SLICING FLOORPLANS WITH PRE-PLACED MODULES*

F.Y. Young and D.F. Wong
Department of Computer Sciences
The University of Texas at Austin

fyyoung@cs.utexas.edu wong@cs.utexas.edu

Abstract

Existing floorplanners that use slicing floorplans are efficient
in runtime and yet can pack modules tightly. However, none
of them can handle pre-placed modules. In this paper, we
extend a well-known slicing floorplanner [10] to handle pre-
placed modules. Our main contribution is a novel shape
curve computation procedure which can take the positions
of the pre-placed modules into consideration. The shape
curve computation procedure is used repeatedly during the
floorplanning process to fully exploit the shape flexibility of
the modules to give a tight packing. Experimental results
show that the extended floorplanner performs very well.

1 Introduction

Floorplan design is an important step in the physical design
of VLSI circuits. It is the problem of placing a set of circuit
modules on a chip to minimize total area and interconnect
cost. In this early stage of physical design, most of the
modules are not yet designed and thus are flexible in shape
(soft modules), some are completely designed and have no
flexibility in shape (hard modules), and some are even pre-
placed at certain fixed positions (pre-placed modules).
Many existing floorplanners are based on slicing floor-
plans [10, 3, 5, 9] and they are designed to handle both
soft and hard modules. There are several advantages of us-
ing slicing floorplans: 1) Focusing only on slicing floorplans
significantly reduces the searching space and this leads to
fast runtime. 2) The shape flexibilty of the modules can be
fully exploited to pack modules tightly based on an efficient
shape curve computation technique [8, 6]. It has been shown
mathematically that a tight packing is achievable [11]. Asa
result, existing floorplanners that use slicing floorplans are
very efficient in runtime and yet can pack modules tightly.
Recently, there are some interesting research activities
in the direction of non-slicing floorplans. Two methods,
bound-sliceline-grid (BSG) [7] and sequence-pair [2], are pro-

*Ths work was partially supported by the Texas Advanced Re-
search Program vunder Grant No. 003658288 and by a grant from the
Intel Corporation.

Perraission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
atation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ICCADYS, San Jose, CA, USA

@ 1993 ACM 1-35113-008-2/98/001 1..35.00

252

A floosplan with irregular
boundarics

Treat the irregular boundaries
as pre-placed modules.,

Figure 1: Floorplan with irregular boundaries

posed. These methods are originally designed for placement
of hard modules only. The sequence-pair method is ex-
tended recently to handle pre-placed modules [1] and soft
modules [4]. In order to handle soft modules, the sequence-
pair method [4] has to solve an expensive convex program-
ming problem to determine the exact shape of each module
numerocus times during the floorplanning process, and thus
results in long runtime. For the same set of benchmark
problems (apte, xerox, hp, ami33, amid9) used in [4], we
run the slicing floorplanner in [10] and obtain comparable
results using only a fraction of the runtime. In fact, we have
less than 1% dead space using no more than 7 seconds for
each test problem.

It is important that a floorplanner can handle pre-placed
modules. In fact, the problem of floorplanning with irregu-
lar boundaries can also be solved by treating the protruding
parts along the boundaries as pre-placed modules. An exam-
ple is shown in figure 1. Unfortunately, none of the existing
slicing floorplanners has that capability. In this paper, we
extend a well-known slicing floorplanmer by Wong and Liu
[10] to handle pre-placed modules. Our main contribution is
a novel shape curve computation procedure which can take
the positions of the pre-placed modules into consideration.
The shape curve computation procedure is used repeatedly
during the floorplanning process to fully exploit the shape
flexibility of the modules. Experimental results show that
the extended floorplanner performs very well.

2 Problem Definition

A module A is a rectangle of height h(A), width w(A)
and area area(A). The aspect ratio of A is defined as
h(A)/w(A). A floorplan for n modules consists of an en-
veloping rectangle R subdivided by horizontal and vertical
line segments into n non-overlapping rectangles such that
each rectangle ¢ must be large enough to accommodate the

/\,
AV

3]s |7 /\6 ‘/*\2
3/\5

Polish expression: 16+35%2+%74+*

Figure 2: Slicing floorplan and its slicing tree representation

module assigned to it. A supermodule is a sub-floorplan
which contains one or more modules. For example, modules
“27, “3” and “5” in figure 2 form a supermodule. There are
two kinds of floorplans: slicing and non-slicing. A slicing
floorplan is a floorplan which can be obtained by recursively
cutting a rectangle into two parts by either a vertical or a
horizontal line. A non-slicing floorplan is a floorplan which
is not a slicing floorplan.
There are three kinds of modules:

Hard modules A hard module is free to move and rotate.
The height and width are given, and it has no flexibil-
ity in shape.

