
Floorplan Area Minimization using Lagrangian Relaxation

F.Y. Young’, Chris C.N. Chu2, W.S. Luk3 and Y.C. Wang”

‘Department of Computer Science and Engineering
The Chinese University of Hong Kong

New Territories, Hong Kong

2Department of Electrical and Computer Engineering
Iowa State University

Ames, IA 50011

3Synopsys, Inc.
700 East Middlefield Road

Mountain View, CA 94043-4033

ABSTRACT modules can be handled in constraint graphs efficiently. This
Floorplan area minimization is an important problem be-
cause many modules have shape flexibilities during the floor-
planning stage. Area minimization in general non-slicing
floorplan is a complicated problem. Many previous works
have attempted to tackle this problem [9; 6; 5; l] using
heuristics or numerical methods but none of them can solve
it optimally and efficiently. In this paper, we show how this
problem can be solved optimally by a geometric program-
ming using Lagrangian relaxation. The resulting Lagrangian
relaxation subproblem is so simple that the size of each mod-
ule can be found in constant time. We implemented our idea
in a simulated annealing framework based on the sequence
pair representation. The area minimization procedure is in-
voked in every iteration of the annealing process but the to-
tal execution time is still very much faster than that of the
most updated previous work [4]. For a benchmark data with
49 modules, we take 19.5 hours using a 270 MHz Sun Ultra 5
while the convex programming approach in [4] takes seven
days using a 250 MHz DEC Alpha. This area minimization
method will be applicable to any other floorplanning algo-
rithm which uses constraint graphs to find module positions
in the final packing.

1. INTRODUCTION
Floorplanning has become increasingly important in phys-
ical design of VLSI circuits because of the advance in the
deep sub-micron technology. Many floorplanning algorithms
were proposed in recent years and many of them use con-
straint graphs to find module positions in the final packing.
Unfortunately, it is not known how shape flexibility of soft

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on sewers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD 2000, San Diego, CA.
Copyright 2000 ACM I-581 13-191-7/00/0004...$5.00

is an important problem because soft modules are common
in the floorplanning stage when many designs are not done
in details yet. Some previous works [9; 6; 5; l] have at-
tempted to tackle this problem but none of them succeeded
in obtaining the optimal solution efficiently.

There are two types of floorplan: slicing and non-slicing.
Slicing floorplan is a floorplan which can be obtained by
cutting rectangles recursively. Non-slicing floorplan is one
which is not restricted to be slicing. Figure 1 shows an ex-
ample of each. Non-slicing floorplan is a more general repre-
sentation and it can describe all kinds of packings. However
slicing floorplan has an important advantage over non-slicing
floorplan, which is, there are efficient algorithms to han-
dle shape flexibility in slicing floorplan optimally. A well
known approach by Wong et. at [lo] uses shape curve to
represent all possible shapes of a module. Wang et. al [8]
and Moh et. al [2] use numerical optimization methods.
Moh et. al [2] formulate the problem as a geometric pro-
gramming and find its global minimum using some standard
convex optimization techniques. However their formulations
are all limited to placement topology of rectangular dissec-
tion, i.e. slicing.

This area minimization problem becomes much more com-
plicated in non-slicing floorplan. Both Pan et. al [6] and
Wang et. al [9] try to generalize Stockmeyer’s algorithm [7]
to non-slicing floorplan. Kang et. al [l] extend the BSG
method [5] to handle soft modules using heuristics. These
methods are either sub-optimal or not applicable to all gen-
eral non-slicing structures. Murata et. al [4] follow the frame-
work of [2] and try to reduce the number of variables and
functions when formulating the problem so as to improve
the efficiency. However, the execution time of their method
to find an exact solution is still very long. It takes seven
days to solve a problem with 49 modules.

We will present an efficient method to handle shape flexi-
bilities of soft modules in general floorplans optimally. The
problem is formulated as a geometric program but we use

174

the Lagrangian relaxation technique [3], a general technique
for constrained non-linear optimization, to solve the prob-
lem e�ciently. This technique transforms the problem into
a sequence of subproblems called Lagrangian relaxation sub-
problems. Each subproblem can be signi�cantly simpli�ed
by the Kuhn-Tucker conditions. The resulting subproblem
is so simple that the size of each module can be found in
constant time.

