts with
some other buses. For example, given a sequence pair (CADB,
ACBD), block C has to be placed above block A according
to the order in the sequence pair, so any horizontal bus that
goes through block C has to be placed above any horizontal
bus that goes through block A. This kind of constraint is
called bus ordering constraint.
However, some ordering constraints may be contradictory

to each other. An example is shown in Figure 11. In this
example, block A is on the left of block B according to the
sequence pair, so any vertical bus that goes through A has
to be placed on the left of any vertical bus that goes through
block B. Block C is also on the left of block D and thus,
any vertical bus that goes through C has to be placed on the
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SHAPE VALIDATION (int i)

1 k ← number of blocks that bus ui has to go through

2 Extract spi from the sequence pair

3 Find the longest common subsequence lcsi of spi

4 IF |lcsi| = 1 OR |lcsi| = k

5 Mark as 0-bend

6 result ← SUCCESS

7 ELSE

8 Put the remaining blocks into position sets

9 result ← ONE BEND CHECK(i)

10 IF result = FAIL

11 result ← TWO BEND CHECK VHV(i)

12 IF result = FAIL

13 Reverse the first sequence in spi

14 Find the longest common subsequence of spi

15 Put the remaining blocks into position sets

16 result ← TWO BEND CHECK HVH(i)

17 END IF

18 END IF

19 END IF

20 RETURN result

Figure 8: The pseudo code of shape validation.

ONE BEND CHECK (int i)

1 result ← FAIL

2 IF |Right| = 1

3 IF |UpperRight|=0∧|LowerRight|=0∧|Lower|=0∧|LowerLeft|=0
4 IF Upper ∪ UpperLeft can form a vertical component

5 Mark as �-shape and result ← SUCCESS

6 END IF

7 ELSE IF |UpperLeft|=0∧|Upper|=0∧|UpperRight|=0∧|LowerRight|=0
8 IF Lower ∪ LowerLeft can form a vertical component

9 Mark as �-shape and result ← SUCCESS

10 END IF

11 END IF

12 ELSE IF |Left| = 1

13 IF |UpperLeft|=0∧|LowerLeft|=0∧|Lower|=0∧|LowerRight|=0
14 IF Upper ∪ UpperRight can form a vertical component

15 Mark as �-shape and result ← SUCCESS

16 END IF

17 ELSE IF |UpperRight|=0∧|Upper|=0∧|UpperLeft|=0∧|LowerLeft|=0
18 IF Lower ∪ LowerRight can form a vertical component

19 Mark as �-shape and result ← SUCCESS

20 END IF

21 END IF

22 END IF

23 RETURN result

Figure 9: The pseudo code of 1-bend checking.

TWO BEND CHECK HVH (int i)

1 result ← FAIL

2 IF |UpperLeft| = 0 AND |Left| = 0 AND |LowerLeft| = 0

3 IF the blocks in Upper, UpperRight, Right can be horizontal AND

4 the blocks in Lower, LowerRight, Right can be horizontal

5 Mark as C-shape and result ← SUCCESS

6 END IF

7 ELSE IF |UpperRight| = 0 AND |Right| = 0 AND |LowerRight| = 0

8 IF the blocks in Upper, UpperLeft, Left can be horizontal AND

9 the blocks in Lower, LowerLeft, Left can be horizontal

10 Mark as mirrored C-shape and result ← SUCCESS

11 END IF

12 ELSE IF |LowerLeft| = 0 AND |UpperRight| = 0

13 IF the blocks in Upper, UpperLeft, Left can be horizontal AND

14 the blocks in Lower, LowerRight, Right can be horizontal

15 Mark as Z-shape and result ← SUCCESS

16 END IF

17 ELSE IF |UpperLeft| = 0 AND |LowerRight| = 0

18 IF the blocks in Upper, UpperRight, Right can be horizontal AND

19 the blocks in Lower, LowerLeft, Left can be horizontal

20 Mark as mirrored Z-shape and result ← SUCCESS

21 END IF

22 END IF

23 RETURN result

Figure 10: The pseudo code of 2-bend checking.
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uj

