
Performance-driven Register Insertion in Placement

Dennis K. Y. Tong
Department of Computer Science and

Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

kytong@cse.cuhk.edu.hk

Evangeline F. Y. Young
Department of Computer Science and

Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

fyyoung@cse.cuhk.edu.hk

ABSTRACT
As the CMOS technology is scaled into the dimension of
nanometer, the clock frequencies and die sizes of ICs are
shown to be increasing steadily [5]. Today, global wires that
require multiple clock cycles to propagate electrical signal
are prevalent in many deep sub-micron designs. Efforts have
been made to pipeline the long wires by introducing registers
along these global paths, trying to reduce the impact of wire
delay dominance [2, 8].

The technique of retiming to relocate registers in a circuit
without affecting the circuit functionality can be applied in
this problem. Though the problem of retiming with gate
and wire delay has been studied recently [17, 1], the place-
ment of registers after retiming is a new challenge. In this
paper, we study the problem of realizing a retiming solution
on a global netlist by inserting registers in the placement to
achieve the target clock period. In contrast to many pre-
vious works [16, 11] that performed simple calculations to
determine the positions of the registers, our proposed algo-
rithm can preserve the given clock period and utilize as few
registers as possible in the realization. What is more, the
algorithm is shown to be optimal for nets with 4 or fewer
pins and this type of nets constitutes over 90% of the nets
in a sequential circuit on average.

Using the ISCAS89 benchmark suite, we tested our al-
gorithm with a 0.35µm CMOS standard cell library, and
Silicon Ensemble was used to layout the design with row
utilization of 50%. Experimental results showed that our
algorithm can find the best sharing of registers for a net
in most of the cases, i.e., using the minimum number of
registers while preserving the target clock period, within a
minute running on an Intel Pentium IV 1.5GHz PC with
512MB RAM.

Categories and Subject Descriptors
B.7 [Hardware]: Integrated Circuits; B.7.2 [Integrated
Circuits]: Design Aids—layout, placement and routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’04, April 18–21, 2004, Phoenix, Arizona, USA.
Copyright 2004 ACM 1-58113-817-2/04/0004 ...$5.00.

General Terms
Performance

Keywords
Register insertion, post-retiming, placement

1. INTRODUCTION
As the CMOS technology continues to scale down, the

clock frequencies and die sizes of integrated circuits are in-
creasing steadily. Data showed that the frequencies of high-
performance ICs have doubled every process generation while
the die sizes increased by about 25% [5]. With such short cy-
cles and long interconnects, it is not uncommon for a global
signal to take multiple clock periods to travel across a chip.
In order to alleviate this problem, we need to be able to
insert registers to pipeline long global interconnect [2, 8].
Nevertheless, arbitrary insertion of registers along a wire is
forbidden because it would change the original functionality
of the circuit. As a result, retiming, a sequential circuit op-
timization technique to relocate registers without affecting
circuit functionality, can be applied [9, 10].

Retiming is a sequential circuit optimization technique
that relocates registers while maintaining the functionality
of the circuit. This powerful technique can be used to opti-
mize the clock period, the usage of registers, or a combina-
tion of both in a sequential circuit. Since retiming was firstly
formulated a decade ago, much effort has been made to im-
prove the efficiency of the technique [15] or to apply this
technique in various areas like physical planning [4], circuit
partitioning [12], power reduction [14], testability [6] and so
on. Recently, there are some research efforts on address-
ing the retiming problem with dominant global wire delays
[17, 1]. In contrast to the traditional settings of retiming
where wire delay is ignored, these new methods can handle
both gate and wire delay simultaneously. Their assumption
that the delay of a wire will grow linearly with its length
can be applied in our case of global interconnects as optimal
buffering can be performed.

However, the placement of registers after retiming is an-
other new challenge. Since a net is represented as a branch
of edges in a retiming graph model which does not bear any
information about the topology of the routes or the positions
of the registers. It is unknown whether the clock period ob-
tained from retiming can be realized in the design. Being
able to insert registers into a placement solution in order
to realize a retiming solution and preserve the correspond-
ing clock period is important, or it will make the retiming

53

optimization meaningless. Meanwhile, minimizing the num-
ber of registers used is also essential as the size of a register
is usually several times larger than that of a simple gate,
regardless of the process technology being used.

Even though there are several previous works on post-
retiming register placement, many of them suffer from the
problem of over-simplification when wire delay dominates.
For example, in [16], the authors assume that the position
of a register is located at the geometric center of the con-
nected gates. This assumption is natural, but the clock pe-
riod resulted from retiming will be easily violated. A similar
problem occurs in [11] in which the authors determine the
position of a register such that the sum of the lengths of
the nets connected to that register is minimized. Although
both of these methods provide a fast estimation of register
position, the optimized clock period obtained from retiming
cannot be achieved in the layout when interconnect delay
is a dominant factor of the circuit delay. A sophisticated
method to tackle this problem is of utmost need.