The rest of this paper is organized as follow. We will formu-
late the problem in the next section. Section three describes
briey the sequence pair oorplanning algorithm. We for-
mulate the geometric program in section four. In section
�ve, we will explain in details the Lagrangian relaxation.
Experimental results will be given in the last section.

A B

C

D

E

F

G

H

A

B
C

DE

FG

H

Slicing Floorplan Non-slicing Floorplan

Figure 1: Slicing and Non-slicing Floorplan

2. PROBLEM FORMULATION
We consider two kinds of modules: hard modules and soft
modules. A hard module is a module whose dimension is
�xed. A soft module is one whose area is �xed but its di-
mension can be changed as long as its aspect ratio, i.e. the
ratio of height to width, is within a given range. In this
problem, we are given n modules of areas A1, A2, ..., An and
their aspect ratio ranges [r1;min; r1;max], [r2;min; r2;max], ...,
[rn;min; rn;max]. In case of a hard module, the maximum
and minimum aspect ratio will be the same.

A packing of a set of modules is a non-overlap placement
of the modules. A feasible packing is a packing such that
the widths and heights of the soft modules are consistent
with their aspect ratio constraints and area constraints. We
measure the area of a packing as the area of the smallest
rectangle enclosing all the modules.

We are also given the netlist information: net1; net2; :::;netm
and the relative positions of the I/O pins p1; p2; :::; pq along
the boundary of the chip. For each net neti where 1 � i �
m, we are given its weight and the I/O pin and the set of
modules it is connected to. Our objective is to obtain a fea-
sible packing minimizing a linear combination of the total
packing area and the interconnect cost.

We use the simulated annealing technique to search the solu-
tion space. For each intermediate solution in the annealing
process, there can be many di�erent realizations of the pack-
ing due to the shape exibility of the soft modules. The most
important contribution of our work is an e�cient method to
minimize the total area optimally given a certain packing
topology described by the vertical and horizontal constraint
graphs.

3. SEQUENCE PAIR AND CONSTRAINT
GRAPH

We use sequence-pair to represent a general oorplan in the
annealing process. A sequence-pair of a set of module is a
pair of combinations of the module names. For example, s =
(abcd; bacd) is a sequence-pair of the module set fa; b; c; dg.
We can derive the relative positions between the modules
from a sequence-pair s by the following rules:

H-constraint: If s = (:: a :: b ::; :: a :: b ::), then module
b is on the right of module a.

V-constraint: If s = (:: a :: b ::; :: b :: a ::), then module
b is below module a.

We can use constraint graphs to represent these horizontal
and vertical placement constraints. A horizontal (vertical)
constraint graph Gh (Gv) for a set of n modules is a graph
of n vertices with the vertices representing the modules and
the edges representing the horizontal (vertical) placement
constraints. For example, if module b is on the right of
module a, we add an edge from a to b in the horizontal
constraint graph. Similarly, if module b is above module a,
we add an edge from a to b in the vertical constraint graph.
We can build these graphs directly from the sequence-pair
representation s:

� Add an edge from a to b in the horizontal constraint
graph Gh if s = (:: a :: b ::; :: a :: b ::).

� Add an edge from b to a in the vertical constraint
graph Gv if s = (:: a :: b ::; :: b :: a ::)

