
Twin Binary Sequences:
A Non-Redundant Representation
for General Non-slicing Floorplan

Evangeline F.Y. Young
Dept. of CSE

The Chinese Univ. of HK
Shatin, N.T., Hong Kong

fyyoung@cse.cuhk.edu.hk

Chris C.N. Chu
Dept. of ECPE

Iowa State University
Ames, IA 50011-3060
cnchu@iastate.edu

Zion Cien Shen
Dept. of ECPE

Iowa State University
Ames, IA 50011-3060

zionshen@iastate.edu

ABSTRACT
The e�ciency and e�ectiveness of many
oorplanning meth-
ods depend very much on the representation of the geometri-
cal relationship between the modules. A good representation
can shorten the searching process so that more accurate es-
timations on area and interconnect costs can be performed.
Non-slicing
oorplan is the most general kind of
oorplan
that is commonly used. Unfortunately, there is not yet any
complete and non-redundant topological representation for
non-slicing structure. In this paper, we will propose the �rst
representation of this kind. Like some previous work [9], we
have also made used of mosaic
oorplan as an intermediate
step. However, instead of including a more than su�cient
number of extra dummy blocks in the set of modules, our
representation allows us to insert an exact number of irre-
ducible empty rooms to a mosaic
oorplan in such a way that
every non-slicing
oorplan can be obtained by this method
uniquely from one and only one mosaic
oorplan. The size
of the solution space is only O(n!23n=n1:5) but every non-
slicing
oorplan can be generated uniquely and e�ciently in
linear time without any redundant representation.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids|Layout ; J.6
[Computer Applications]: Computer-Aided Engineering|
Computer-aided design

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
As technology moves into the deep-submicron era, circuit

sizes and complexities grow rapidly. Floorplanning has be-
come ever more important than before. Unfortunately,
oor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’02, April 7-10, 2002, San Diego, California, USA.
Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

planning problems are NP-complete. Many
oorplanners
employ methods of perturbations with random searches and
heuristics. The e�ciency and e�ectiveness of these methods
depend very much on the representation of the geometrical
relationship between the modules. A good representation
can shorten the searching process and allows fast realization
of a
oorplan so that more accurate estimations on area and
interconnect costs can be performed.
The problem of
oorplan representation has been studied

extensively. There are three kinds of
oorplan: slicing, mo-
saic and non-slicing. A slicing
oorplan is one that can be
obtained by recursively cutting a rectangle into two by using
a vertical line or a horizontal line. Normalized Polish expres-
sion [7] is the most popular method to represent slicing
oor-
plan. This representation can describe any slicing structure
with no redundancy. An upper bound on its solution space
is O(n!23n�3=n1:5). For general non-slicing
oorplan that
is not necessarily slicing, there was no e�cient representa-
tion other than the constraint graphs until the sequence pair
(SP) [5] and the bounded-sliceline grid (BSG) [6] appeared
in the mid 90's. The SP representation has been widely used
because of its simplicity. Unfortunately, there are a lot of
redundancies in these representations. The size of the solu-
tion space of SP is (n!)2 and that of BSG is n!C(n2; n). This
drawback has restricted the applicability of these methods in
large scale problems. O-tree [3] and B*-tree [1] are later pro-
posed to represent general non-slicing
oorplan. They have
very small solution space of O(n!22n�2=n1:5) and can give
a
oorplan in linear time. However, they can only describe
partial topological information and module dimensions are
needed to give a
oorplan exactly.
The paper [4] proposes a new kind of
oorplan called mo-

saic
oorplan. A mosaic
oorplan is similar to a general
non-slicing
oorplan except that it does not have any un-
occupied room (Figure 1(a)) and there is no crossing cut in
the
oorplan (Figure 1(b)). A representation called Corner
Block List (CBL) is proposed to represent mosaic
oorplan.
This representation has a relatively small solution space of
O(n!23n)1 and the time complexity to realize a
oorplan

1In [4], the paper claims without proof that the size of solu-
tion space for Corner Block List is O(n!23n=n1:5). However,
we believe that the correct size of CBL solution space should
be �(n!23n). In the CBL algorithm, the corner block list
(S;L; T) are perturbed randomly and independently in the
simulated annealing process. There are n! combinations for

196

A

B

C

D

(a)

A

B

C

D

(b)

Figure 1: Structures that cannot be represented in
a mosaic
oorplan

from its representation is linear. However, some corner block
list does not correspond to any
oorplan. As a remedy to
the weakness that some non-slicing structures cannot be rep-
resented (e.g., Figure 1(a)), CBL is extended by including
dummy blocks of zero area in the set of modules. In order
to represent all non-slicing structure, O(n2) of such dummy
blocks are used, which have increased the size of the solution
space signi�cantly [9].

