
Author's personal copy

INTEGRATION, the VLSI journal 41 (2008) 306–316

Multi-bend bus driven floorplanning$

Jill H.Y. Law, Evangeline F.Y. Young�

Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received 10 July 2006; received in revised form 10 September 2007; accepted 10 September 2007

Abstract

In this paper, the problem of bus-driven floorplanning is addressed. Given a set of blocks and bus specifications (the width of each bus

and the blocks that the bus need to go through), we will generate a floorplan solution such that all the buses go through their blocks, with

the area of the floorplan and the total area of the buses minimized. The approach proposed is based on a simulated annealing framework.

Using the sequence pair representation, we derived and proved some necessary conditions for feasible buses, for which we allow 0-bend,

one-bend, or two-bend. A checking will be performed to identify those buses that cannot be placed simultaneously. Finally, a solution

will be generated giving the coordinates of the modules and the buses. Comparing with the results of the most updated work on this

problem by Xiang et al. [Bus-driven floorplanning, in: Proceedings of IEEE International Conference on Computer-Aided Design, 2003,

pp. 66–73], our algorithm can handle buses going through many blocks and the dead space of the floorplan obtained is also reduced. For

example, if the buses have to go through more than 10 blocks, the approach in Xiang et al. [Bus-driven floorplanning, in: Proceedings of

IEEE International Conference on Computer-Aided Design, 2003, pp. 66–73] is not able to generate any solution while our algorithm

can still give solutions of good quality.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Physical design; CAD; Floorplanning; Bus-driven; Simulated annealing

1. Introduction

Floorplanning is to plan the positions and shapes of a set
of modules at the beginning of the design cycle to optimize
circuit performance. Interconnect-driven floorplanning is
considered to be one of the most important problems in
physical design today. As the complexity of chip design
increases, the amount of interconnections between different
modules on a chip also increases rapidly. Bus is a collection
of wires, which can be used to carry signals between
different modules. Bus routing has become more and more
important as the complexity of chip design increases. An
area-compacted floorplan is not necessarily bus-routable.
In order to ease bus routing and avoid unnecessary
iterations of the physical design cycle, it would be

favourable to incorporate this bus routing problem in the
early designing phases. Bus-driven floorplanning considers
bus placement. Buses are of different widths and need to go
through different sets of modules. Therefore, the positions
of the modules will affect the placement of the buses. The
objective of the problem is to obtain a bus-routable
floorplan such that the area of the chip and the total area
of the buses are minimized.
The floorplanning problem in general is a well-studied

problem. There are three kinds of floorplan: slicing, non-
slicing and mosaic. Many new representations were
introduced in the past decade to represent different kinds
of floorplans, including sequence pair [1], bounded-sliceline
grid [2], O-tree [3], B*-tree [4], transitive closure graph [5],
corner block list (CBL) [6], Q-sequence [7], twin binary tree
[8] and twin binary sequence [9], etc. Some of these
floorplanners are extended to handle placement constraints
in floorplan design. The floorplanners in [4,10,11] can
handle pre-place constraint in which some modules are
fixed in position. The paper [12–14] work on boundary
constraint in which some modules are constrained to be

ARTICLE IN PRESS

www.elsevier.com/locate/vlsi

0167-9260/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2007.09.002

$The work described in this paper was partially supported by a grant

from the Research Grants Council of the Hong Kong Special Adminis-

trative Region, China (Project No. 4188/03E).
�Corresponding author.

E-mail address: fyyoung@cse.cuhk.edu.hk (E.F.Y. Young).

Author's personal copy

placed along one of the four sides of the chip for I/O
connection. The paper [15] generalizes the approach in [10]
to handle range constraint in which some modules are
restricted to be placed within some rectangular ranges. In
[16], the authors tried to enforce the abutment constraint
based on the CBL representation. It is shown that the
abutment information of the blocks can be deduced from
the CBL representation. However, the blocks on a bus are
not necessarily abutted. Thus, their approach cannot be
used to solve the bus driven-floorplanning problem. In [17],
the authors proposed a unified method to handle simulta-
neously different kinds of placement constraints, including
pre-placed constraint, range constraint, boundary con-
straint, alignment, abutment and clustering constraint, etc.
All these constraints were modeled as a collection of
‘‘relative placement constraints’’ and ‘‘absolute placement
constraints’’, and were enforced by inserting edges in the
constraint graphs. However, this approach is not suitable
for bus-driven floorplanning as for a bus, the order in
which the blocks are placed on a bus is not fixed. Besides,
we do not know beforehand the shape of a bus which can
be 0-bend, 1-bend, or 2-bend in our problem.