In this paper, we study the problem of realizing a re-
timing solution on a global netlist by inserting registers in
placement to achieve the target clock period. This problem
involves two main sub-problems, namely, topology finding
and register placement. As we have mentioned before, a net
is modeled as a branch of edges in the retiming graph, the
problem of topology finding refers to the determination of an
optimal sharing of the registers among the fanout edges of
a net given the geometric positions of the connected gates
such that the optimal clock period obtained from retiming
can be preserved. After obtaining the topology tree of a
net, we need to find an appropriate position for each regis-
ter given the constraints in placement (some occupied areas
do not allow register insertion) and this problem is known
as register placement. Given a placement (we used stan-
dard cell design in our experiments) and a retiming solution
(we used the technique in [1] to generate the retiming solu-
tions in our experiments), our proposed algorithm can insert
registers into the placement solution to preserve the clock
period as much as possible. Notice that our algorithm has
no dependency of the retiming algorithm being used, as long
as it considers wire delay of global nets and gives a retiming
solution with a target clock period, retiming labels and the
maximum arrival time at each gate output.

Our algorithm can find the optimal topology, i.e., using
the minimum number of registers while preserving the clock
period, for 4 or fewer pin nets. Since nets with 4 or fewer
pins constitute, on average, over 90% of nets in a circuit,
the proposed algorithm offered an agreeable performance in
the experiments. Nearly all the nets had their best topology
found and registers inserted successfully while maintaining
the clock period.

The remainder of this paper is organized as follows. We
present the problem statement in Section 2. The problem of
retiming with gate and wire delay is briefly reviewed in Sec-
tion 3. In Section 4, our proposed algorithm for topology
finding and register placement will be presented. Experi-
mental results are presented in Section 5 and a conclusion
follows in Section 6.

2. PROBLEM FORMULATION

Problem Statement. Given a placed sequential circuit
and a retiming solution, i.e., an optimal clock period clk, a

Registers

 Register with the
longest delay to

a(v) = Delay of this path

v

v

Figure 1: An illustration of the definition of a(v) for
a gate v.

retiming label r(v) at each gate v and the maximum arrival
time a(v) at the output of gate v, we want to insert regis-
ters into the circuit layout to realize the retiming solution,
preserving the clock clk as much as possible.

Fig. 1 shows an example that illustrates the definition of
a(v).

We can represent the circuit as a graph G(V, E), where
each vertex v ∈ V corresponds to a combinational gate, and
each directed edge euv ∈ E represents a connection from the
output of gate u to the input of gate v. Let w(u, v) be the
number of registers along the edge euv, duv be the wire delay
of edge euv if no register lies along the edge. Note that the
wire delay duv is assumed to be proportional to the shortest
Manhattan distance between u and v.

Now, consider a net N(s,D,L), where s denotes the driv-
ing gate, D denotes the set of all driven gates, and L denotes
the set of interconnections between s and each of the gates
di ∈ D. Obviously, {s} ∪D ⊆ V and L ⊆ E. For each edge
esdi ∈ L, we have a value wr(s, di) representing the number
of registers along the edge esdi after retiming. The prob-
lem is to insert the minimum number of registers for this
net into the circuit according to the retiming solution such
that the clock period is preserved as much as possible. This
problem comprises two main sub-problems known as topol-
ogy finding and register placement. Topology finding is the
problem of finding a topology, ΥN , of net N given the ex-
act geometric positions of the gates such that the minimum
number of registers is used and the target clock period is
preserved. Register placement is the problem of finding the
corresponding position for each register given the topology
ΥN of net N .

A topology ΥN = (P,K) is a tree (an acyclic graph with
no designated root yet) that describes the structure of net
N on the plane. Each node p ∈ P corresponds to either
a combinational gate or a register, and each edge kuv ∈ K
represents a physical connection between gate u and gate
v. Each node p ∈ P that has only one adjacent node in
ΥN , i.e., deg(p) = 1, represents a combinational gate while
an internal node p ∈ P that has more than one adjacent
node, i.e., deg(p) > 1, represents a register. In fig. 2, an
example of a 4-pin net in which each source-to-sink edge
has a register after retiming is shown. There are five possible
register sharing topologies in this example: (a) all the edges
share a single register (maximum sharing) as shown in fig. 3;
(b) each edge has its own register (no sharing) as shown in
fig. 4; (c) for the rest three equivalent cases, two of the edges
share a single register while the other has a separate one, as
shown in fig. 5.

54

u b

c

a

Figure 2: Graph model of a 4-pin net in which each
edge has a single register after retiming.

u

a

b

c

u

a

b

c

Figure 3: Case (a) - a single register is shared among
the edges (maximum sharing). The topology tree of
this configuration is shown on the right.

u

a

b

c

u

a

b

c

Figure 4: Case (b) - each edge has a separate register
(no sharing). The topology tree of this configuration
is shown on the right.

u

a

b

c

u

a

b

c

Figure 5: Case (c) - two of the edges share a register
while the other has a separate one. The topology
tree of this configuration is shown on the right.