Soft modules A soft module is also free to move. We are
only given its area, and the lower and upper aspect
ratio bounds, p and ¢g. The shape can be changed as
long as the aspect ratio is within the range [p, q]

Pre-placed modules A pre-placed module is fixed in po-
sition, height and width.

In our problem, we are given three kinds of modules
M = HUFUP. H is a set of hard modules , F is a set of soft
modules and P is a set of pre-placed modules. We assume
that the given pre-placed modules do not overlap and all of
them lie in the first quadrant of the xy-plane. We also as-
sume that the pre-placed modules do not form a non-slicing
structure. However this can be easily handled by cutting the
pre-placed modules, which are given in a non-slicing man-
ner, into smaller ones so that the packing becomes slicing.
A packing is a non-overlap placement of the basic modules.
A feasible packing is a packing in the first quadrant such
that all the pre-placed modules are placed at their specified
positions, and the width and height of all the soft modules
are consistent with their aspect ratio constraints and area
constraints. Our objective is to construct a feasible floor-
plan R to minimize A + AW where A is the total area of
the packing R , I is an estimation of the interconnect cost
and A is a user-specified constant that controls the relative
importance of A and W. We require that the aspect ratio
of the final packing is between two given numbers ryin and

T'maz.

3 Wong & Liu’s Floorplanner

A slicing floorplan can be represented by an oriented rooted
binary tree, called a slicing tree (figure 2). Each internal
node of the tree is labeled by a * or a +, corresponding to
a vertical or a horizontal cut respectively. Each leaf corre-
sponds to a basic module and is labeled by a number from
1 to n. No dimensional information on the position of each
cut is specified in the slicing tree. If we traverse a slicing
tree in postorder, we obtain a Polish expression. A Polish
expression is said to be normalizedif there is no consecutive

253

1

P 34r245+14
3|4

I Mi

1

3 | 32%4s5+14
1|2

l M3

{
N AT PO P

4

l M2

1
a] s 32%45%+1+
3] 2

Figure 3: Floorplan transformation in Wong and Liu’s algo-
rithm

*®s or +’s in the sequence. It is proved in [10] that there is
a 1-1 correspondence between the set of normalized Polish
expressions of length 2n — 1 and the set of slicing floorplans
with n modules.

In [10], Wong and Liu used the set of all normalized Pol-
ish expressions as the solution space. The simulated anneal-
ing method was used. In order to search the solution space
efficiently, they defined three types of moves (M1, M2 and
M3) to transform a Polish expression into another. Figure 3
shows a series of floorplan transformations. They can make
use of the flexibility of the soft modules to select the “best”
floorplan among all the equivalent ones represented by the
same slicing structures. This is done by carrying out an ef-
ficient shape curve computation [6, 10] whenever a Polish
expression is examined. The cost function is A + AW where
A is the total packing area and W is the interconnect cost.
It is shown in [10] that this algorithm is very efficient and
the performance is very well. We will describe in the fol-
lowing sections our extensions in order to handle pre-placed
modules.

4 Our method

Our method is based on Wong and Liu’s algorithm. They
assumed P = 0 in the problem and we extended their algo-
rithm to handle pre-placed modules. In our algorithm, there
is a reference point associated with each supermodule to take
into account the pre-placed coordinates. We re-define the
operations of combining supermodules to handle reference
points, and we add two new types of transformations which
are crucial in the case that some modules are pre-placed.

4.1 Supermodules with Reference Points

A normalized Polish expressions can only specify the relative
positions of the modules. In order to place the pre-placed
modules at some fixed positions, we need to consider their
pre-placed coordinates when we combine modules. A simple
example is shown in figure 4. Module A and module B
are pre-placed with lower left corners at (1,1) and (2,2)
respectively. In the original algorithm, we do not consider

@ ®

Al B A
' [1=
(¢8))

C C

pre-placed pre-placed soft module

at(1,1) at(2,2) Do not consider Cosider the
the pre-placed pre-placed
coordinates coordinates

Figure 4: Consider the pre-placed coordinates when com-
bining modules

the pre-placed coordinates, and the expression CAB x +
will give us a floorplan as shown in figure 4(a), but this has
violated the requirements of placing module A and module
B at (1,1) and (2,2) respectively. We want to obtain a
floorplan as shown in figure 4(b).