4. FORMULATION OF THE GEOMETRIC
PROGRAM

We are given n modules M1, M2, ..., Mn of areas A1, A2,
..., An. For each module Mi where 1 � i � n, its min-
imum and maximum aspect ratios are ri;min and ri;max

respectively. The minimum and maximum width are thus
Li =

p
Ai=ri;max and Ui =

p
Ai=ri;min respectively. Let

xi denote the smallest x position of the lower left corner
of module i satisfying all the horizontal constraints in the
horizontal constraint graph Gh. Similarly, yi denotes the
smallest y position of the lower left corner of module i sat-
isfying all the vertical constraints in the vertical constraint
graph Gv. Then for each edge e(i; j) from module i to mod-
ule j in Gh, we have the following constraint:

xi +wi � xj

where wi is the width of module i. Similarly, for each edge
e(i; j) from module i to module j in Gv, we have the follow-
ing constraint:

yi +
Ai

wi

� yj

In the horizontal constraint graph Gh, we denote the set of
sources and sinks by sh and th respectively where a source
is a vertex without in-coming edge and a sink is a vertex
without out-going edge. Similarly, we use sv and tv to de-
note the set of sources and sinks in Gv respectively. Then
for each module i in sh:

xi = 0;

and for each module i in sv:

yi = 0;

For simplicity, we add one dummy vertex labeled n + 1 to
each Gh and Gv. Edges e(i; n+ 1) are added to Gh for all
i 2 th and, similarly, e(i; n+1) are added to Gv for all i 2 tv.
From now onwards, we assume that the constraint graphs
Gh and Gv contain these additional vertices and edges. The
problem can be formulated as the following geometric pro-
gramming PP (Primal Problem):

Minimize xn+1yn+1
Subject to xi +wi � xj 8e(i; j) 2 Gh (A)

yi +
Ai

wi
� yj 8e(i; j) 2 Gv (B)

Li � wi � Ui 81 � i � n (C)

5. LAGRANGIAN RELAXATION
According to the Lagrangian relaxation procedure, we can
introduce non-negative multipliers, called Lagrange multi-
pliers, to the constraints in order to get rid of those dif-
�cult constraints and incorporate them into the objective
function. Let �i;j denotes the multiplier for the constraint
xi + wi � xj in (A) and �i;j denotes the multiplier for the

constraint yi +
Ai

wi
� yj in (B). Let ~� and ~� be vectors of

all the Lagrange multipliers introduced to the constraints in
(A) and (B) respectively. Then the Lagrangian relaxation

subproblem associated with the multiplier ~� and ~�, denoted

by LRS=(~�; ~�), becomes:

Minimize xn+1yn+1 +P
e(i;j)2Gh

�i;j(xi + wi � xj) +P
e(i;j)2Gv

�i;j(yi +
Ai

wi
� yj)

Subject to Li � wi � Ui 81 � i � n

Let Q(~�; ~�) denotes the optimal value of the problem LRS=(~�; ~�).
We de�ne the Lagrangian dual problem LDP of PP as fol-
lows:

Maximize Q(~�; ~�)

Subject to ~� � 0 and ~� � 0

Since PP can be transformed into a convex problem, we can

apply Theorem 6.2.4 of [3] and imply that if (~�; ~�) is the op-

timal solution to LDP , the optimal solution of LRS=(~�; ~�)
will also optimize PP .

5.1 Simplification of the Lagrangian Relax-
ation Subproblem

The Lagrangian relaxation subprogram LRS=(~�; ~�) can be
greatly simpli�ed using the Kuhn-Tucker conditions. Con-
sider the Lagrangian � of PP [3]:

� = xn+1yn+1 +
X

e(i;j)2Gh

�i;j (xi +wi � xj) +

X
e(i;j)2Gv

�i;j(yi +
Ai

wi

� yj) +

X
1�i�n

ui(Li �wi) +
X

1�i�n

vi(wi � Ui)

= xn+1yn+1 �
X

e(i;n+1)2Gh

�i;n+1xn+1 �

X
e(i;n+1)2Gv

�i;n+1yn+1 +

X
1�i�n

(
X

e(i;j)2Gh

�i;j �
X

e(j;i)2Gh

�j;i)xi +

X
1�i�n

(
X

e(i;j)2Gv

�i;j �
X

e(j;i)2Gv

�j;i)yi +

X
1�i�n

((
X

e(i;j)2Gh

�i;j)wi + (
X

e(i;j)2Gv

�i;j)
Ai

wi

) +

X
1�i�n

ui(Li �wi) +
X

1�i�n

vi(wi � Ui)