The above figures show the topology trees of the 4-pin net
in the three different cases and the corresponding physical
configurations.

Although we can always identify the topology tree which
has the maximum sharing of registers for a net, it is not al-
ways possible to place the registers on a chip using that
topology while preserving the given clock period. Using
case (a) in fig. 3 as an example, suppose the clock period
resulted from retiming, clk, equals 1.5 units and the posi-
tions of gate u, a, b and c are (0, 0), (−3, 0), (0, 3) and (3, 0)
respectively, as depicted in fig. 6. Obviously, it is impossi-
ble to share a single register among the three edges without
clock violation. Three separate registers have to be allo-
cated and inserted exactly at (−1.5, 0), (0, 1.5) and (1.5, 0)
for edge eua, eub and euc respectively in order to satisfy clk.

(0,0) (3,0)

u

(-3,0)

a

b

(0,3)

c

(-1.5,0) (1.5,0)

(0,1.5)

3 separate registers
are needed

eua euc

eub

Figure 6: A situation in which the registers cannot
be shared in order to preserve the clock period clk
= 1.5 units.

Even if we have a feasible topology tree, it can happen
that the suggested position for a register has been occupied
by some other gates, i.e., the target area is blocked, and we
have to look for another appropriate position. Section 4 will
address how a feasible topology tree can be found and how
the positions of the registers can be finalized.

3. REVIEW OF RETIMING WITH GATE
AND WIRE DELAY

In this section, we briefly mention the technique of retim-
ing with gate and wire delay in [1] which we have employed
to generate a retiming solution for our proposed register in-
sertion algorithm to work on. In [1], it is assumed that wire
delay is proportional to the length of the wire segment and
each gate is associated with a gate delay. Given a sequential
circuit, they modeled it as a retiming graph model, G(V, E),
as usual, except that each edge has an additional attribute
of wire delay. Besides, they have also defined a variable,
a(v), as the maximal arrival time at the output of gate v for
all v ∈ V .

Two approaches were proposed to solve the problem opti-
mally and near-optimally. Both approaches were based on a
transformation of the problem into a system of linear differ-
ence inequities such that the Bellman-Ford algorithm could
be used to test the feasibility of a trial clock period. To-
gether with the technique of binary search, the optimal or a
near-optimal clock clk, the retiming labels and the value of
a(v) for all v ∈ V would be obtained.

Since the near-optimal approach runs much faster than
the optimal one, we chose the former method to produce
the retiming solutions. Our register insertion algorithm will
insert the registers with clock preservation accordingly.

4. PLACEMENT OF REGISTERS AFTER
RETIMING

4.1 Topology Finding
In this section, an algorithm is proposed to find the topol-

ogy of a net given the constraints in placement such that
maximum sharing of registers is achieved and the clock pe-
riod is preserved. This method can find the optimal topol-
ogy for a net with 4 or fewer pins, and can give near-optimal
solution for a net with 5 or more pins according to the ex-
perimental results.

55

4.1.1 Algorithm Description
Given a net N(s,D,L), a clock period clk, and the maxi-

mal arrival time at the output of gate v, a(v), we can obtain
a feasible topology tree of N , ΥN , as described below.

First, we construct the best possible topology ΥNopt for
N , i.e., a topology having the minimum number of inter-
nal nodes (an internal node represents a register). Obvi-
ously, the number of internal nodes in ΥNopt equals Q =
maxdi∈D{wr(s, di)}, where wr(s, di) denotes the number of
registers on the edge esdi after retiming. We label each inter-
nal node as ri representing the i-th register on the net from
the source s for 1 ≤ i ≤ Q. An example of the retiming
graph model and the corresponding best possible topology
ΥNopt for a 4-pin net is shown in fig. 7.

We call the region of the plane where a register r can be
placed the candidate region of r and is denoted by C(r). For
consistency, the candidate region C(v) of a combinational
gate v is the position of v itself, i.e., its coordinates (xv, yv),
since v is fixed after placement. An δ-extended region of a
region �, denoted by R+δ(�), is the region of the plane at a
distance δ or less from some points in �, assuming that the
distance between two points is measured by their shortest
Manhattan distance.

Besides, we define an adjacent-gate region for each node
p in a topology tree, denoted by A(p), as an δ-extended re-
gion from its candidate region C(p), i.e., A(p) = R+δ(C(p))
where δ is defined differently for different types of nodes.
The physical meaning of A(p) refers to the region on the
plane such that it encompasses all the possible positions for
an adjacent gate of p in the net. Therefore, the value of δ
for A(p) of a node p is described as follows. If node p is an
internal node, δ equals clk. If node p represents a driven
gate, δ equals a(p)− dp, where a(p), given by the retiming
solution, is the maximum arrival time at the output of gate
p and dp is the gate delay of p. Otherwise, node p represents
the driving gate, and we set δ to clk − a(p). Notice that all
these regions are 45◦-rotated rectangles on the rectilinear
plane because of the Manhattan distance measurement.