Figure 11: Bus ui has to be placed on the left of uj

and bus uj has to be placed on the left of bus ui.

left of any vertical bus that goes through block D. Problem
will occur if there exists two 2-bend buses ui and uj , where
a vertical component of ui has to go through block A and
block D, and a vertical component of uj has to go through
block B and block C. These two vertical components have
to be placed on the left hand side of each other, which is
contradictory. This step aims at removing the least number
of buses such that the remaining buses do not have any
conflict with each other. For simplicity, our discussion is
limited to the horizontal components of the buses, where the
case for the vertical components can be derived similarly.
Assuming that there are two layers reserved for bus rout-

ing, one layer is used to place horizontal buses while the
other for vertical buses. We only need to consider con-
straints between horizontal components and constraints be-
tween vertical components separately. For 1-bend or 2-bend
buses, we will first break them down into two and three 0-
bend components respectively before checking the ordering
constraints (Figure 12).
For horizontal buses, we use a graph G = (V,E) to de-

termine whether all the ordering constraints can be satis-
fied. Each vertex in V represents a 0-bend component, and
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Figure 12: A 2-bend bus is broken down into three 0-
bend components before checking the ordering con-
straint.

spij=(ADEBC, DEABC)

A D E B C

D E A B C

A

B
C

D

Case 3

sp
ij
=(ACDB, CABD)

A C D B

C A B D

A
B C

D
E

Case 1 and Case 2

Figure 13: Different cases of the bus ordering con-
straint.

E = {(vi, vj)| component vi has to be placed above com-
ponent vj .}. In order to check if (va, vb)∈ E, we will first
extract spab from the sequence pair, where spab contains
only the blocks in ua and ub. For example, if the sequence
pair is (ABCDEF , DEACBF ), and ua has to go through
block A and block B and ub has to go through block C and
block D, the extracted spab will be (ABCD, DACB).
Let m be a block, s1[m] denotes the position of block m

in the first sequence of spab, e.g., s1[A] in the above example
is 1. Similarly, s2[m] is the position of block m in the second
sequence of spab. In the above example, s2[A] is 2. Let
Ba(Bb) be the set of blocks that ua(ub) has to go through.
After computing the s1[m] and s2[m] for each related

block m, we will check if spab falls into one of the following
three cases (Figure 13):

1. If ∀x ∈ Ba, s1[x] ≥ s2[x], and ∃y ∈ Ba, s1[y] > s2[y],
then ua is below ub. Thus, (va, vb)∈ E.

2. If ∀x ∈ Bb, s1[x] ≥ s2[x], and ∃y ∈ Bb, s1[y] > s2[y],
then ub is below ua. Thus, (vb, va)∈ E.

3. If ∃x ∈ Ba, s1[x] > s2[x], and ∃y ∈ Bb, s1[y] > s2[y],
then contradiction occurs, as ua cannot be above ub

and below ub at the same time. Thus, (vb, va) ∈ E
and (va, vb) ∈ E.

As some of the buses cannot be placed at the same time,
our aim in this step is to remove the least number of buses
such that all the remaining buses can be placed. Besides,

C D

A B

C
D

A
B

u
i

u
j

Figure 14: Using a L-shaped bus to resolve the bus
ordering conflict.

we aim at finding an ordering for the buses, in a bottom-
up (left-right) fashion such that all the remaining buses can
be placed one after another successfully according to that
order. To do so, we have to examine the graph Gh.
If contradiction exists, cycle presences. So the first step is

to check whether cycles exist in Gh. If there are cycles, we
want to remove the least number of nodes (buses) to make
the graph acyclic. However, this Node-Deleting Problem is
proven to be NP-complete [5]. Our heuristic to solve the
problem is to keep on removing the node with the highest
degree (in-degree plus out-degree), until the graph is acyclic.
Assume that a 2-bend bus ui is broken into three 0-bend

components u1, u2, and u3, where u1 and u3 are horizontal
and u2 is vertical. When processing the horizontal buses, a
graph Gh is built. If u1 is selected to be removed in order to
make Gh acyclic, u3 in the horizontal graph and u2 in the
vertical graph have to be removed as well. It is obvious that
we should not keep partial bus components in the solution,
if some parts of the bus are already marked as invalid.
In some cases, bending can help resolving conflicts in the