The Kuhn-Tucker conditions imply that @�=@xi = 0 and
@�=@yi = 0 for all 1 � i � n + 1 at the optimal solution

of PP . Therefore, in searching for the ~� and ~� to optimize
LDP , we only need to consider those multipliers such that
these conditions are satis�ed. Therefore for all 1 � i � n:

@�=@xi =
X

e(i;j)2Gh

�i;j �
X

e(j;i)2Gh

�j;i = 0

@�=@yi =
X

e(i;j)2Gv

�i;j �
X

e(j;i)2Gv

�j;i = 0

and

@�=@xn+1 = yn+1 �
X

e(i;n+1)2Gh

�i;n+1 = 0

@�=@yn+1 = xn+1 �
X

e(i;n+1)2Gv

�i;n+1 = 0

Rearrange:

X
e(j;i)2Gh

�j;i =
X

e(i;j)2Gh

�i;j (1)

X
e(j;i)2Gv

�j;i =
X

e(i;j)2Gv

�i;j (2)

and

yn+1 =
X

e(i;n+1)2Gh

�i;n+1

xn+1 =
X

e(i;n+1)2Gv

�i;n+1

We use
 to denote the set of (~�; ~�) satisfying the above
relationship ((1) and (2)) for a given pair of horizontal and

vertical constraint graphs. If (~�; ~�) 2
, the objective func-

tion F of LRS=(~�; ~�) becomes:

F =
X

1�i�n

((
X

e(i;j)2Gh

�i;j)wi + (
X

e(i;j)2Gv

�i;j)
Ai

wi

) �

X
e(i;n+1)2Gh

�i;n+1xn+1 �
X

e(i;n+1)2Gv

�i;n+1yn+1 +

(
X

e(i;n+1)2Gh

�i;n+1)(
X

e(i;n+1)2Gv

�i;n+1)

where (
P

e(i;n+1)2Gh
�i;n+1)(

P
e(i;n+1)2Gv

�i;n+1) is a con-

stant for a �xed (~�; ~�).

5.2 Solving LRS=(~�; ~�)

In this section, we consider solving the Lagrangian relax-

ation subproblem LRS=(~�; ~�) when (~�; ~�) 2
, i.e. comput-
ing wi for 1 � i � n. F can be written as:

F = k +
X

1�i�n

((
X

e(i;j)2Gh

�i;j)wi + (
X

e(i;j)2Gv

�i;j)
Ai

wi

)

where k = (
P

e(i;n+1)2Gh
�i;n+1)(

P
e(i;n+1)2Gv

�i;n+1) is a

constant. Di�erentiate F with respect to wi in order to get
the optimal value of wi to minimize F :

@F

@wi

= 0

X
e(i;j)2Gh

�i;j �
Ai

w2
i

X
e(i;j)2Gv

�i;j = 0

wi =

s
Ai �

P
e(i;j)2Gv

�i;jP
e(i;j)2Gh

�i;j

Recall that wi must lie within the range [Li; Ui]. Let w�i

denote

r
Ai�

P
e(i;j)2Gv

�i;j
P

e(i;j)2Gh
�i;j

. Since @F=@wi is positive for

wi < w�i and negative for wi > w�i , the optimal wi can be
computed as:

wi = minfUi;maxfLi; w
�
i gg

The algorithm Find-Width outlines the steps to solve LRS=(~�; ~�):

Algorithm Find-width

/* This algorithm solves PP ((~�; ~�) optimally given

(~�; ~�) 2
 */
Input: Areas A1, A2, ..., An

Lower bounds of widths L1, L2, ..., Ln
Upper bounds of widths U1, U2, ..., Un
Constraint graphs Gv and Gh