Starting from the best possible topology ΥNopt , we will
modify the topology incrementally until an optimal feasible
topology ΥN is obtained for net N . First of all, we choose
the node that represents the driving gate s as the root in
ΥNopt and direct all the edges away from s. Then, we will
process each internal node ri in ΥNopt from i = Q to i = 1,
i.e., from the furthest register to the closest register to the
driving gate s, in the following manner.

For each internal node ri with a set of children q1, . . . , qm,
find a minimal set of all the overlapping regions between
A(qj) for 1 ≤ j ≤ m, denoted by Ymin = (y1, . . . , yk), such
that the union of the elements in Ymin covers at least one

s d2

d3

d1

s d2

d3

d1

r2r1 r3

Figure 7: The retiming graph model (left) and the
corresponding best possible topology ΥNopt (right)
of a 4-pin net example.

point from each region A(qj). For each yl in Ymin, we call
the number of regions that yl has covered at least a point as
the size of yl, denoted by s(yl). Sort the elements in Ymin
in a non-ascending order of their sizes from 1 to k, using a
greedy procedure ALGSETY as described below.
Procedure ALGSETY(ri, ΥN);
begin
overlapped := a boolean flag;
Ymin ←− φ;
add A(q1) to Ymin, i.e., y1 ←− A(q1);
for j = 2 to m
overlapped ←− false;
for l = 1 to |Ymin|
if (yl ∩A(qj) �= φ)

yl ←− yl ∩ A(qj);
sort elements in Ymin in a non-ascending order
of their sizes from 1 to |Ymin|;
overlapped←− true;
break;

end if;
end for;
if (overlapped == false)

increment |Ymin| by 1;
add A(qj) to Ymin at the end, i.e., y|Ymin| ←−
A(qj);

end if;
end for;
OUTPUT(Ymin);

end.
Notice that the union of the elements in Ymin covers at

least one point from each region, A(qj), for 1 ≤ j ≤ m.
Next, we can remove all the edges from ri to its children
q1, . . . , qm in ΥNopt , split the node ri into k new internal
nodes, n1, . . . , nk, where node nl corresponds to element yl
in Ymin for 1 ≤ l ≤ k. In addition, we will assign region yl
as the candidate region of nl, i.e., yl = C(nl), for all l.

Starting from the yl whose s(yl) is the largest in Ymin,
add an edge from nl to each qj that has no parent node and
whose A(qj) is covered by yl. Repeat this step until all yl
have been processed. Finally, add an edge from the parent
node of ri to every newly generated internal nodes nl and
ri can then be removed from the topology tree. The above
operations are described in the procedure ALGMODITREE
below.
Procedure ALGMODITREE(ri, Ymin, ΥN);
begin

remove all the edges from ri to its children q1, . . . , qm in
ΥN ;
instantiate k new internal nodes, n1, . . . , nk, where k =
|Ymin|;
assign region yl as the candidate region of nl, i.e.,
yl = C(nl), for all l;
for l = 1 to k
for j = 1 to m
if (yl ∩A(qj) �= φ and qj has no parent node)

add an edge from nl to qj ;
end if;

end for;
add an edge from the parent node of ri to nl;

end for;
remove ri;
OUTPUT(ΥN);

end.

56

After visiting all the internal nodes ri in ΥNopt and mod-
ifying the topology as described above, we will get a new
topology tree ΥN at the end such that the clock period clk
is preserved. The whole algorithm for topology finding of a
net N is described in the procedure ALGTOPOTREE.
Procedure ALGTOPOTREE(N);
begin

construct the best possible topology ΥNopt for net N ;
ΥN ←− ΥNopt ;
for i = Q to 1

Ymin ←− ALGSETY(ri, ΥN);
ΥN ←− ALGMODITREE(ri, Ymin, ΥN);

end for;
OUTPUT(ΥN);

end.

4.1.2 Optimality Proof
To prove the correctness of the above algorithm, we have

the three following lemmas. However, the proofs of the first
two lemmas are omitted due to the limitation in space.

Lemma 1. Given a set of n 45◦-rotated rectangles R1, . . . ,
Rn on a rectilinear plane, if R1∩. . .∩Rn �= φ, then Rx(R1)∩
. . . ∩Rx(Rn) �= φ, where x is a non-negative real number.

Lemma 2. Given a set of n 45◦-rotated rectangles R1, . . . ,
Rn−1 and S on a rectilinear plane, if S∩Ri �= φ for 1 ≤ i ≤
n−1 and R1∩. . .∩Rn−1 �= φ, then S∩(R1∩. . .∩Rn−1) �= φ.