1.1 Our Contributions
Although the problem of
oorplan representation has been

studied extensively, it is still practically useful and theoret-
ically interesting to �nd a complete (i.e., every non-slicing

oorplan can be represented) and non-redundant topological
representation for general non-slicing structure. In this pa-
per, we will present such a representation, the twin binary
sequences (TBS) representation. This will mark the �rst
of this kind. Like some previous work [9], we have made
use of mosaic
oorplan as an intermediate step to repre-
sent a non-slicing structure. However, instead of including
extra dummy blocks in the set of modules, TBS allows us
to insert an exact number of irreducible empty rooms to a
mosaic
oorplan such that every non-slicing structure can
be generated uniquely and non-redundantly. Besides, the
representation can give a
oorplan e�ciently in linear time.
We have also studied the relationship between mosaic and
non-slicing
oorplan and have proved that the number of
empty rooms needed to be inserted into a mosaic
oorplan
to obtain a non-slicing structure is tightly bounded by �(n)
where n is the number of modules.
In the next section, we will de�ne and study this new

representation. In section 3, we will show some interesting
relationships between mosaic and general non-slicing
oor-
plan. In section 4, experimental results will be shown and
discussed.

2. TWIN BINARY SEQUENCES (TBS) REP-
RESENTATION

In the paper [8], Yao, et al. �rst suggest that twin binary
trees (TBT) can be used to represent mosaic
oorplan. They
have shown a one-to-one mapping between mosaic
oorplan
structure and TBT. We have made use of TBT in our rep-
resentation. Recall that the de�nition of twin binary trees
comes originally from the paper [2] as follows:

Definition 1. The set of twin binary trees with n nodes
TBTn � Treen �Treen is the set:

TBTn = f(b1; b2)jb1; b2 2 Treen and �(b1) = �c(b2)g
where Treen is the set of binary trees with n nodes, and
�(b) is the labeling of a binary tree b as follows. We begin

S, 2n�1 combinations for L, and 22n�3 combinations for T .
So the total number of combinations is �(n!23n).

1 1

0

0 0

1

1

1

1

0

0

0

b1 b2

labeling = 100101 labeling = 011010

Figure 2: An example of a twin binary trees

A
B

C D

EF

F

EA

C

B

D

t1
labeling = 01101

B

A D

C E

F
t2

labeling = 10010

Figure 3: Building a twin binary trees from a mosaic
packing

with an empty sequence, and perform an in-order traversal
on the tree. When a node with no left child is reached, we
will add a bit 0 to the sequence, and when a node with no
right child is reached, we will add a bit 1 to the sequence.
The �rst 0 and the last 1 in the sequence will be omitted.
�c is the complement of � obtained by interchanging all the
0's and 1's in �. An example of a twin binary trees is shown
in Figure 2.
Instead of using an arbitrary pair of trees (which may not

be twin binary to each other) directly, we used a 4-tuple
s = (�;�; �; �0) called a twin binary sequences (TBS) to
represent a mosaic
oorplan. This 4-tuple can be one-to-
one mapped to a pair of binary trees t1 and t2 such that t1
and t2 must be twin binary to each other and they together
represent a mosaic
oorplan uniquely. In order to motivate
the idea of our new representation, we will �rst show how a
twin binary trees can be obtained from a mosaic
oorplan
in the following sub-section.