In order to take into consideration the pre-placed coor-
dinates, we associate with each supermodule X a reference
point ref(X) if it contains at least one pre-placed module.
These reference points correspond to some fixed coordinates
on the xy-plane. We also keep the possible positions of this
reference point within the supermodule by four numbers,
bottom(X), top(X), left(X) and right(X). The reference
point can be anywhere within the rectangle enclosed by the
four lines: y = bottom(X), y = h(X) —top(X), z = left(X)
and r = w(X) — right(X), taking the lower left corner of
X as the origin. For example, in figure 8(a), the reference
point can be anywhere within the dotted rectangle. The
reference point of a pre-placed module is its lower left cor-
ner, e.g. module A in figure 5 is pre-placed with lower-left
corner at {1,1), so ref(A) = (1,1) and its possible posi-
tion in the module is simply that point, so bottom(4) = 0,
top(A) = 2, left(A) = 0 and right(A) = 1. A supermodule
will inherit its reference point from one of its two children,
e.g. the reference point of X in figure 5 is inherited from A,
so ref(X) = (1,1). Since B is not pre-placed, it can slide
vertically along the right boundary of A as long as the total
area of X' remains minimum, so the reference point of X can
locate anywhere on the vertical line from P to @ along the
left boundary, i.e. bottom(X) =0, top(X) = 2, left(X) =0
and right(X) = 2.

If we combine the supermodule X in figure 5 with an-
other soft module C as in Y = CAB * + (figure 6), the
reference point of the new supermodule Y is inherited from
ABx#, so ref(Y) = (1,1). Since B and C are not pre-
placed, we can move B vertically and move C horizontally
as long as the total area of Y remains the smallest possible,
so bottom(Y) = 1, top(Y) = 2, left(Y) = 0, right(Y) = 2.

Intuitively, we can imagine the reference point of a su-
permodule X as a pin fixed on the xy-plane (figure 7). The
four lines: y = bottom(X), y = h(X) — top(X), z = left(X)
and r = w(.X) — right(X) encloses a rectangular hole in X.
We can put X on the xy-plane, with the pin inside the hole,
and we can move it freely on the plane as long as the pin
is within the hole and X is in the first quadrant. In the
next section, we will describe the operations of combining
supermodules with reference points and it is not difficult to
prove lemma 1.

Lemma 1 The possible positions of a reference point in
a supermodule can only be a single point, a vertical line, a
horizontal line or an upright rectangle.

! r ot
B |3 2
3 Al 2 A2 — AB* [3
B |3 PX
wn Ll : 1
1 H Q 3
. ! X=AB*
Module A is pre-placed with 1ef(X) = (1,1)

lower-left corner at (1,1),
soref(A) =(1,1).
Module B is a soft module.

Figure 5: Possible location of the reference point in X =
ABx

possible positions

of the reference point 3
of X arc within this :I

rectangle

efX)=(L1)

Figure 6: Possible location of the reference point in ¥ =
CABx+

(2.2) is the reference paint,
ic.ref(A)=2.2).

Imagine apinat (2,2) . We
can move A freely as long

as the pin is within the hole
and A is in the first quadrant.

0

Figure 7: Placing a supermodule with reference point on the
xy-plane

max{w{A), w(A)}

w(A) X =AB+
. A w(B) top{A}h(B)
—_— b{A) +h(A)
hA) B MB)
1en(A) -1 mghi(A)
'.-.t... l.-.rt(Az,-- -~s_ right{A)
bottom(A) seq-t
-Ihouom(A)
@ ®) ©

Figure 8: Adding a supermodule with reference point to one
without reference point

4.2 Combining Supermodules with Reference Points

In this section, we consider in details how we can combine su-
permodules with reference points. Here we only consider the
addition operation { packing supermodules vertically). The
multiplication operation can be done symmetrically. Con-
sider X = AB+, it is either (i) one of A or B has pre-placed
modules, or (ii) both A and B have pre-placed modules.
The case that neither A nor B has pre-placed module can
be handled as in [10].