Based on the sequence pair representation, the authors
of [18] proposed a method to enforce alignment constraint
and some other performance constraints in floorplanning.
Although the alignment constraint mentioned in [18] is not
applicable for bus-driven floorplanning, their intuition on
deducing the approximate positions of the blocks by
looking at the sequence pair is very helpful. In [19], the
authors have made use of the idea from [18] to design an
intact algorithm to solve the bus-driven floorplanning
problem. In [19], the authors aimed at solving the bus-
driven floorplanning problem, based on a simulated
annealing (SA) framework. Each candidate floorplanning
solution were checked in an evaluation step to see if the
buses are feasible, i.e., the required set of blocks can be
passed through by a 0-bend bus. Sequence pair representa-
tion was used. One major drawback of this approach is
that, only horizontal and vertical buses are considered and
the solution quality will deteriorate if the number of blocks
involved in each bus is large. Our proposed algorithm has
made a significant improvement over [19] by allowing
0-bend, 1-bend, and 2-bend buses.

In this paper, this bus-driven floorplanning problem
will be re-visited. Unlike [19], our proposed algorithm
allows 0-bend, 1-bend (or 1-via), and 2-bend (or 2-via)
buses. Experimental results have shown that our algo-
rithm can generate solutions with high quality especially
when the number of blocks in each bus is large. For
example, if the buses have to go through more than
10 blocks each, the approach in [19] is not able to generate
any solution while our algorithm can still give solutions
of good quality.

The rest of this paper is organized as follows. A formal
definition of the problem will be given in Section 2. After
that, an algorithm is proposed to solve the problem, and
details will be discussed in Section 3. Experimental results

will be presented in Section 4. Finally, a conclusion will be
drawn in Section 5.

2. Problem formulation

We assume that buses are routed on two layers, one for
horizontal buses and the other for vertical buses. The bus-
driven floorplanning problem can be formulated as follows.
Given the following:

(1) A set of n blocks B ¼ fb0; b1; . . . ; bn�1g, where each
block bi is associated with a width wi and a height hi,
where wi; hi 2 Rþ.

(2) A set of m buses U ¼ fu0; u1; . . . ; um�1g, where each bus
ui has a width ti where ti 2 Rþ, and need to go through
a set of blocks Bi;Bi � B.

Our task is to decide the position of each block and the
route of each bus such that every bus ui goes through all its
blocks, there is no overlapping between any two blocks and
there is no overlapping between the horizontal (vertical)
components of the buses (since there are only two layers for
bus routing). The goal is to minimize the chip area and
the total bus area. We consider buses of 0-bend, 1-bend, or
2-bend only in our problem to minimize the number of vias
used.
We will define the meaning of ‘‘going through’’ in the

following. For a horizontal component of a bus ui to go
through a set of blocks fA;B;Cg, the vertical overlapping
between the blocks has to be greater than or equal to the
bus width ti of ui. An example is shown in Fig. 1. The
condition for a vertical component of a bus to go through a
set of blocks can be defined similarly.

3. Methodology

SA will be used as the searching engine. A candidate
solution will be evaluated according to (1) the number of
buses routed successfully, (2) the total area of the buses,
and (3) the total area of the floorplan. There are three main
steps to evaluate a solution. The first step is to determine
the shapes of the buses by examining the sequence pair.
After that, a bus ordering is found such that all feasible
buses can be layed out successfully by following this order.
Finally, a flooplan is obtained by calculating the coordi-
nates of the blocks and the buses. Bus feasibility is

ARTICLE IN PRESS

A

B

C

u
i t

i

Fig. 1. Bus ui goes through A, B, and C.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316 307

Author's personal copy

performed on the sequence pair representation of a
candidate solution first because some candidate floorplans
cannot be realized under the bus constraints, and it will be
more efficient if we can check that out by just looking at
the sequence pair representation before the floorplan
realization step. Details of each step will be given in the
following sections.

3.1. Shape validation

We can deduce the shape of a bus by looking at the
sequence pair representation of the floorplan. As we allow
buses of at most two bends, buses that cannot be realized in
two bends will be considered as infeasible and will be
excluded from further checking. A penalty will be added to
the cost of the annealing process for each infeasible bus.

An example is shown in Fig. 2. Consider a sequence pair
(FGHICDEAB, ABCDEFGHI), a bus ui that need to go
through the blocks in fD;E;Gg can be realized as a 1-bend
bus (Fig. 2(a)). Another bus uj that need to go through the
blocks in fA;C;D;E;G;H; Ig will have at least three bends
(Fig. 2(b)) and it will be marked as infeasible. The aim of
this step is to find out all the infeasible buses and to
determine the shape of each feasible bus.

Given a bus ui that need to go through Bi ¼ fb1; b2;
. . . ; bkg, we will first extract those blocks in Bi from the
sequence pair, without altering their relative positions. For
example, if we are checking a bus that need to go through a
set of blocks fA;B;Eg in a floorplan represented by the
sequence pair (ADBCE, EBCAD), we will first extract spi ¼
ðABE;EBAÞ from the sequence pair and examine spi
to decide whether ui can be routed successfully as a
0-bend, 1-bend, or 2-bend bus one after another.