Lemma 3. Given two 45◦-rotated rectangles, A and B,
on a rectilinear plane, we denote the n times clk-extended
regions of A and B as An and Bn respectively, i.e., An =
R+(n×clk)(A) and Bn = R+(n×clk)(B). Suppose A ∩ B =
RAB �= φ , we denote the n times clk-extended region of RAB
by (RAB)n, i.e., (RAB)n = R+(n×clk)(RAB). It is claimed
that if there exists a point x ∈ An∩Bn, x ∈ R+clk((RAB)n−1)
for all n ≥ 1.

Proof. We prove by induction on n.
Base case:
Consider the case when n = 1. Suppose x ∈ A1 ∩ B1,

the clk-extended region from the position of x is given by
R+clk(x). Obviously, R+clk(x)∩A0 �= φ and R+clk(x)∩B0 �=
φ because x ∈ A1 ∩B1. Since A0 ∩B0 �= φ (∵ A0 = A,B0 =
B and A ∩ B �= φ), R+clk(x) ∩ (A0 ∩ B0) �= φ by lemma
2. Therefore, x ∈ R+clk((RAB)0) and the claim is true for
n = 1.

Inductive step:
Assume that the claim is true for n = j − 1, where j

is a positive integer ≥ 2, i.e., if there exists a point x ∈
Aj−1∩Bj−1, x ∈ R+clk((RAB)j−2). Consider the case when
n = j. Given a point x ∈ Aj ∩ Bj and the clk-extended
region from its position is denoted by R+clk(x). Obviously,
R+clk(x) ∩ Aj−1 �= φ and R+clk(x) ∩ Bj−1 �= φ because
x ∈ Aj ∩ Bj . By lemma 1, since A0 ∩ B0 �= φ, Aj−1 ∩
Bj−1 �= φ. Therefore, R+clk(x) ∩ (Aj−1 ∩ Bj−1) �= φ by
lemma 2. By the induction hypothesis, if R+clk(x)∩(Aj−1∩
Bj−1) �= φ, R+clk(x) ∩ R+clk((RAB)j−2) �= φ. Therefore,
x ∈ R+clk((RAB)j−1).

Theorem 1. The proposed algorithm finds a topology that
maximizes the sharing of registers for an i-pin net, where
2 ≤ i ≤ 4, and the given clock period clk is preserved.

Proof. We prove the three possible cases one-by-one.
Case 1: i = 2

This case is trivial because there is only one source s, one
sink t1 and one edge est1 in a 2-pin net, there is no other
edges to share registers with. The algorithm will start from
the furthest internal node rQ and take the adjacent-gate
region of t1, A(t1) = R+(a(t1)−dt1)(C(t1)), as the candidate
region of rQ, i.e., C(rQ) = A(t1). Next, the algorithm will
process node rQ−1 and take the adjacent-gate region of rQ,
A(rQ) = R+clk(C(rQ)), as the candidate region of rQ−1, i.e.,
C(rQ−1) = A(rQ).

By substitution, C(rQ−1) can be represented as an ex-
tended region from the position of the sink t1, as C(rQ−1) =

R+((a(t1)−dt1)+clk)(C(t1)). The algorithm repeats the above
steps until it reaches the first internal node r1 where C(r1) =

R+((a(t1)−dt1)+(Q−1)×clk)(C(t1)). Since the retiming solu-
tion is valid, the distance between s and t1 will not exceed
(clk− a(s)) + ((Q− 1)× clk) + (a(t1)− dt1). Therefore, the
algorithm will find the candidate regions for every register
and return the best possible topology when it terminates.

Case 2: i = 3
Given a 3-pin net, let s be the source, and t1 and t2 be the

two sinks. Let wr(s, t1) and wr(s, t2) be p and q respectively,
where 1 ≤ p ≤ q. Suppose that there exists a topology tree
of maximum register sharing for the 3-pin net such that the
first k registers, where 1 ≤ k ≤ p, are shared (notice that
if the k-th register can be shared, the h-th register can be
shared where 1 ≤ h ≤ k), and that the algorithm cannot
find such a topology.

Since the algorithm cannot find that optimal topology,
it must fail to find an overlapping region for the k-th reg-
ister to be shared. At the point of failure, the algorithm
should find that the regions R+((a(t1)−dt1)+clk×(p−k−1))(t1)

and R+((a(t2)−dt2)+clk×(q−k−1))(t2) do not overlap. How-
ever, these two regions encompass all the possible positions
for the placement of the k-th register from t1 and t2 respec-
tively such that the clock period clk would not be violated.
Therefore, should the k-th register be able to be shared as
assumed, it must lie within these two regions and the algo-
rithm must be able to find it. Contradiction occurs.