4.2.1 (i) Only one of A or B contains pre-placed modules

Without loss of generality, we assume that only A has pre-
placed modules. Let a be the reference point of A. We now
put B above A as in figure 8. The reference point of the
new supermodule X is inherited from A, so ref(X) = a
and bottom(X) = bottom(4), top(X) = top(A) + h(B),
left(X) = left(A) and right(X) = right(A).

42,2 (ii) Both A and B contain pre-placed modules

Let a(xa, ya) and b(zs, y) be the reference point of A and B
respectively. X can inherit the reference point from either
A or B. Assume that X inherits the reference point from
B, i.e. ref(X) =b. Now we want to put B above A and we
can consider the operation along the vertical and horizontal
direction separately:

Vertical direction First, we check that the reference point
of B is above that of A and the separation between
these two reference points is large enough to put all
the modules between them :

Yu
Yo — Ya

Ya
top(A) + bottom(B)

v iv

If the above conditions are satisfied, we can put B
above A in one of the two ways as illustrated by fig-
ure 9, depending on the distance between a and b and
the size of the modules between them. We can imag-
ine two pins on the xy-plane, one at a and one at b,
and we place A and B on the plane such that the pin
at a must be inside the rectangular hole enclosed by
y = bottom(A), y = h(A) — top(A), z = left(A) and
z = w(A) ~ right(A) in A taking the lower left corner
of A as the origin, and the pin at b must be inside the
hole enclosed by y = bottom(B), y = h(B) — top(B),
z = left(B) and z = w(B) ~ right(B) in B taking
the lower left corner of B as the origin. We shift A
and B on the plane to minimize the total area of the
resulting supermodule. We also want bottom(X) and
top(X) to be as small as possible in order to have the
highest flexibility in subsequent packing. In case one
of figure 9, there is no way of shifting A or B vertically
without increasing the total area of X, so the possible
position of the reference point in X has no flexibility
in the y-direction, i.e. top(X) + bottom(X) = h(X).
In case two, the values of bottorn(X) and top(X) are
dependent on the positions of a and b. Figure 10 ex-
plains this further by showing the four subcases which
give the formula of top(X) and bottom(X) in figure 9.

Horizontal direction Without loss of generality, we as-
sume that s > z,. Similarly, we can imagine the

255

Case 12 y(b) - y(a) > h(B) - top(b) + h(A) - bottom(A)

o
ref(X)=b
top(X) = top(B)
P i bottam(X) = y(b) - y(a) + bottom(A)
3-8 A | BCO=10p(B)+bottom(A) + (y(b) - y(a))

X=AB+

Case 2: y(b) - y(a) <= h(B) - top(b) + h(A) - bottom(A)

Xk B ref(0 =b
+ top(X) = max{top(B),
HET? top(A) +h(B) - (y(b) - y(a))}

! bottom(X) = max{y(b) - y(a) + bottom(A),
A bottom(B) + h(A)})
i hX)=h(B) +KA)

X=AB+

Figure 9: Consider the vertical direction when adding two
supermodules with reference points

(2) B cannot move down A cannot move down
%3 B XE B
5 Xl i %3
; i WA
top(X) = top(B) top(X) =top(A) + h(B)
- () - y(2)
® A cannot move up B cannot move up
exE P i B
g RN : iXia

bottom(X) = bottom(A)
+ () - y@)

bottom(X) = bottom(B)
+h(A)

Figure 10: Calculate top(X) and bottom(X) in case 2 of
figure 9

pins and the holes on the xy-plane. We want to place
the supermodules such that the resulting total area is
minimal and the values of left(X) and right(X) are
as small as possible. Figure 11 summarizes how we
can compute left(x), right(z) and w(X) and figure 12
shows the different subcases which give the formulae
of left(X) and right(X) in figure 11. The width of X
is also dependent on the positions of a and b and this
is explained by figure 13.