3.1.1. 0-Bend bus shape validation

A 0-bend bus is simply a horizontal or a vertical bus. For
a bus ui to be 0-bend, the orders of the blocks in the two
sequences of spi ¼ ða;bÞ have to be either the same,
i.e., a ¼ b (for horizontal bus) or reversed, i.e., a ¼ bR

(for vertical bus). For example, given a sequence pair
(DEFABC, ABCDEF) and a bus u0 that need to go through
the blocks in fA;B;Cg, the first step is to extract
the corresponding blocks from the sequence pair:
sp0 ¼(ABC, ABC). As the blocks appear in the same order
in both sequences, it can be concluded that u0 can be
realized as a horizontal bus. For another bus u1 that has
to go through the blocks in fC;Fg, the extracted sp1 is

(FC, CF). As the blocks appear in reversed order, it can
be realized as a vertical bus. This example is illustrated in
Fig. 3. The 0-bendcondition is stated formally as follows:
Condition 0-bend: A pair of sequences si ¼ ðai;biÞ

satisfies the 0-bend condition if and only if ai ¼ bi or
ai ¼ bRi .

3.1.2. 1-Bend bus shape validation

A 1-bend bus is also called an L-shaped bus. For a bus to
be 1-bend, a necessary condition is that it consists of one
vertical component and one horizontal component. This
can be checked easily by identifying the longest common
subsequence (LCS) in spi first, and then check if the
remaining blocks (after removing the blocks in the LCS) in
the two sequences are in reversed order. The 1-bend
condition is stated formally as follows:
Condition 1-bend: A pair of sequences si ¼ ðai;biÞ satis-

fies the 1-bend condition if and only if ai � g ¼ ðbi � gÞR
where g is the LCS in si.

Lemma 1. The 1-bend condition is necessary for a sequence

pair si that allows a bus passing through all its blocks with

only one bend.

Proof. To pass through a set of blocks with a 1-bend bus,
some of the blocks must be horizontally related while the
remaining is vertically related. Those horizontally related
will form one common subsequence in si. To check the
feasibility, we only need to look at the LCS, instead of any
common subsequence. This is because if taking an LCS as
the horizontal component fails to form a valid L-shape,
taking any other LCS or shorter subsequences will also fail.
Let l1 be the LCS of spi we picked and l2 be another
common subsequence such that jl2jpjl1j. There are two
different cases according to the number of blocks in l1 but
not in l2. The first case is that there are at least two blocks
n1 and n2 in l1 but not in l2. Then, a valid L-shape cannot
be formed with l2 as the horizontal component because n1
and n2, which are not in l2, must also be ina left–right
relationship with each other. This implies two separate
horizontal components and a valid L-shape cannot be
formed.
The second case is that there is only one block n1 in l1

but not in l2. There are two sub-cases according to the
lengths of l1 and l2. In the first sub-case, jl2jojl1j, i.e.,
jl2j ¼ jl1j � 1, the block n1 can serve as the joint between
the vertical and the horizontal components if a valid
L-shape can be formed, and taking either l1 or l2 as the
horizontal component is the same. In the second sub-case,

ARTICLE IN PRESS

A B

C D E

F
G H I

A B

C D E

F
G H I

Fig. 2. (a) A 1-bend bus. (b) A 3-bend bus.

A
B

C

D

E

F

u
0

u
1

Fig. 3. Two valid 0-bend buses, fA;B;Cg and fC;Fg.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316308

Author's personal copy

jl2j ¼ jl1j, then there will be another block n2 in l2 but not
in l1. Notice that n1 and n2 must be in an upper–lower
relationship with each other. If n2 is not the leftmost nor
the rightmost block in l2, a valid L-shape cannot be formed
by taking l2 as the horizontal component since the vertical
component will appear in the middle part of the horizontal
component otherwise. If n2 is the leftmost or the rightmost
block in l2 (and so as n1 in l1), taking either l1 or l2 as the
horizontal component is the same, as the block n1 or n2 can
serve as the joint between the vertical and the horizontal
components if a valid L-shape can be formed. &

In the following steps, we will regard the first and the last
block of the LCS as in the vertical component and will keep
them for checking whether the vertical component is on the
left or on the right of the horizontal component. Let us
look at an example. Given a sequence pair (DEFABC,
ABCDEF) and a bus u3 that has to go through the blocks
fA;B;C;Dg, the first step is to extract the corresponding
blocks sp3 ¼ ðDABC;ABCDÞ from the sequence pair. As it
failed the 0-bend checking, the next step is to check if it can
be realized as a 1-bend bus. The LCS of sp3 is ABC, so
ABC will be taken as the horizontal component of u3 and B

will be removed from sp3. Then we have to check whether
the remaining block D can form a vertical component with
the block A or C. As the blocks A and D appear in reversed
order in sp3, AD can form the vertical component of u3
(Note that C and D also appear in reversed order in sp3 and
we can pick either AC or CD.). After checking, u3 is
classified as a valid 1-bend bus. This example is illustrated
in Fig. 4. Let us look at anotherexample. given the same
sequence pair (DEFABC, ABCDEF) and another bus u4
that has to go through the blocks in fA;B;E;Fg, we first
extract the corresponding blocks sp4 ¼ ðEFAB;ABEF Þ
from the sequence pair. The LCS is AB or EF. As there
exist more than one LCS, we can take any one of them.
Suppose that we take AB, the remaining subsequences are
not in reversed order, so it is not a valid 1-bend bus and it

will proceed to the 2-bend checking. This example is
illustrated in Fig. 5.