2.1 From Floorplan to Twin Binary Trees
Given a mosaic
oorplan F , we can obtain a pair of twin

binary trees t1 and t2 by traveling along the slicelines of F .
An example is shown in Figure 3. To construct t1, we start
from the module at the lower left corner and travel upward
(left subtree) and to the right (right subtree). Whenever
the lower left corner of another module x is reached, a node
labeled x is inserted into the tree and the process will be
repeated starting from module x until all the modules in
the
oorplan are visited. The tree t2 can be built similarly
by starting from the module at the upper right corner and
travel downward (right subtree) and to the left (left sub-
tree). The paper [8] has shown that the pair of trees built in
this way must be twin binary to each other, and there is a
one-to-one mapping between mosaic
oorplan structure and
twin binary trees. We observed that the inorder traversal
of the two binary trees constructed from a mosaic
oorplan
must be the same. Let us look at the example in Figure 3.
We can see that the inorder traversal of both t1 and t2 are
ABCFDE. We have proved the following observation that
has helped in de�ning the Twin Binary Sequences (TBS)
representation:

197

tree t

0

0 1

1

10

extended
tree of t

Figure 4: An example of an extended tree

Observation 1 A pair of binary trees t1 and t2 can be
constructed from a mosaic
oorplan if and only if (1) they
are twin binary to each other, i.e., �(t1) = �c(t2), and (2)
their inorder traversals are the same.

If we extend a tree t by adding a left child of bit 0 to every
node (except the leftmost node) that has no left child and
by adding a right child of bit 1 to every node (except the
rightmost node) that has no right child, the tree obtained is
called an extended tree of t. An example of an extended tree
is shown in Figure 4. Notice that the inorder traversal of
the extended tree of t will be m1�1m2�2 : : : �n�1mn where
m1m2 : : :mn are the inorder traversal of t and �1�2 : : : �n�1

are the labeling of t. Observation 1 can be restated as fol-
lows:

Observation 2 A pair of binary trees t1 and t2 can be
constructed from a mosaic
oorplan if and only if the inorder
traversal of their extended trees are the same except that all
the bits are complemented.

2.2 Definition of Twin Binary Sequences
From observation 1, we know that a pair of binary trees

t1 and t2 are valid (i.e., corresponding to a packing) if and
only if their labeling are complement of each other and their
inorder traversals are the same. However, the labeling and
the inorder traversal are not su�cient to identify a unique
pair of t1 and t2. Given a permutation of module names
� and a labeling �, there can be more than one valid pairs
of t1 and t2 such that their inorder traversals are � and
�(t1) = �c(t2) = �. In order to identify a pair of trees
uniquely, we need two additional bit sequences � and �0 for
t1 and t2 respectively such that the ith bit in � and �0 tells
whether the ith module in � is the left child (when the bit
is 0) or the right child (when the bit is 1) of its parent in
t1 and t2 respectively. These bits are called the directional
bits. If module k is the root of a tree, its directional bit will
be assigned to zero.
For a binary tree t, its labeling sequence � = �1�2 : : : �n�1

and its directional bit sequence � = �1�2 : : : �n must satisfy
the following conditions:

(1) In the bit sequence �1�1�2 : : : �n�1�n, the number of
0's is one more than the number of 1's.

(2) For any pre�x of the bit sequence �1�1�2 : : : �n�1�n,
the number of 0's is more than or equal to the number
of 1's.

We proved the following lemmas which shows that condi-
tions (1) and (2) are necessary and su�cient for a pair of
sequences � and � to correspond to a binary tree. The proof
is not shown here because of the limitation in space.

Lemma 1. For any binary tree, its labeling sequence �

and directional bit sequence � must satisfy conditions (1)
and (2).

Lemma 2. For any binary sequences � of n� 1 bits and
� of n bits satisfying conditions (1) and (2), there exists a
unique binary tree t such that the labeling sequence of t is �
and the directional bit sequence of t is �.

Now, we can de�ne a twin binary sequences representa-
tion. A twin binary sequence s for n modules is a 4-tuple:

s = (�;�; �; �0)

where � is a permutation of the n modules, both � and �,
and �c (the complement of �) and �0 satisfy conditions (1)
and (2). From the above observations and lemmas, we can
prove the following two theorems:

Theorem 1. There is a one-to-onemapping between twin
binary sequences and twin binary trees.

Theorem 2. There is a one-to-onemapping between twin
binary sequences and mosaic
oorplan.