We can summarize the computations as follows:
1. X = AB+

Pre-conditions:

Yo 2 Ya
Yo—Ya 2 top(A)+ bottom(B)

Computations: There are two cases:
if (zo > za)
ref(X) = ref(B)

A(X) = max { top(B) 4 bottom(4) + (s = o), }

Figure 11: Consider the horizontal direction when adding

ref(X)=b

right(X) = max(right(B),

right(A) - (x(b) - x(2))}

lef(X) = max{left(B),

1eft(A) + (x(b) - x(a))}

w(X) = max{w(A), w(B),

two supermodules with reference points

@ B

cannot move to the left
grenee
: B
i ik
A :
ixe i

L)

right(X) = right(B)

A cannot move to the right
i B
A H

1eft{X) = left(A) + (x(b) - x(a))

Figure 12: Calculate left(X) and right(X) in figure 11

right(X) = right(A) - (x(b) -x(a))

A cannot move to the left

right(A) + Ieft(B) - (x(b) - x(a)),
1eft(A) + right(b) + (x(b) - x(a))}

B cannot move to the right
B §
Xb
Pl A

Teft(X) = left(B)

Let L =1eft(A) + right(B) + (x(b) - x(a))

Case : w(A)=<L

Case 2: w{A)=<L

w(B)=<L w(B)>L
B B
af] A : aiki
Ali
wiX)=L w(X)=w(B)
Case 3:w(A)>L Case4: w(A)>L
w{B)=<L wB)>L
B |i B :
H oy : &2 :
i Eies : LA B
FY :
L3 I
A : A
w(X)=w(A) w(X) = right(A) + left(B) - (x(b) - x(a))

Figure 13: Calculate the width of X in figure 11

256

w(A), w(B),
w(X) = max { right(A) +left(B) — (zp — za), }

left(A) + right(B) + (zs — a)

bottem(X) = max{ bottom(4) + yo — ya, }

bottom(B) + h(4)

top(X) = ma’*{ top(A) "+ h(B) = (3 — va) }

left(X) = ma:s{ :zfi(ig + (@6 — za)
ht(B),
right(X) = max{ ::gh:gAg (=5 — 7a) }
else
ref(X) = ref(B)
A(X) = max { Lop(B) & bottom(d) + (4s = v2),
{ w(A), w(B),
w(X) = max§ left(A) + right(B) — (za — z»),
right(A) +left(B) + (za — %)

bottom(A) + ys ~ ¥a,
bottom(B) + h(A)

B]
top(X) = max { 235&3 + h(B) — (yb - ya) }
left(X) = max{ left(B),

left(A) — (za — zs)
right(X) = max{

right(B),
Post-conditions:

bottom(X) = max{

right(A) + (xa — =) }

Ty
Ys

left(X)
bottom(X)

Vv iv

. X = AB»*

Pre-conditions:

Ty 2 Ta
To—Ta 2 right(A)+left(B)

Computations: There are two cases:

(Y2 ya)

ref(X) = ref(B)
h(A), h(B),

h(X) = max{ top(A) + bottom(B) — (yo ~ Ya),
bottom(A) +top(B) + (¥ — ¥a)

bot B),
bottom(X) = ma"{ bZ;ZZEA% + (95 — ¥a) }
top(B),

top(4) — (y» ~ ¥a)

left(A) + = ~ za,

left(B) + w(A) }
right(B),
right(A) + w(B) -

top(X) = ma}.{
left(X) = max{

right(X) = max{ (x5 — za) }

else
ref(X) = ref(B)
h(A), h(B),
h(X) = max { bottom(A) + top(B) — (ya — y»),
top(4) + bottom(B) + (ya — yb)
w(X) = max{ ngt(fu l;:ft(A) + (zs - za),

left(X) = max{ iz;i%g% if”b(;)f;a, }
. ight(B),

right(X) = max{ ::ghigA; +w(B) = (x5 — za) }

bottom(X) = max { ﬁZiiZZ{ﬁ;L (Yo — ys)

op(B),
top(X) = “‘a"{ top(A) + (¥a — ws)
Post-conditions:
zy 2 left(X)
yy 2 bottom(X)

4.3 Computation of Shape Curves

In Wong and Liu’s algorithm, they can exploit fully the
flexibility of the soft modules to select the “best” floorplan
among all the equivalent ones represented by the same slic-
ing structures. This is done by representing the shape of
each module by a shape curve. A shape curve is a decreas-
ing function y of « and it represents the tradeoff between
the height and the width of a module. In the original algo-
rithm, all shape curves are piecewise linear. Starting from
the modules at the leaves of the slicing trees, the algorithm
works upwards to the root, computing the shape curves at
each internal node. At the end, the shape curve at the root
represents the possible shapes of the floorplan, and we select
one such that the aspect ratio is within the bounds.