3.1.3. 2-Bend shape validation

If a bus is found to be neither 0-bend nor 1-bend, we will
check whether it is a 2-bend bus. There are several kinds of
2-bend buses, Z-shaped, mirrored Z-shaped, C-shaped, or
mirrored C-shaped. There will be two horizontal (vertical)
components and one vertical (horizontal) component in the
bus, denoted by HVH or VHV, respectively. Assuming
the case of HVH in the following discussion, we will first
identify the vertical component of the bus. Let the
extracted sequence pair spi of bus ui be ða;bÞ, where a
and b are strings of blocks. The vertical component can be
found by finding the LCS in ða; bRÞ, where bR denotes the
reverse of the string b. Similar to 1-bend checking, the first
block and the last block of the LCS will be kept for
horizontal component checking. Besides, we have to pick
an LCS but not any other shorter subsequence, and if there
are more than one LCSs, picking any one of them will be
the same. The argument is similar to that in 1-bend shape
validation.
After identifying the vertical component, we will classify

the remaining blocks of the bus into different relationships
with the vertical component. For example, consider a bus
ui with extracted sequence pair spi ¼ ða;bÞ ¼ ðABCFDE;
AEDCBF Þ. The LCS of a and bR is BCDE. The block A

will be classified as in the set Left, as A is on the left of all
the blocks in the vertical component. On the other hand,
block F will be classified as in the set UpperRight, as F is on
the right-hand side of the blocks B and C and on top of the
blocks D and E. We can deduce these relationships easily
from the sequence pair. There are totally eight position sets:

(1) A block is in the set Upper if it is above all the blocks in
the LCS.

(2) A block is in the set UpperLeft if it is above or on the
left of all the blocks in the LCS.

(3) A block is in the set Left if it is on the left of all the
blocks in the LCS.

(4) A block is in the set LowerLeft if it is below or on the
left of the blocks in the LCS.

(5) A block is in the set Lower if it is below the blocks in
the LCS.

(6) A block is in the set LowerRight if it is below oron the
right of the blocks in the LCS.

(7) A block is in the set Right if it is on the right of the
blocks in the LCS.

(8) A block is in the set UpperRight if it is above or on the
right of the blocks in the LCS.

There are four valid shapes for the case of HVH: Z-shape,
mirrored Z-shape, C-shape, and mirrored C-shape. In
order to form a valid shape, some of the position sets have
to be emptied. For example, to form a mirrored Z-shape,
there should be no blocks in the upper-left and lower-right
directions of the vertical component. Thus, the sets

ARTICLE IN PRESS

A B C

D

E

F

u3

Fig. 4. A valid 1-bend bus fA;B;C;Dg.

A
B

C

D

E

F

u
4

Fig. 5. Bus u4 cannot be realized as a 1-bend bus.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316 309

Author's personal copy

UpperLeft and LowerRight have to be emptied. The blocks
in the set Upper, UpperRight, and Right will form one
horizontal component, and the blocks in the set Lower,
LowerLeft, and Left will form another horizontal compo-
nent. Details are shown in Fig. 6. The last step is to check
both horizontal components to ensure that the blocks in
each component can indeed align horizontally, i.e., the
blocks appear in the same order in both sequences of spi.
The 2-bend condition is stated formally as follows:

Condition 2-bend: A pair of sequences si ¼ ðai; biÞ
satisfies the 2-bend condition if (1) the blocks not in the
LCS of ai and bi are clustered in one quadrant on the left
side of the LCS and one quadrant on the right side of the
LCS or (2) the blocks not in the LCS of ai and bRi are
clustered in one quadrant on the upper side of the LCS and
one quadrant on the lower side of the LCS.

Lemma 2. The 2-bend condition is necessary for a sequence

pair si that allows a bus passing through all its blocks with

only two bends.

Proof. To pass through a set of blocks with a 2-bend bus
that has a horizontal (vertical) trunk, some of the blocks
must be horizontally (vertically) related to form the trunk
while the remaining will form two vertical (horizontal)
components, one on the left (upper) side and one on the
right (lower). Those horizontally (vertically) related blocks
will form one common subsequence in ai and bi (ai and
bRi). To check feasibility, we only need to look at the LCS,

instead of any common subsequence and the argument is
similar to that for Lemma 1. &

The shape validation step for 0-bend, 1-bend, and
2-bend buses can be incorporated into one whole process
and the overall algorithm is shown in Figs. 7–9.