2.3 Insertion of Empty Rooms
A twin binary sequences s represents a mosaic
oorplan F .

Now we want to insert an exact number of empty rooms at
the right places in F to obtain a corresponding non-slicing

oorplan F 0 such that every non-slicing
oorplan can be
generated by this method from one mosaic
oorplan non-
redundantly. There are two kinds of empty rooms. One is
resulted because a big room is assigned to a small module.
This kind of empty room is called reducible empty room. An
example is shown in Figure 5(a). Another kind of empty
room is called irreducible empty room and is de�ned as fol-
lows:

Definition 2. An irreducible empty room is an empty
room that cannot be removed by merging with another room
in the packing.

An example of an irreducible empty room is shown in
Figure 5(b). We observed that an irreducible empty room
must be of wheel shape and its four adjacent rooms (the
rooms that shares a T-junction at one of its corners) must
not be irreducible empty rooms themselves:

(a) (b)

irreducible
empty room

reducible
empty room

Figure 5: An example of reducible and irreducible
empty rooms

Lemma 3. The T-junctions at the four corners of an irre-
ducible empty room must form a wheel structure (Figure 6).

Proof. If an empty room X does not form a wheel struc-
ture, there is at least one slicing cut on one of its four sides.
By removing this slicing cut, we can merge X with the
room on the other side of the slicing cut and X can be
removed.

198

empty room
irreducible

The four T-junctions at the

room form a wheel structure
corners of an irreducible empty

Figure 6: A wheel structure

X
B

A1

(a)

X

A

B
X21

(b)

2A

Figure 7: Two cases in Lemma 4

Lemma 4. The adjacent rooms at the four T-junctions
of an irreducible empty room must not be irreducible empty
rooms themselves.

Proof. Without lost of generality, we consider an ir-
reducible empty room X of a clockwise wheel shape, and
assume that its adjacent room A sharing with X the T-
junction at its upper left corner is also an irreducible empty
room (Figure 7). Then A must be an anti-clockwise wheel.
There are two cases: (1) If width(A) � width(S), X can be
merged with A1 (Figure 7(a)) to form a new empty room.
This empty room X +A1 is reducible, and can be removed
by combining with the modules on the right hand side (la-
beled B). (2) If width(A) � width(S), A can be merged
with X1 (Figure 7(b)) to form a new empty room and sim-
ilar argument follows. In both cases, we are able to reduce
the number of irreducible empty rooms by one. By repeat-
ing the above process, we will either end up with only one
irreducible empty room that must satisfy the condition, or
the situation that every remaining irreducible empty room
does not share a T-junction with each other.

2.3.1 Mapping Between Mosaic Floorplan and Gen-
eral Non-slicing Floorplan

In this section, we will show how a non-slicing
oorplan
F 0 can be constructed from a mosaic
oorplan F by insert-
ing some irreducible empty rooms at the right places in F .
For simplicity, we will make use of twin binary trees for
explanation. That means, given a mosaic
oorplan F rep-
resented by a twin binary trees t1 and t2, we want to insert
the minimal number of empty rooms (represented by X)
to t1 and t2 appropriately so that they will correspond to
a valid non-slicing
oorplan F 0, and the method should be
such that every non-slicing
oorplan can be constructed by
this method uniquely from one and only one mosaic
oor-
plan. To construct a non-slicing
oorplan from a mosaic

oorplan, we only need to consider those irreducible empty
rooms, because all reducible empty rooms can be removed
by merging with some neighboring rooms. From Lemma 3,
we know that an irreducible empty room must be of the
shape of a wheel, so its structure in the twin binary trees
must be of the form as shown in Figure 8. In our approach,
we will use the following mapping Mx to create irreducible
empty rooms from a sliceline structure.

X

A

D

C

B

X

C

X

A

B

t1

XA

D

C

B

X

A

D

t 1
(a)

C

X

B

t 2
(b)

t

D

2

Figure 8: Tree structure of an irreducible empty
room

A

X D

C

B

t 2

C

X

D

t 1

A

B
C

D

B

X

A
C

D

A

B

t 1 t 2

(a)

X

D

B

CA

A

D B

t 1 t 2

A

D

C

B

t 2

XX

t 1

A C

B C

D

(b)

Figure 9: Mapping between mosaic
oorplan and
non-slicing
oorplan

Definition 3. The mappingMx will map a vertical (hor-
izontal) sliceline with one T-junction on each side to an irre-
ducible empty room of anti-clockwise (clockwise) wheel shape
(Figure 9).