In our case, the shape curves are either piecewise linear
(if the supermodule does not contain any pre-placed mod-
ule) or are step functions (otherwise). Let I' and A be
two shape curves in our case, to compute I'+A (or 'xA),
we can combine pairwise the points on I" and the points on
A to give a resultant list. However, we found from practice
that it is much more efficient if we combine only those pairs
of points with the same « values (or y values for '+ A)
and there is no degradation in performance. The resultant
list will still be a shape curve, i.e. y decreases with z, and
we can repeat this computation procedure bottom up until
reaching the root of the slicing tree.

4.4 Moves

In order to handle pre-placed modules, we modify the moves
M1 and M3 in [10], and introduce a new move M4. A con-
tiguous sequence of operators is called a chain. We use I(c)
to denote the length of a chain c. The complement of a chain
is one obtained by interchanging the operator * and +. For
example, in 123+ %456 7%+ x4 8 #, the subsequence
* -1 *- is a chain, and complementing it gives a new expres-
siom: 123 ++%4567+%++8#* Let o =a1002...00n1
be a normalized Polish expression. o can also be written
a8 Com1C1M2C2 ... Cn—1 TnCn Where mim2... 7, is a permuta-
Jdon ~€1,2,...,n, and the ¢;’s are chains (possibly of zero
length), and ¥ I(c;) = n—1. Two operands in « are said to
be adjacent. iff tiley are consecutive elements in mym2... .
An operand and an operator are said to be adjacent iff they
are consecutive elements in ayaz...a2,—1.

Here we define the operation of combining two operands.
We can combine two operands combine(r:, 7;), where m;
ar, m; = ag and l(e;) # 0, by moving a3 and ar4; to posi-
tion 141 and I 4 2 respectively, giving ...a1asars: For
example, let a =12 3+ % 4 5% 4. Since “3” is followed
by a chain of non-zero length, we can combine “3” and “4”
to give a new expression 1 2%4 3+ 5 +. In the following,
we define the reduced Polish expression of a normalized Pol-
ish expression & assuming that « contains pre-placed mod-
ules. o can be written as dofidifBedz . . . d2m—282m—1d2m—1
where m is the number of pre-placed modules and S; is ei-
ther an operand corresponding to a pre-placed module or
an operator in a such that both its children subtrees in
the slicing tree of o contain pre-placed modules. We define
B = B182...82m—1 as the reduced Polish ezpression of «,
which is another Polish expression giving the relative posi-
tions of the pre-placed modules. A simple example is shown
in Figure 14.

Let o = comeimacs...cn—17ncy be the current Polish
expression, and 8 be the reduced Polish expression of a.
Recall that P and F are the set of pre-placed modules and
soft modules respectively. We have four kinds of moves.

257

1 A *\ ()
>
2| ¢ /
B 2
Polishexpression=B 1 +2C*A+*
Reduced Polishexpression=BCA+*

A, B and Care pre-placed

Figure 14: An example of reduced Polish expression

B 2
3 , B
combine(2,3)
2 _ 3
A 1 A 1
A3+12+B+* A32++1B+*

Figure 15: An example of M4

M1 Swap adjacent operands:

M1.1 Swap two adjacent operands of which at least
one is in P.

M1.2 Swap two adjacent operands of which at least
one is in F.

M2 Complement a chain of non-zero length.
M3 Swap adjacent operand and operator:

M3.1 Swap two adjacent operand and operator in 3.
M38.2 Swap two adjacent operand and operator in «.

M4 Combine two operands combine(m:, w,) where m, and
7w, are operands and I(e,) # 0.

It is clear that M1 and M2 always produce a normal-
ized Polish expression. This is not the case for M3 and M4.
We shall only accept those M3 and M4 which result in nor-
malized Polish expressions. M1.1 and M3.1 are specially
designed to change the relative positions of the pre-placed
modules quickly. They are crucial in speeding up the search-
ing process. For example, if module A and B are pre-placed
with lower left corners at (0,0) and (0,1) respectively, B
must be to the right of A in the Polish expression. If this
is violated, it will probably take a very long time to correct
a without these moves. M4 is designed to move modules
out of some congested area. A simple example is shown in
figure 15. If module A and B are pre-placed with lower left
corner at (0,0) and (1, 1) respectively, it is infeasible to pile
up module 1 and 2 on the right hand side of A below B.
Combine(2,3) can move 2 out of the congested area.