Case 3: i = 4
Given a 4-pin net, let s be the source, and t1, t2 and

t3 be the three sinks. Let wr(s, t1), wr(s, t2) and wr(s, t3)
be p, q and r respectively, where 1 ≤ p ≤ q ≤ r. Sup-
pose the algorithm is attempting to share the k-th reg-
ister where 1 ≤ k ≤ p, i.e., it is trying to find a min-
imal subset of the overlapping regions such that it cov-
ers all the extend regions R+((a(t1)−dt1)+clk×(p−k−1))(t1),

R+((a(t2)−dt2)+clk×(q−k−1))(t2) and R+((a(t3)−dt3)+clk×(r−k−

1))(t3), denoted by A, B and C respectively. Notice that we
only consider when k ≤ p and assume that the three paths
from s to t1, t2 and t3 are not merged yet (i.e., no sharing
of registers from k + 1 to r). It is because, otherwise, the
situation will fall into case 1 or case 2 discussed above.

There are 4 distinct cases. First, if A, B and C are dis-
joint, it means that the k-th register cannot be shared and
the algorithm will introduce three new internal nodes to
represent the registers and continues with the next internal
node rk−1. Second, if A, B and C overlap with each other,
it means that the k-th register can be shared among t1, t2
and t3. The algorithm will introduce a single internal node
to represent the register and continues. The correctness of
the algorithm in these two cases is trivial and will not be
elaborated here.

57

The third case is, without loss of generality, that A∩B �= φ
and B ∩ C �= φ but A ∩ C = φ. Denote the region A ∩ B
as RAB and the region B ∩ C as RBC . There are three
possible options that the algorithm can choose from when
evaluating the k-th register: (1) it does not share the k-
th register and introduces three different registers for the
sinks; (2) it shares the k-th register between t1 and t2 but a
separate one for t3; (3) it shares the k-th register between t2
and t3 but a separate one for t1. Our algorithm will choose
arbitrarily either (2) or (3) as the number of adjacent-gate
regions covered by RAB and RBC are the same, but it will
never choose (1). We assume that the algorithm chooses (2)
in the following analysis.

First, we compare the choices of (1) and (2). Notice that
(1) can be better than (2) only when the three separate paths
can be merged together at a subsequent step of processing
register h where 1 ≤ h ≤ k, while the combined path of
t1 and t2 and the path of t3 cannot be merged at the h-th
register. We are going to show that this will not happen.

If we choose (1), suppose that there exists a point x on
the plane such that x ∈ Aj ∩ Bj ∩ Cj , where Aj, Bj and
Cj represent the j times clk-extended regions of A, B and
C respectively, during a subsequent step of processing reg-
ister h where 1 ≤ h ≤ k. By lemma 3, it is shown that
x ∈ R+clk((RAB)j−1), where (RAB)j−1 is the (j − 1) times
clk-extended region from RAB . This means that if it is pos-
sible to share the h-th register among the three edges with-
out sharing the k-th register at the first place, by choosing
(2), i.e., to share the k-th register between t1 and t2, the
algorithm will also be able to share the h-th register among
the edges. Therefore, (2) is better than (1) by sharing more
registers.

Next, we compare the choices of (3) and (2) similarly.
Suppose we choose (3) and there exists a point x on the plane
such that x ∈ Aj ∩ (RBC)j , where Aj and (RBC)j represent
the j times clk-extended regions of A and RBC respectively,
during a subsequent step of processing register h where 1 ≤
h ≤ k. Obviously, there exists a point y covered by Aj∩Bj∩
Cj , i.e., y ∈ Aj∩Bj∩Cj . By lemma 3, y ∈ R+clk((RAB)j−1),
i.e., y ∈ R+clk((RAB)j−1)∩Cj , so the h-th register will also
be shared among the three edges by choosing (2). Therefore,
(2) is no worse than (3). As a result, the algorithm will find
the optimal solution by choosing arbitrarily either (2) or (3)
(using the greedy algorithm).

Finally, if two pairs of the regions overlap while the other
is disjoint, i.e., A ∩ B �= φ but A ∩ C = φ and B ∩ C = φ,
the analysis is similar to the third case above.

4.2 Register Placement
In this section, we discuss how registers are actually placed

using the topology tree yielded from the algorithm discussed
in the previous subsection. Using an idea similar to the tech-
nique in [13, 7], the positions of the registers are determined.

Since some of the chip areas are occupied by the standard
cells, we need to know where on the chip a register can be
placed. To tackle this problem, we divide the chip into a
mesh of m× n grids. For each grid gij , we keep track of its
center coordinates, (xgij , ygij), and the size of the free space
in the grid, f(gij). We finalize the position for a register in
the following manner.

Given a topology tree ΥN , choose arbitrarily an internal
node r to be the root of ΥN , and direct the edges of ΥN
away from r. Starting from the root r, we choose a grid

Topology tree

s

d2

d1

r2r1

Figure 8: The topology tree of a 3-pin net ΥN where
r1 and r2 are two shared registers.

whose center is contained in C(r), i.e., the candidate region
for placing the register r, and it has the largest free space
available. We denote this grid as g(r). If f(g(r)) ≥ z, where
z denotes the size of a register, we take the center of g(r)
as the position of the register r. Otherwise, we allow a
controlled degree of inaccuracy by extending C(r) one grid
width further, i.e., R+gw(C(r)), where gw represents the
width of a grid. Repeat the same process using R+gw(C(r))
instead of C(r) in the search of a feasible grid for placing
register r. If no such grid is found, we report that this
register cannot be placed. This could happen because the
register counts may increase greatly after retiming.