It is not di�cult to prove the uniqueness of this mapping
as stated in the next Lemma:

Lemma 5. Every non-slicing
oorplan can be mapped by
Mx from one and only one mosaic
oorplan.

From Lemma 4, we know that the adjacent rooms of an
irreducible empty room must be occupied. Therefore if we
want to insert X's into the twin binary trees t1 and t2 of
a mosaic
oorplan, the X's must be inserted between some
module nodes as shown in Figure 10. Given this observation,
we will �rst insert as many X's as possible (i.e., n� 1) into
t1 and t2 to obtain another pair of trees t01 and t

0

2. An exam-
ple is shown in Figure 11(b). Now, the most di�cult task
is to select those X's that are inserted correctly. Accord-
ing to Observation 2, a pair of twin binary trees are valid
(correspond to a packing) if and only if the inorder traver-
sal of their extended trees are equivalent except that all the
bits are reversed. Therefore, in order to �nd out those valid
X's, we will write down the inorder traversal of the extended
trees of t01 and t02 and try to match the X's. The matching
is not di�cult since there must be an equal number of X's
between any two neighboring module names (Figure 11(c)).
We may need to make a choice when there are more than
one X's between two modules. For example, in Figure 11(c),
there is one X between C and D in the �rst sequence and
there are two X's in the second sequence. In this case, we
can match one pair of X's. There are two choices from the
second sequence, and they will correspond to di�erent non-
slicing structures as shown in Figure 11(c). Every matching
will correspond uniquely to a valid
oorplan, and each non-
slicing
oorplan can be constructed uniquely by this method
from one and only one mosaic
oorplan.

199

A

X

B BB

A

X

B

(b)(a)

A
A

Figure 10: The only two ways to insert X into a tree

A
B

C

D E F

D

A

C

B

E

F

B

A C

F

E

D

D

A

C

B

X

X

X

(a) (b)

B

A C

F

E

D

X X

X

X

X

t 1 t 2

1t’ t’2

X 0 A 1 B 0 C 0 X 0 X 0 D 1 E 1 F 1 X 1 X

One of them will be matched
with the X in the first sequence

D

B

E

F

B

A C

F

E

X

D

A

X

C

A

B

C

X

D

A E

X F

C

B

B

A C

F

E

X

D

t’’ t’’ t’’ t’’1 12 2

The second X is chosen.
(c)

X

E

X

F

The first X is chosen.

D E
F

A
X

F
D

E

C
B

X 0 A 0 X 0 B 1 C 1 X 1 D 0 E 0 F 1 X 1 X

Figure 11: A simple example of constructing a non-
slicing
oorplan from a mosaic
oorplan

In our implementation, we do not need to build the trees
explicitly to insert the empty rooms. We can scan the twin
binary sequences s = (�;�; �; �0) once to �nd out the posi-
tions of the X's in the inorder sequences of t1 and t2 after
insertion. This is possible because of the following obser-
vation. Consider an X inserted at a node position B in a
tree. If B is the left child of its parent A (Figure 10 (a)),
this inserted X will appear just before the left subtree of B
in the inorder sequence of the extended tree. Similarly, if
B is the right child of its parent A (Figure 10 (b)), this in-
serted X will appear just after the right subtree of B in the
inorder sequence of the extended tree. A simple algorithm
can be used to break down the subtree structure of a tree
and �nd out the positions of all the X's in the inorder se-
quence in linear time. The details are omitted here because
of the space limitation. After that, matching can be done
as described above.