ordering constraint graph. An example is shown in Fig-
ure 14. In the example ui and uj are horizontal buses that
contradict to each other. Changing ui from 0-bend to 1-bend
can resolve the conflict without removing any bus from the
graph. However, this technique of adding bends to a bus can
only be used for buses that are 0-bend or 1-bend originally,
so that one more bend can be added to resolve the conflict
by the method illustrated in Figure 14.
After obtaining an acyclic graph, an ordering of the buses

can be obtained from a topological order of Gh.

3.3 Floorplan Realization
The final step to evaluate a candidate solution is to realize

the floorplan, i.e., obtaining the coordinates of the blocks
and buses, to determine the chip area and the total bus
area. After the previous checkings, all the invalid buses are
removed, and a correct bus ordering is found. Based on
those information, we can obtain the coordinates of all the
blocks and valid buses, and thus the chip area and total bus
area. In order to obtain the coordinates of the blocks, we
used the algorithm FAST-SP in [3] to construct a floorplan
from the sequence pair.
We use the same approach as in [5], which can be de-

scribed in brief as follows. The following process repeats
O(m) times, where m is the total number of valid buses.
Note that all 1-bend and 2-bend buses will have been bro-
ken down into 0-bend buses for processing. Let’s consider
horizontal buses only. In iteration i, bus ui will be pro-
cessed. The coordinates of the blocks that ui goes through
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BASIC ALIGNMENT H (int i)

1 ymax ← max{yk : ui goes through block k}
2 FOR all blocks j ui goes through

3 IF ymax + ti - hj > yj

4 yj ← ymax + ti - hj

5 END IF

6 END FOR

Figure 15: The pseudo code of the basic alignment
step for the horizontal buses.
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Figure 16: (a) ymax, yb, and yc are calculated corre-
spondingly. (b) yb has to be adjusted to let the bus
go through.

will be computed first. Then, the position of ui will be cal-
culated by performing some basic alignment steps between
the blocks that ui goes through. These basic alignment steps
for horizontal buses are shown in Figure 15. An example is
shown in Figure 16.
After doing the basic alignment steps, we will check if ui

overlaps with any previously placed bus. If so, ui will be
moved up and the coordinate yui will be updated. If ui is
moved up, we need to check all its blocks again to ensure
that ui goes through them. We may need to move some of
them up in some cases.

3.4 Simulated Annealing
Simulated Annealing (SA) is used to search for a solution.

In this section, the set of moves and the cost function used
in the SA will be discussed.

3.4.1 Moves
To change from one candidate solution to another, we use

two operations, swap and rotate.

1. Swap is to exchange the positions of two blocks in
either the first sequence or the second sequence. This
can be done in constant time.

2. Rotate is to exchange the block height with the block
width. This can be done in constant time.

3.4.2 Cost Function
As mentioned before, the aim of the problem is to 1)ac-

commodate all the buses, 2)minimize the total area of the
buses, and 3)minimize the area of the floorplan. Bus area is
included in the cost function as bus is actually a collection
of wires, and it will be favorable to have the total bus area
(interconnect resources) as small as possible. Thus, the cost
function is defined as follows.

Cost = α ·A+ β ·B + γ · I
where A is the chip area, B is the total bus area, and I is

the number of invalid bus, and α, β, and γ are parameters
that can be specified by the users.

Table 1: Data Set One.
File No. of Blocks No. of Buses Average/Max.

No. of Blocks
a Bus Goes
Through

apte 9 5 2.60 / 3
xerox 10 6 2.50 / 3
hp 11 14 2.29 / 3

ami33-1 33 8 4.17 / 6
ami33-2 33 18 2.39 / 4
ami49-1 49 9 4.00 / 6
ami49-2 49 12 3.58 / 6
ami49-3 49 15 3.53 / 6

Table 2: Data Set Two.
File No. of Blocks No. of Buses Average/Max.