3.2. Bus ordering

In this step, we aim at determining an ordering between
the valid buses, and removing those that have conflicts
with others. For example, given a sequence pair (CADB,
ACBD), block C has to be placed above block A according
to the orderings in the sequence pair, so any horizontal
bus going through block C has to be placed above
any horizontal bus going through block A. This kind of
constraint is called the bus ordering constraint.
However, some ordering constraints may be contra-

dictory to each other. An example is shown in Fig. 10. In
this example, block A is on the left of block B according to
the sequence pair, so any vertical bus going through A has
to be placed on the left of any vertical bus going through
block B. Similarly, block C is on the left of block D

and thus, any vertical bus going through C has to be
placed on the left of any vertical bus going through D.
Problem will occur if there are two 2-bend buses ui and uj,
where a vertical component of ui has to go through blocks
A and D, and a vertical component of uj has to go through
blocks B and C. These two vertical components have to
be placed on the left-hand side of each other, which is
impossible. This step aims at removing the least number of
buses such that the remaining buses do not have any
conflict with each other. For simplicity, our discussion
below is limited to the horizontal components of the buses,
where the case for the vertical components can be derived
similarly.
Assuming that buses are routed on two layers, one layer

for horizontal buses and the other for vertical buses. We
can consider the constraints between horizontal compo-
nents and the constraints between vertical components
separately. For 1-bend or 2-bend buses, we will first break
them down into two or three 0-bend components,
respectively, before checking the ordering constraints
(Fig. 11). For horizontal components, we will use a graph
Gh ¼ ðV ;EÞ to determine whether all the ordering con-
straints can be satisfied. Each vertex in V represents a
0-bend horizontal component, and E ¼ fðvi; vjÞj component
vi has to be placed above component vjg. In order to check
if ðva; vbÞ 2 E, we will first extract spab from the sequence
pair, where spab contains only the blocks in ua and ub. For
example, if the sequence pair is (ABCDEF, DEACBF), and
ua has to go through block A and B and ubhas to go
through block C and D, the extracted spab will be (ABCD,
DACB). Let m be a block, s1½m� denotes the position of
block m in the first sequence of spab, e.g., s1½A� in the above
example is one. Similarly, s2½m� is the position of block m in
the second sequence of spab. In the above example, s2½A� is

ARTICLE IN PRESS

Empty set

Components of H2 (the
lower horizontal component)

Components of H1 (the
upper horizontal component)

Components of H1 or H2

Upper

Lower

Left

Right

UpperRight

UpperLeft

LowerRight

LowerLeft

Fig. 6. Necessary conditions on the position sets to form valid 2-bend

shape.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316310

Author's personal copy

two. After computing the s1½m� and s2½m� for each related
block m, we will check if spab falls into one of the following
three cases according to [19] (Fig. 12):

(1) If 8x 2 Ba, s1½x�Xs2½x�, and 9y 2 Ba, s1½y�4s2½y�, then
ua is belowub. Thus, (vb; vaÞ 2 E.

(2) If 8x 2 Bb, s1½x�Xs2½x�, and 9y 2 Bb, s1½y�4s2½y�, then
ub is below ua. Thus, ðva; vbÞ 2 E.

(3) If 9x 2 Ba, s1½x�4s2½x�, and 9y 2 Bb, s1½y�4s2½y�, then
contradiction occurs, as ua cannot be above ub and
below ub at the same time.Thus, ðvb; vaÞ 2 E and
ðva; vbÞ 2 E.

In the floorplanner, we simply perform the checking for
every pair of horizontal (vertical) bus components directly.
As some of the buses cannot be placed simultaneously, our

ARTICLE IN PRESS

Fig. 8. Pseudo-code for 1-bend checking.

Fig. 7. Pseudo-code for shape validation.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316 311

Author's personal copy

aim in this step is to remove the least number of buses such
that all the remaining buses can be placed. Besides, we aim
at finding an ordering for the remaining buses such that
they can be placed one after another successfully in a
bottom-up (left–right) manner. To do so, we have to
examine the graph Gh. Contradiction exists if cycle
presences. Therefore the first step is to check whether
cycles exist in Gh. If there are cycles, we want to remove the
least number of nodes (bus components) to make the graph
acyclic. However, this Node-Deleting Problem is proved to

be NP-complete [19]. Our heuristic to solve the problem
is to keep on removing the node with the highest degree
(in-degree plus out-degree), until the graph is acyclic.

ARTICLE IN PRESS

Fig. 9. Pseudo-code for 2-bend checking.

C

D

A B

E

F

G

C

D

A B

E

F

G

Fig. 11. A 2-bend bus is broken down into three 0-bend components for

checking the ordering constraints.

sp
ij
=(ADEBC, DEABC)

A D E B C

D E A B C

A

B

C

D

Case 3

sp
ij
=(ACDB, CABD)

A C D B

C A B D

A
B

C

D
E

Case 1 and Case 2

Fig. 12. Different cases of a bus ordering constraint.

F G

A

C
D

B

H I

E

J KL

u
i

u
j

Fig. 10. Bus ui has to be placed on the left of uj and bus uj has to be placed

on the left of bus ui .