Let q1, . . . , qm be the set of internal nodes which are the
children of r in a topology tree ΥN . After fixing the position
of r, register qj , for 1 ≤ j ≤ m, is placed arbitrarily in its
candidate region C(qj) provided that it is at a distance of
clk or less from r. After visiting all the internal nodes of
ΥN , the position of each register is located.

Suppose we have a 3-pin net N(s,D, L) and its topology
tree ΥN is shown in fig. 8. The topology tree ΥN shows
that the two driven gates d1 and d2 will share two registers
represented by the internal node r1 and r2. In this example,
we assume that clk = 3 units. Consider a 5 × 5 mesh as
shown in fig. 9, where the positions of the driving gate s
and the two driven gates, d1 and d2, are assumed to be the
centers of the grids containing them correspondingly, i.e.,
gate s is located at (4, 0), gate d1 is located at (0, 4) and
gate d2 is located at (2, 4). Suppose ΥN is rooted at node
r1 and the algorithm has fixed its position at (1, 0), let us
examine how the position of r2 is determined.

The candidate region C(r2) of r2 covers the centers of
grids g03, g04, g12, g13, g14, g23 and g24. Starting from the
position of register r1, the algorithm expands a rectangle of
distance clk from it, denoted by R+clk(r1) as shown. Next,
the algorithm will find that C(r2) ∩R+clk(r1) is not empty
and covers the center of grid g12 and g13 - the candidate
positions of register r2. If the free space of g12 is greater
than that of g13, i.e., f(g12) ≥ f(g13) ≥ z, the algorithm
will assign the center of g12 as the position of register r2.

5. EXPERIMENTAL RESULTS
We performed retiming and our proposed register place-

ment algorithm on the ISCAS89 benchmark suite. The pro-
gram was implemented in C language and run on a 1.5GHz
Intel Pentium IV processor with 256KB cache and 512MB
RAM.

In our experiments, we implemented the circuits using
a 0.35µm CMOS standard cell library from Austria Micro
Systems and Silicon Ensemble was used to layout the design

58

y

x(1,0)

(0,4) (2,4)

C(r2)

C(r2) R+clk(r1)

candidate
positions for
register r2 -
g12 and g13

d1
d2

s

(4,0)

r1

R+clk(r1)

Figure 9: An illustration of how the final position
for the register r2 is determined.

with a setting of 50% row utilization. Gate delays were refer-
enced from the data book while wire lengths were estimated
using the Manhattan distance between the connected cells.
We scaled the wire delay according to [3] in which a 1mm
wire was assumed to have a delay of 150ps approximately.
The size of a grid was set to twice as large as a D-type flip
flop. During the placement of a register, we allowed an error
of one-grid width, i.e., the width of a D-type flip flop.

The results are shown in Table 1. The first column indi-
cates the name of the circuits. The second column shows
the number of logical registers existed in the retiming graph
model after retiming. The number of registers had increased
after retiming for most of the circuits because the retiming
method that we used did not minimize the number of reg-
isters as one of its objectives. Although this increase in
register counts does hinder our algorithm to place registers,
it is not the main concern addressed in this paper.

In the third column, the minimum possible number of
register required after sharing is shown, i.e., assuming that
every net could be realized using the best topology. The
fourth column shows the number of registers that have ac-
tually been inserted after using our proposed algorithm. It
can be observed that the numbers in the fourth column are
the same as those in the third column except for circuit
s3271 and s4863. This observation showed that almost all
the nets in our test cases could have their registers placed
using the best topology, revealing that our proposed algo-
rithm can very often find a near-optimal solution for register
insertion.

The fifth column shows the statistics of the number of nets
containing 4 or fewer edges with registers whereas the sixth
column shows the number of nets having 5 or more edges
with registers. The seventh column shows the number of
registers that are placed within their candidate regions while

the eighth column shows the number of registers that are
placed outside their candidate regions but with a controlled
error range (one grid size). As we can see, all the registers
are placed in their candidate regions successfully in all the
test cases. Finally, the CPU runtime is shown in the last
column.

6. CONCLUSION
In this paper, we have proposed an algorithm that solves

the problem of register insertion on global wire given a
placed sequential circuit and a retiming solution. The pro-
posed algorithm can preserve a given clock period with a
controlled error using as few registers as possible in contrast
to many previous works with post-retiming register place-
ment that have the problem of clock period violation. In
addition, the algorithm is also proved to be giving the opti-
mal topology for nets with 4 or fewer pins. Since this type
of nets makes up for about 90% of the nets in a sequential
circuit on average, the algorithm performs very well and ef-
fectively under most situations.