2.4 Floorplan Realization
In order to realize a
oorplan from its TBS representa-

tion e�ciently, we devised an algorithm that only needs to
scan the sequences once from right to left to construct the
packing:

π
α
β
β’

DE

A B C E D
0 1 1 0 1

0 0 0 1 1

(b)

0 0 1 0 1

π
α
β
β’

D
E

C

A B C E D
0 1 1 0 1
0 0 1 0
0 0 0 1 1

(c)

π
α
β
β’

A B C E D
0 1 1 0 1
0 0 1 0 1
0 0 0 1 1

D

(a)

π
α
β
β’

D
E

C
B

A B C E D

0 0 1 0
0 0 0 1

(d)

0 1 1 0 1
π
α
β
β’

D

B

C
E

A

A B C E D
0 1 1 0 1
0 0 1 0
0 0

(e)

Figure 12: A simple example of constructing a
oor-
plan from its TBS

Algorithm TBStoFloorplan
Input: A TBS s = (�; �;�;�0)
Output: Packing P corresponding to s

Begin
1. Append � with bit '1', i.e., �n = 1.
2. Initially, we have only module �n in P .
3. For i = n� 1 downto i = 1:
4. If (�i = 0):
5. Find the largest k s.t. i < k � n and �k = 1.
6. Add module �i to P from the left, pushing modules

�i+1; �i+2; : : : ; �k to the right. Note that modules
�i+1; �i+2; : : : ; �k will be lying on the left boundary
of P at this moment.

7. Delete �i+1; �i+2; : : : ; �k from �.
8. If (�i = 1):
9. Find the largest k s.t. i < k � n and �0

k
= 1

10. Add module �i to P from above, pushing modules
�i+1; �i+2; : : : ; �k down. Note that modules
�i+1; �i+2; : : : ; �k will be lying on the top boundary
of P at this moment.

11. Delete �0
i+1; �

0

i+2; : : : ; �
0

k
from �0.

End

We have proved the correctness of the above algorithm,
but the proof is is not shown here because of the space lim-
itation. A simple example illustrating the steps of the algo-
rithm is given in Figure 12.

2.5 Size of Solution Space
Consider a TBS (�;�; �; �0) for n modules. � and �

uniquely specify a rooted ordered binary tree. So the num-
ber of combinations of � and � is given by the Catalan
number. Since the number of combinations for � is n!, the
number of combinations for �0 is upper-bounded by O(2n),
and the Catalan number is upper-bounded by O(22n=n1:5),
the number of di�erent TBS con�gurations (i.e., on the Bax-
ter number) is bounded by O(n!23n=n1:5).

3. TIGHT BOUND ON NUMBER OF IRRE-
DUCIBLE EMPTY ROOMS

In order to describe non-slicing structure by a mosaic

oorplan representation, some previous work [9] include dummy
blocks of zero area in the set of modules. The method de-
scribed in section 2.3 is very e�cient but it is applicable
to the TBS representation only. In general, we only need
to have n� 1 extra dummy blocks in order to represent all
non-slicing structures by a mosaic
oorplan representation.
This is an improvement to the previous result [9] in which
O(n2) dummy blocks are needed. We have proved an upper
bound of n � 1 and a lower bound of n � 2

p
n + 1 on the

number of irreducible empty rooms in a general non-slicing

oorplan. (An example with 49 modules and 43 irreducible

200

1

2
3

4
5

6
7

Figure 13: An example with many irreducible empty
rooms.

empty rooms is shown in Figure 13.) It means that n � 1
dummy blocks are needed and we cannot use much less.

Theorem 3. In a non-slicing
oorplan P , there can be
at most n � 1 irreducible empty rooms.

Theorem 4. There exists a non-slicing
oorplan P of n
modules and n� 2

p
n+ 1 irreducible empty rooms.

4. EXPERIMENTAL RESULTS
All experiments are performed on a PC with 1400MHz In-

tel Xeon Processor and 256Mb Memory. Simulated anneal-
ing is used to search for a good TBS. The initial temperature
is set to 1:5� 106 initially and is lowered at a constant rate
of 0.95 to 0.97 until it is below 1 � 10�10. The number of
iterations at one temperature step is 30.
In every iteration of the annealing process, we will modify

the TBS by one of the following �ve kinds of moves:

M1: Exchange two modules in �.
M2: Flip one bit in �.
M3: Exchange two bits of di�erent values in �.
M4: Exchange two bits of di�erent values in �0.
M5: Change the width and height of a module.