C
D

A B

C

D

A
B

u
i

u
j

Fig. 13. Adding bend to resolve bus ordering conflict.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316312

Author's personal copy

Assume that a 2-bend bus ui is broken into three 0-bend
components u1, u2, and u3, where u1 and u3 are horizontal
and u2 is vertical. When processing the horizontal
components, a graph Gh is built. If u1 is selected to be
removed in order to make Gh acyclic, u3 in the horizontal
graph and u2 in the vertical graph have to be removed as
well. This is obvious since we should not keep partial bus
components in the solution, if some other components of
the bus are already marked as invalid. In some cases,
bending can help to resolve conflicts in the ordering
constraint graphs Gv and Gh. An example is shown in
Fig. 13. In this example ui and uj are horizontal buses that
contradict with each other. Changing ui from 0-bend to
1-bend can resolve the conflictwithout removing any bus
from the graph. However, this technique of adding bends
to a bus to resolve conflict can only be used for buses that
are 0-bend or 1-bend, so that one more bend can be added
to resolve the conflict by the method as illustrated in
Fig. 13. This can be done by processing those buses
marked as invalid during the cycle removing step of Gh or
Gv again to form buses with one more bend by calling
the procedures ONE_BEND_CHECK(), TWO_BEND_
CHECK_VHV() or TWO_BEND_CHECK_HVH().

After obtaining an acyclic graph, an ordering of the
remaining valid components can be obtained from a
topological sort of Gh.

3.3. Floorplan realization

The final step to evaluate a candidate solution is to
realize the floorplan, i.e., obtaining the coordinates of the
blocks and the buses, to determine the chip area and the
total bus area. After the previous checkings, all the invalid
buses are removed, and a correct bus ordering is found.
Based on these information, we can compute the coordi-
nates of all the blocks and the valid buses, and thus the
chip area and total bus area. In order to obtain the
coordinates of the blocks, we used the algorithm FAST-SP
in [20] to construct a floorplan from the sequence pair.
Then we use the same approach as in [19] to align blocks on
the same bus, which can be described in brief as follows.
The following process is repeated OðmÞ times, where m is
the total number of valid buses. Note that all 1-bend
and 2-bend buses will have been broken down into
0-bend buses for processing. Let us consider horizontal
buses only. In iteration i, bus ui will be processed.

The coordinates of the blocks that ui goes through will
be computed first. Then, the position of ui will be
calculated by performing some basic alignment steps
between the blocks that ui goes through. These basic
alignment steps for horizontal buses are shown in Fig. 14.
An example is shown in Fig. 15.
After doing the basic alignment steps, we will check if ui

overlaps with any previously placed bus. If so, ui will be
moved up and the coordinate yui will be updated. If ui is
moved up, the positions of all the blocks that ui goes
through may need to be computed again.

3.4. Time complexity

For a bus ui passing through k blocks, the shape
validation step will take Oðk log kÞ time to find the LCS in
spi. It then takes OðkÞ time to put the remaining blocks into
the position sets and to perform ONE_BEND_CHECK()
and TWO_BEND_CHECK()s. To find the bus ordering,
for each pair of horizontal (or vertical) bus components ua
and ub, we need to scan the extracted sequence pair spab
once, so the total time will be Oðm2KÞ where m is the
number of buses and K is the largest number of blocks a
bus passes through. For the floorplan realization step, the
packing step takes Oðn log nÞ using a simpler version of the
FAST-SP algorithm in [20], while the alignment step will
take OðKÞ for each bus component. Therefore, the total
time taken will be OðmK logK þm2K þ n log nþmKÞ ¼
OðmK logK þm2K þ n log nÞ.

3.5. Simulated annealing

SA is used to search for a good solution. In this section,
the set of moves and the cost function used in the SA will
be discussed.

ARTICLE IN PRESS

Fig. 14. Pseudo-code of the basic alignment step for horizontal buses.

B

C
A

y
max

y
c

y
b

C
A

B
y

max

y
c

y
b

Fig. 15. (a) ymax, yb, and yc are calculated. (b) yb has to be moved up to let

the bus go through.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316 313

Author's personal copy

3.5.1. Moves

To change from one candidate solution to another, we
use two operations, swap and rotate.

(1) Swap is to exchange the positions of two blocks in
either the first sequence or the second sequence. This
can be done in constant time.

(2) Rotate is to exchange a block’s height with its width.
This can be done in constant time.

3.5.2. Cost function

As mentioned above, our objectives are to (1) accom-
modate all the buses, (2) minimize the total area of the
buses, and (3) minimize the area of the floorplan. Thus, the

cost function is defined as follows.

Cost ¼ a � Aþ b � Bþ g � I ,
where A is the chip area, B is the total bus area, I is
the number of invalid bus, and a, b, and g are para-
meters that can be specified by the users. In this bus-
driven floorplanning problem, we focused on fitting all
the buses in a compact floorplan solution. Other aspects
like the total wire length and routing congestion can
also be considered by including more terms in the cost
function.

3.6. Handling soft blocks

In order to compare with the results presented in
[19], we have added the feature of ‘‘soft block adjustment’’.
The adjustment is the same as that in [19]. This step
makes use of the fact that the width and height of a
block can be altered as long as the area is unchanged
and the dimension is constrained by an aspect ratio bound.
The process is again done by SA. The cost function is the
same as before. In each pass, a block lying on a
critical path will be selected, and the width or height
of it will be changed a little bit. Then, the floorplan
realization step is repeated to obtain a new chip area
and total bus area. Note that if a valid bus is made invalid
by this soft block adjustment step, the new candidate
solution will be discarded. Besides, when changing a block
width or height, the aspect ratio constraint cannot be
violated.