Lagrange multipliers (~�; ~�) 2

Output: Widths w1, w2, ..., wn

1. For i = 1 to n
2. sum1 = sum2 = 0
3. For all e(i; j) 2 Gh

4. Compute sum1 = sum1 + �i;j
5. For all e(i; j) 2 Gv

6. Compute sum2 = sum2 + �i;j
7. If (sum1 6= 0) and (sum2=sum1 � 0)

7. Compute w� =
p
Ai � sum2=sum1

8. wi = minfUi;maxfLi; w
�gg

5.3 Solving LDP

As explained above, we only need to consider those (~�; ~�) 2

 in order to maximize Q(~�; ~�) in the LDP problem. We
used a subgradient optimization method to search for the

optimal (~�; ~�). Starting from an arbitrary (~�; ~�) 2
 in

step k, we will move to a new pair (~�0; ~�0) by following the
subgradient direction:

�0i;j = [�i;j + �k(xi +wi � xj)]
+

�0i;j = [�i;j + �k(yi +
Ai

wi

� yj)]
+

where

[x]+ =

�
x if x > 0;
0 if x � 0:

and �k is a step size such that limk!1�k = 0 and
P1

k=1 �k =

1. After updating ~� and ~�, we will project (~�0; ~�0) back to

the nearest point (~��; ~��) in
 and solve the Lagrangian

relaxation subproblem LRS=(~��; ~��) using the method de-
scribed in section 5.2. This procedure is repeated until the
solution converges. The following algorithm summarizes the
steps to solve LDP :

Algorithm Solve-LDP

/* This algorithm solves the LDP problem optimally.
Given the placement topology described by the con-
straint graphs, it computes the optimal values for the
widths of the modules to minimize the total packing
area. */
Input: Areas A1, A2, ..., An

Lower bounds of widths L1, L2, ..., Ln
Upper bounds of widths U1, U2, ..., Un
Constraint graphs Gv and Gh

Output: Widths w1, w2, ..., wn

1. Initialize (~�; ~�) and �1

2. k = 1
3. Repeat
4. Call Find-width()
5. Compute xi; yi 81 � i � n + 1 using the

longest path algorithm
6. Compute �0i;j = [�i;j + �k(xi +wi � xj)]

+

8e(i; j) 2 Gh

7. Compute �0i;j = [�i;j + �k(yi +
Ai

wi
� yj)]

+

8e(i; j) 2 Gv

8. Project (~�0; ~�0) to (~��; ~��) such that

(~��; ~��) 2

9. k = k + 1

10. (~�; ~�) = (~��; ~��)
11. Until wi's converge

5.4 Projection
As described above, we used a subgradient optimization

method to search for the optimal (~�; ~�). Starting from an

arbitrary (~�; ~�) 2
, we will move to a new pair (~�0; ~�0)

by following the subgradient direction. (~�0; ~�0) will then be

projected back to the nearest point (~��; ~��) in
 based on
the 2-norm measure. This projection step is done by �nding

an orthonormal bases ~�1; : : : ; ~�p; ~�1; : : : ; ~�q of
. Then

~�� =

pX
i=1

(~�0 � ~�i)~�i

~�� =

qX
i=1

(~�0 � ~�i) ~�i

To �nd the orthonormal bases spanning
, we �rst �nd a
set I of independent vectors spanning
 using the Gaussian
Elimination. Then we apply the Gram-Schmidt process to
obtain the orthonormal bases from I. Notice that in equa-
tion (1) and (2), each variable will appear at most twice
and their coe�cients are either 1 or -1, so the Gaussian
Elimination step takes O(n2) time, instead of O(n3), where
n is the total number of modules and there is no oating
point division throughout the whole process. In addition,
the structure of the constraint graphs remains unchanged if
we exchange two modules in a move, so we do not need to
re-compute the orthonormal bases in those cases.

6. EXPERIMENTAL RESULTS
We tested our oorplanner on a set of MCNC benchmark
data. For each experiment, the initial temperature is de-
cided such that an acceptance ratio is 95% at the beginning.
The temperature is lowered at a constant rate (0.9) and the
number of iterations at one temperature step is a constant.
All the experiments were carried out on a 270 MHz Sun
Ultra 5.

We did two sets of experiments. In the �rst set, we allow
the aspect ratio of each module to range from 0.1 to 10.0
in order to compare the results with [4]. Table 1 shows
the comparison. For ami33, it takes us about 3 hours to
obtain a packing with 1.2% deadspace while the result given
by [4] is about 21 hours. For ami49, our approach needs

about 19.5 hours while [4] records about 7 days. We can see
that our method is much more useful practically in terms of
running time and the packing quality is also good.