No. of Blocks
a Bus Goes
Through

ami33-3 33 1 10.00 / 10
ami33-4 33 3 10.00 / 10
ami33-5 33 5 10.00 / 10
ami49-4 49 1 15.00 / 15
ami49-5 49 3 11.67 / 15
ami49-6 49 4 11.25 / 15

In this bus-driven floorplanning problem, we focused on
fitting all the buses in a compact floorplan solution. Other
aspects like the total wire length and routing congestion
can also be considered by including more terms in the cost
function.

3.5 Soft Block Adjustment
In order to compare with the results presented in [5], we

have added the feature of ‘soft block adjustment’. The ad-
justment is the same as that in [5]. This step makes use
of the fact that the width and height of a block can be al-
tered as long as the area is unchanged and the dimension is
constrained by an aspect ratio bound. The process is again
done by simulated annealing. The cost function is the same
as before. In each pass, a block lying on a critical path will
be selected, and the width or height of it will be changed a
little bit. Then, the floorplan realization step is repeated to
obtain a new chip area and total bus area. Note that if an
originally valid bus is made invalid, the candidate solution
will be discarded. Besides, when changing a block width or
height, the aspect ratio constraint has to be obeyed.

4. EXPERIMENTAL RESULTS
The proposed algorithm was implemented using the C++

language and the experiments were conducted using an Intel
Xeon (2.2 GHz) machine with 1G memory. The test cases
are derived from the MCNC benchmarks for floorplanning.
In order to compare with the results presented in [5], the
same test cases are tried using our proposed algorithm and
all the experiments (including those of [5]) are run on the
same machine. The results are listed in Table 3. Compar-
ing with the results of [5], the dead space of the floorplan
obtained by our algorithm can be reduced on average.
To demonstrate the importance of having 1-bend and 2-

bend buses, we have created another set of test cases based
on the ami33 and ami49 benchmarks. In these test cases,
each bus will go through at least ten blocks. The results are
shown in Table 4. For this data set, [5] is not able to generate
any solution for most of the test cases, while our algorithm
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Table 3: Results of Data Set One.
[5] Our Work Comparison*

Time
(s)

Dead
Space

Time
(s)

Dead
Space

Time Dead
Space

apte 15 0.72% 30 0.48% +100% -33.33%
xerox 15 0.95% 35 0.42% +133.33% -55.79%
hp 33 0.62% 51 0.29% +54.55% -53.23%

ami33-1 11 0.94% 93 1.00% +745.45% +6.38%
ami33-2 92 1.27% 144 1.19% +56.62% -6.30%
ami49-1 16 0.85% 71 0.56% +343.75% -34.12%
ami49-2 302 0.84% 713 0.58% +136.09% -30.95%
ami49-3 285 1.09% 865 0.60% +203.51% -44.95%

Average: +221.65% -31.54%

*It is calculated by [(y1 − y0)/y0] ∗ 100%, where y0 and y1 are the

time (dead space) obtained by [5] and our algorithm respectively.

Table 4: Results of Data Set Two.
[5] Our Work Comparison

Time
(s)

Dead
Space

Time
(s)

Dead
Space

Time Dead
Space

ami33-3 86 1.81% 32 1.01% -62.79% -44.20%

ami33-4 >103 – 92 1.90% – –

ami33-5 >103 – 95 3.80% – –
ami49-4 73 19.34% 88 0.63% +20.55% -96.74%

ami49-5 >103 – 261 1.17% – –

ami49-6 >103 – 140 2.19% – –
Average: 118 1.78%

can still generate solution with high quality (with average
dead space of 1.8% only). We can see that our algorithm
can obtain much better results than [5]. As their approach
allows only 0-bend bus, it is very difficult to accommodate
several buses that go through many blocks.

5. SUMMARY
In this paper, an algorithm to solve the bus-driven floor-

planning problem is proposed, allowing 0-bend, 1-bend, and
2-bend buses. Experimental results show that our approach
is very effective. The presence of 1-bend and 2-bend buses is
important especially when the number of blocks that a bus
goes through is large. It is difficult to find a solution if only
0-bend bus is allowed in those cases.

Figure 17: Result packing of ami49-3.

Figure 18: Result packing of ami49-6.
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