4. Experimental results

The proposed algorithm is implemented using the Cþþ
language and the experiments are conducted using an Intel
Xeon (2.2GHz) machine with 1G memory. The test cases
are derived from the MCNC benchmarks for floorplan-
ning. In order to compare with the results presented in [19],
the same test cases (Table 1) are tried using our proposed
algorithm and all the experiments (including those of [19])

ARTICLE IN PRESS

Table 1

Data set one

File No. of

blocks

No. of

buses

Average/max. no. of

blocks in a bus

apte 9 5 2.60/3

xerox 10 6 2.50/3

hp 11 14 2.29/3

ami33-1 33 8 4.17/6

ami33-2 33 18 2.39/4

ami49-1 49 9 4.00/6

ami49-2 49 12 3.58/6

ami49-3 49 15 3.53/6

Table 2

Data set two

File No. of

blocks

No. of

buses

Average/max. no. of

blocks in a bus

ami33-3 33 1 10.00/10

ami33-4 33 3 10.00/10

ami33-5 33 5 10.00/10

ami49-4 49 1 15.00/15

ami49-5 49 3 11.67/15

ami49-6 49 4 11.25/15

Table 3

Results of data set one

Ref. [19] Our work Comparisona

Time (s) Dead space (%) Time (s) Dead space (%) Time (%) Dead space difference (%)

apte 15 0.72 30 0.48 þ100 �0:24
xerox 15 0.95 35 0.42 þ133:33 �0:53
hp 33 0.62 51 0.29 þ54:55 �0:33
ami33-1 11 0.94 93 1.00 þ745:45 þ0:06
ami33-2 92 1.27 144 1.19 þ56:62 �0:08
ami49-1 16 0.85 71 0.56 þ343:75 �0:29
ami49-2 302 0.84 713 0.58 þ136:09 �0:26
ami49-3 285 1.09 865 0.60 þ203:51 �0:49

Average þ221:65 �31:54

aCalculated by ððy1 � y0Þ=y0Þ � 100%, where y0 and y1 are the time (or dead space) obtained by [19] and by our algorithm, respectively.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316314

Author's personal copy

are run on the same machine. The annealing processes are
implemented in such a way that the stopping criteria of
both programs are the same. The results are listed in
Table 3. Comparing with the results of [19], the dead space
of the floorplan obtained by our algorithm is reduced on
average. The runtimes of our approach have increased
because of the extra steps in processing 2-bend buses. The
shape validation step has become more complicated with
2-bend buses in comparison with that in [19] which
considers only 0-bend and 1-bend buses.

To demonstrate the importance of having 1-bend and 2-
bend buses, we have created another set of test cases
(Table 2) based on the ami33 and ami49 benchmarks. In
these test cases, each bus will go through at least 10 blocks.
The annealing process stops when the deadspace percen-
tage is less than a certain threshold. The results are
shown in Table 4. For this data set, the approach in [19] is
not able to generate any solution for most of the test cases,
while our algorithm can still generate solution of high

quality (with average dead space of 1.8% only). We can see
that our algorithm can obtain much better performance.
As their approach allows only 0-bend bus, it is very
difficult to accommodate several buses that go through
many blocks. Some resultant packings are shown in
Figs. 16 and 17.

ARTICLE IN PRESS

Table 4

Results of data set two

Ref. [19] Our work Comparison

Time (s) Dead space Time (s) Dead space (%) Time Dead space difference

ami33-3 86 1.81% 32 1.01 �62:79% �0:80%
ami33-4 4103 – 92 1.90 – –

ami33-5 4103 – 95 3.80 – –

ami49-4 73 19.34% 88 0.63 þ20:55% �18:71%
ami49-5 4103 – 261 1.17 – –

ami49-6 4103 – 140 2.19 – –

Average 118 1.78

Fig. 16. Result packing of ami49-3.

Fig. 17. Result packing of ami49-6.

J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316 315

Author's personal copy

5. Conclusion and future work

In this paper, an algorithm to solve the bus-driven
floorplanning problem allowing 0-bend, 1-bend, and
2-bend buses is proposed. Experimental results show that
our approach is effective. The presence of 1-bend and
2-bend buses is important especially when the number of
blocks that a bus goes through is large. It is difficult to find
a solution if only 0-bend bus is allowed in those cases. One
feasible extension of this work is to consider buses of other
shapes with small number of vias.

Acknowledgement

We would like to thank the authors of [19] who have
kindly given us their program and test cases such that we
can conduct the experiments.

References

[1] H. Murata, K. Fujiyoushi, S. Nakatake, Y. Kajitani, Rectangle-

packing-based module placement, in: Proceedings of IEEE Interna-

tional Conference on Computer-Aided Design, 1995, pp. 472–479.