In the second set of experiments, we allow the aspect ratio
of each module to range from 0.5 to 2.0. [0:5;2] is a more
reasonable range and this can better demonstrate the speed
and quality of the oorplanning algorithm. Table 2 display
the result. Figure 2 and 3 show two result packings.

Our Method [4]

Data n Deadspace % Time (sec) Time (sec)
xerox 10 0.0 54 789

apte 9 0.0 41 1198
hp 11 0.2 71 1346

ami33 33 1.2 10628 75684
ami49 49 3.1 70234 612103

Table 1: Comparing with the results in [4]

Data n % Deadspace (%) Time (sec)

xerox 10 0.0 63

apte 9 0.1 43
hp 11 1.3 108

ami33 33 2.0 13899

ami49 49 6.1 96815

Table 2: Results of testing with the benchmark data

using aspect ratio bound [0:5;2:0]

0

1

2

3

4
5

6

7

8

9

10
11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Figure 2: A result packing of ami33 with aspect ratio

bound [0:5; 2:0]. It has 2% deadspace.

7. REMARKS
In this paper, we presents a method to minimize area in
general non-slicing oorplan. We formulate the problem as
a convex program and simplify it using Lagrangian Relax-
ation. Experimental results show that our approach works
much faster than previous methods and gives high quality
packings. The step size � for the subgradient optimization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35
36

37
38

39

40

41

42

43

4445

46

47
48

Figure 3: A result packing of ami49 with aspect ratio
bound [0:1; 10:0]. It has 3% deadspace.

of ~� and ~� is an important factor a�ecting the packing qual-
ity. We are interested in �nding appropriate value for this
parameter automatically. Besides, the implementation can
be further improved to increase the speed. We will continue
to work on these issues in the future.

8. ACKNOWLEDGEMENT
We would like to thank Professor Martin D.F. Wong for his
helpful advices.

9. REFERENCES
[1] M. Kang and W. W.M. Dai. General Floorplanning

with L-shaped, T-shaped and Soft Blocks Based on
Bounded Slicing Grid Structure. IEEE Asia and South

Paci�c Design Automation Conference, pages
265{270, 1997.

[2] T.-S. Moh, T.-S. Chang, and S. L. Hakimi. Globally
Optimal Floorplanning for a Layout Problem. IEEE
Transaction on Circuit and Systems - I: Fundamental

Theory and Applications, 43(9):713{720, 1996.

[3] M.S. Bazaraa and H.D. Sherali and C.M. Shetty.
Nonlinear Programming: Theory and Algorithms.
John Wiley & Sons, Inc., second edition, 1997.

[4] H. Murata and Ernest S. Kuh. Sequence-Pair Based
Placement Method for Hard/Soft/Pre-placed
Modules. International Symposium on Physical

Design, pages 167{172, 1998.

[5] S. Nakatake, K. Fujiyoushi, H. Murata, and
Y. Kajitani. Module Placement on BSG-Structure and
IC Layout Applications. Proceedings IEEE
International Conference on Computer-Aided Design,
pages 484{491, 1996.

[6] Peichen Pan and C.L. Liu. Area Minimization for
General Floorplans. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, pages 606{609, 1992.

[7] L. Stockmeyer. Optimal Orientations of Cells in
Slicing Floorplan Designs. Information and Control,
59:91{101, 1983.

[8] Ting-Chi Wang and D.F. Wong. An Optimal
Algorithm for Floorplan Area Optimization.
Proceedings of the ACM/IEEE Design Automation

Conference, pages 180{186, 1990.

[9] Ting-Chi Wang and D.F. Wong. Optimal Floorplan
Area Optimization. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, 2(8):992{1001, 1992.

[10] D.F. Wong and C.L. Liu. A New Algorithm for
Floorplan Design. Proceedings of the 23rd ACM/IEEE

Design Automation Conference, pages 101{107, 1986.