We design the moves such that all TBS's are reachable.
In addition, we will make sure that the sequences obtained
after each move is a TBS (i.e., satisfying conditions (1)-(2)).
Moves M1 and M5 takes O(1) time and the moves M2, M3
and M4 takes O(n) time.
We test our algorithm with empty room insertion on six

MCNC benchmarks. We also run the algorithm with empty
room insertion disabled. In other words, only mosaic
oor-
plan can be generated. For each case, two objective func-
tions are considered. The �rst one aims at minimizing area
only, while the second one will minimize a weighted sum
of area and wirelength. The weights are set such that the
costs of area and wirelength are approximately equal. For
each experiment, ten runs are performed and the result of
the best run is reported. The results for area minimization
is shown in Table 1. The results for area and wire length
minimization is shown in Table 2.
As the results show, our
oorplanner can produce high-

quality
oorplans in a very short runtime. We also notice
that empty room insertion is very e�ective in reducing the

oorplan area. If empty room insertion is disabled, the
deadspace is worse for all but two cases. The deadspace
is 32.84% more on average. However, with empty room in-
sertion, the
oorplanner is about 40.8% slower.

MCNC TBS (with X) TBS (no X)
benchmark % Dead- Run- % Dead- Run- (s)

space time (s) space time (s)

apte 1.89 0.86 1.30 0.73
xerox 2.17 1.30 2.46 1.20
hp 2.10 0.76 2.22 0.63

ami33a 3.05 1.26 4.05 0.98
ami49a 4.05 2.55 4.38 2.08
playout 6.20 2.58 7.60 1.09

Table 1: Area minimization.

TBS (with X)
MCNC % Dead- Wire- Cost Run-

benchmark space length time (s)

apte 1.79 12652 95492 0.89
xerox 2.64 14937 39295 1.36
hp 1.32 4246 18291 0.73

ami33a 8.41 6078 26000 1.30
ami49a 9.40 29668 80660 2.60
playout 5.19 2.373 9341 2.50

TBS (no X)
MCNC % Dead- Wire- Cost Run-

benchmark space length time (s)

apte 3.45 13267 98642 0.62
xerox 4.41 14738 39405 1.22
hp 3.43 4292 18587 0.61

ami33a 7.25 6488 26742 1.02
ami49a 10.82 30256 82107 2.14
playout 6.32 2.265 9454 1.08

Table 2: Area and wirelength minimization.

5. REFERENCES
[1] Y.C. Chang, Y.W. Chang, G.M. Wu, and S.W. Wu.

B*-Trees: A New Representation for Non-Slicing Floorplans.
Proceedings of the 37th ACM/IEEE Design Automation
Conference, 2000.

[2] S. Dulucq and O. Guibert. Baxter Permutations.Discrete
Mathematics, 180:143{156, 1998.

[3] Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura.
An O-Tree Representation of Non-Slicing Floorplan and Its
Applications. Proceedings of the 36th ACM/IEEE Design
Automation Conference, pages 268{273, 1999.

[4] Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu,
Sheqin Dong, Chung-Kuan Cheng, and Jun Gu. Corner
Block List: An E�ective and E�cient Topological
Representation of Non-Slicing Floorplan. Proceedings of the
IEEE/ACM International Conference on Computer-Aided
Design, pages 8{12, 2000.

[5] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani.
Rectangle-Packing-Based Module Placement. Proceedings
IEEE International Conference on Computer-Aided Design,
pages 472{479, 1995.

[6] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani.
Module Placement on BSG-Structure and IC Layout
Applications. Proceedings IEEE International Conference on
Computer-Aided Design, pages 484{491, 1996.

[7] D.F. Wong and C.L. Liu. A New Algorithm for Floorplan
Design. Proceedings of the 23rd ACM/IEEE Design
Automation Conference, pages 101{107, 1986.

[8] B. Yao, H. Chen, C.K. Cheng, and R. Graham. Revisiting
Floorplan Representations. Proceedings of International
Symposium on Physical Design, pages 138{143, 2001.

[9] S. Zhou, S. Dong, X. Hong, Y. Cai, and C.-K. Cheng.
ECBL: An Extended Corner Block List with Solution Space
Including Optimum Placement. Proceedings of International
Symposium on Physical Design, pages 156{161, 2001.

201