[2] S. Nakatake, K. Fujiyoushi, H. Murata, Y. Kajitani, Module

placement on BSG-structure and IC layout applications, in:

Proceedings of IEEE International Conference on Computer-Aided

Design, 1996, pp. 484–491.

[3] P.-N. Guo, C.-K. Cheng, T. Yoshimura, An O-tree representation of

non-slicing floorplan and its applications, in: Proceedings of the 36th

ACM/IEEE Design Automation Conference, 1999, pp. 268–273.

[4] Y.C. Chang, Y.W. Chang, G.M. Wu, S.W. Wu, B*-trees: a new

representation for non-slicing floorplans, in: Proceedings of the 37th

ACM/IEEE Design Automation Conference, 2000.

[5] J. Lin, Y. Chang, TCG: a transitive closure graph-based representa-

tion for non-slicing floorplans, in: IEEE/ACM Proceedings of the

Design Automation Conference, 2001, pp. 764–769.

[6] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, J. Gu,

Corner block list: an effective and efficient topological representation

of non-slicing floorplan, in: Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design, 2000, pp. 8–12.

[7] K. Sakanushi, Y. Kajitani, The quarter-state sequence (Q-sequence)

to represent the floorplan and applications to layout optimization,

in: Proceedings of IEEE Asia Pacific Conference on Circuits and

Systems, 2000, pp. 829–832.

[8] B. Yao, H. Chen, C.K. Cheng, R. Graham, Revisiting floorplan

representations, in: Proceedings of International Symposium on

Physical Design, Wiley, NY, 2001, pp. 138–143.

[9] E.F.Y. Young, C.C.N. Chu, Z.C. Shen, Twin binary sequences: a non-

redundant representation for general non-slicing floorplan, IEEE Trans.

Very Large Integration (VLSI) Syst. 22 (4) (2003) 457–469 (ISPD 2002).

[10] F.Y. Young, D.F. Wong, Slicing floorplans with pre-placed modules,

in: Proceedings of IEEE International Conference on Computer-

Aided Design, 1998, pp. 252–258.

[11] H. Murata, K. Fujiyoushi, M. Kaneko, VLSI/PCB placement with

obstacles based on sequence-pair, in: International Symposium on

Physical Design, 1997, pp. 26–31.

[12] F.Y. Young, D.F. Wong, H.H. Yang, Slicing floorplans with

boundary constraints, IEEE Trans. Comput. Aided Des. Integrated

Circuits Syst. 18 (9) (1999) 1385–1389 Also appeared in ASP-DAC

1999.

[13] J. Lai, M.-S. Lin, T.-C. Wong, L.-C. Wang, Module placement with

boundary constraints using the sequence-pair representation, in:

IEEE Asia and South Pacific Design Automation Conference, 2001,

pp. 515–520.

[14] Y. Ma, S. Dong, X. Hong, Y. Cai, C.-K. Cheng, J. Gu, VLSI

floorplanning with boundary constraints based on corner block list,

in: IEEE Asia and South Pacific Design Automation Conference,

2001, pp. 509–514.

[15] F.Y. Young, D.F. Wong, Slicing floorplans with range con-

straints, in: International Symposium on Physical Design, 1999,

pp. 97–102.

[16] Y. Ma, X. Hong, S. Dong, Y. Cai, C.K. Cheng, J. Gu, Floorplanning

with abutment constraints and L-shaped/T-shaped blocks based on

corner block list, in: Proceedings of the 38th ACM/IEEE Design

Automation Conference, 2001, pp. 770–775.

[17] E.F. Young, C.C. Chu, M.L. Ho, A unified method to handle

different kinds of placement constraints in floorplan design, in:

Proceedings of the Seventh Asia and South Pacific Design Automa-

tion Conference and 15th International Conference on VLSI Design,

2002, pp. 661–667.

[18] X. Tang, D.F. Wong, Floorplanning with alignment and perfor-

mance constraints, in: Proceedings of the 39th ACM/IEEE Design

Automation Conference, 2002, pp. 848–853.

[19] H. Xiang, X. Tang, D. Wong, Bus-driven floorplanning, in:

Proceedings of IEEE International Conference on Computer-Aided

Design, 2003, pp. 66–73.

[20] X. Tang, D. Wong, FAST-SP: a fast algorithm for block placement

based on sequence pair, in: IEEE Asia and South Pacific Design

Automation Conference, 2001, pp. 521–526.

Jill H.Y. Law received her B.Sc. degree and M.Phil. degree in Computer

Science and Engineering from The Chinese University of Hong Kong

(CUHK) in 2003 and 2005, respectively.

Evangeline F.Y. Young received her B.Sc. degree and M.Phil. degree in

Computer Science from The Chinese University of Hong Kong (CUHK).

She received her Ph.D. degree from The University of Texas at Austin in

1999. Currently, she is an associate professor in the Department of

Computer Science and Engineering in CUHK. Her research interests

include algorithms and CAD of VLSI circuits. She is now working actively

on floorplanning , placement and combinatorial optimization.

ARTICLE IN PRESS
J.H.Y. Law, E.F.Y. Young / INTEGRATION, the VLSI journal 41 (2008) 306–316316