Together with any powerful retiming methods which are
designed to handle global netlist with block and wire delays,
our proposed algorithm can be applied to locate where a reg-
ister should be inserted to pipeline long global interconnects
such that the target clock is preserved. This is particularly
useful in today’s designs in which multiple clock cycles are
required to propagate a signal across a global wire.

Improvements can be made to handle the situation when
there is no room for the candidate region of a register. In-
stead of scanning the neighboring grids for free spaces, in-
cremental shifting and reshuffling of cells can be performed
to free continuous rooms for register insertions.

7. REFERENCES
[1] C. Chu, E. F. Y. Young, D. K. Y. Tong, and S. Dechu.

Retiming with interconnect and gate delay. In
Proceedings of IEEE International Conference on
Computer-Aided Design, 2003.

[2] P. Cochini. Concurrent flip-flop and repeater insertion
for high performance integrated circuits. In
Proceedings of IEEE International Conference on
Computer-Aided Design, pages 268–273, 2002.

[3] J. Cong, L. He, K. Y. Khoo, C. K. Koh, and Z. Pan.
Interconnect design for deep submicron ics. In
Proceedings of IEEE International Conference on
Computer-Aided Design, pages 478–485, 1997.

[4] J. Cong and S. K. Lim. Physical planning with
retiming. In Proceedings of IEEE International
Conference on Computer-Aided Design, pages 2–7,
2000.

[5] V. De and S. Borkar. Low power and high performance
design challenges in future technologies. In Proceedings
of Great Lakes Symposium on VLSI, pages 1–6, 2000.

[6] S. Dey and S. T. Chakradhar. Retiming sequential
circuits to enhance testability. In Proceedings of 12th
IEEE VLSI Test Symposium, pages 28–33, April 1994.

[7] J. L. Ganley and J. S. Salowe. Optimal and
approximate bottleneck steiner trees. In Operations
Reserach Letter, pages 217–224, 1996.

[8] S. Hassoum, C. J. Alpert, and M. Thiagarajan.
Optimal buffered routing path constructions for single
and multiple clock domain systems. In Proceedings of

59

Table 1: Experimental Results of Register Placement with Clock Preservation

No. of Minimum Actual no. Nets with Nets with No. of regs. No. of regs.
logical regs. possible no. of regs. 4 or fewer 5 or more placed within placed with CPU time

Circuit after of regs. after using our edges with edges with candidate controlled (s)
retiming sharing method regs. regs. region error

s641 87 53 53 53 0 53 0 0.01
s713 94 55 55 54 1 55 0 0.02
s820 24 23 23 23 0 23 0 0.01
s832 23 22 22 22 0 22 0 0.01
s1196 31 18 18 17 1 18 0 0.00
s1238 32 18 18 17 1 18 0 0.00
s1269 259 127 127 113 14 127 0 0.02
s1488 90 73 73 71 2 73 0 0.02
s1494 78 62 62 60 2 62 0 0.01
s3271 826 342 438 276 18 438 0 0.18
s4863 622 408 417 360 22 417 0 0.25

s15850.1 1554 1264 1264 1203 26 1264 0 2.52
s35932 5455 2899 2899 2601 280 2899 0 13.41

IEEE International Conference on Computer-Aided
Design, pages 247–253, 2002.

[9] C. Leiserson and B. Saxe. Optimizing synchronous
systems. In Journal of VLSI Computer Systems,
volume 1, pages 41–67, 1983.

[10] C. Leiserson and B. Saxe. Retiming synchronous
circuitry. In Algorithmica, vol. 6, no. 1, pages 5–35,
1991.

[11] I. Neumann and W. Knuz. Layout driven retiming
using the coupled edge timing model. In IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 7, 2003.

[12] P. Pan, A. K. Karandikar, and C. L. Liu. Optimal
clock period clustering for sequential circuits with
retiming. In IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 17, no. 6,
pages 489–498, 1998.

[13] M. Sarrafzadeh and C. K. Wong. Bottleneck steiner
trees in the plane. In IEEE Trans. on Computers, vol.
41, no. 3, 1992.

[14] C. V. Schimpfle, S. Simon, and J. A. Nossek. Optimal
placement of registers in data paths for low power
design. In Proceedings of 1997 IEEE International
Symposium on Circuits and Systems, pages 2160–2163,
1997.

[15] N. Sheony and R. Rudell. Efficient implementation of
retiming. In Proceedings of IEEE International
Conference on Computer-Aided Design, pages
226–233, 1994.

[16] T. C. Tien, H. P. Su, and Y. W. Tsay. Integrating
logic retiming and register placement. In Proceedings
of IEEE International Conference on Computer-Aided
Design, pages 136–139, 1998.

[17] H. Zhou. Retiming for wire pipelining in
system-on-chip. In Proceedings of IEEE International
Conference on Computer-Aided Design, 2003.

60