These moves are invoked with different probability at
different stages. When the relative positions of the pre-
placed modules are incorrect, we will invoke M1.1, M2 and
M3.1 with higher probability, At the other times, M1.2, M2,
M3.2 and M4 are invoked more frequently. These four types
of moves are sufficient to ensure a possible transformation
from a normalized Polish expression into any other via a
sequence of moves.

4.5 Cost Function

The cost function is defined as 4 + AW 44D where A is the
total area of the packing obtained from the shape curve at
the root of the slicing tree. W currently is a simple estima-
tion of the interconnect cost as in [10]. This can be easily
replaced by a more sophisticated and accurate estimation
in the future. D is a penalty term which is zero when the
packing is feasible, and is an estimation of the area where
the free modules overlap with the pre-placed modules other-
wise. D will drop to zero as the annealing process proceeds.
) and ~ are constants which control the relative importance
of the three terms. X is usually set such that the area term
and the interconnect term are approximately balanced. 7
is set to a large value to pull the pre-placed modules to the
desired positions at the beginning of the process.

5 Experimental Results

We tested our method on some MCNC building blocks ex-
amples and on some randomly generated data. For the
MCNC data, we picked three to four of the larger ones as
pre-placed modules and treated the rest as soft modules.
The starting temperature was decided such that an accept
ratio was almost 100%. The temperature was lowered at a
constant rate, and the number of iterations for one tempera-
ture step varied between twenty to thirty times the number
of modules. All the experiments were carried out on a 300
MHz Pentium II Intel processor.

The results are shown in table 1. We can see that the
dead space percentage is at most 6.6% in the presence of
pre-placed modules and the time taken is less than six min-
utes. We also tested the method with some larger randomly
generated examples (50 to 70 modules) and the runtime is
still reasonably about six minutes. Figure 16 shows the re-
sult packing of ami33. The packing is reasonably tight given
the constraints of the pre-placed modules and the runtime
is short, though it can be faster when there is no pre-placed

module.

Data A Total area with | Dead space | Time
(n, |P]) (x1000pm?) | in area (%) | (sec)
apte (9, 2) 39578 2.9 194
xerox (10, 2) 19813 1.7 2.75
hp (1, 2) 9621 6.6 3.96
ami33 (33, 3 1212.42 4.0 270.7
amid9 (49, 4 3857.9 6.6 336.9

Table 1: Performance of our method on MCNC examples

References

{1] K. Fujiyoushi H. Murata and M. Kaneko. VLSI/PCB place-
ment with obstacles based on sequence-pair. International
Symposium on Physical Design, pages 26-31, 1997.

S. Nakatake H. Murata, K. Fujiyoushi and Y. Kajitani.
Rectangle-packing-based module placement. Proceedings
IEEE International Conference on Computer-Aided Design,
pages 472-479, 1995.

D.P. Lapotin and S.W. Director. A new algorithm for floor-
plan design. Proceedings IEEE International Conference on
Computer-Aided Design, pages 143—-145, 1985.

H. Murata and Ernest S. Kuh. Sequence-pair based place-
ment method for hard/soft/pre-placed modules. Interna-
tional Symposium on Physical Design, 1998,

(2]

(3]

g

258

Sl bemm 2l g

u

a

17

Figure 16: Results of running our program on ami33. The
shaded modules are pre-placed.

[5] R.H.J.M. Otten. Automatic floorplan design. Proceedings of
the 19th ACM/IEEE Design Automation Conference, pages
261-267, 1982.

[6] R.H.J.M. Otten. Efficient floorplan optimization. IEEE In-
ternational Conference on Computer Design, pages 499-502,
1983.

[7] H. Murata S. Nakatake, K. Fujiyoushiand Y. Kajitani. Mod-
ule placement on BSG-structure and IC layout applications.
Proceedings IEEE International Conference on Computer-
Aided Design, pages 484-491, 1996.

[8] L. Stockmeyer. Optimal orientations of cells in slicing floor-
plan designs. Information and Control, 59:91-101, 1983.

[9] T. Tamanouchi, K. Tamakashi, and T. Kambe. Hybrid
floorplanning based on partial clustering and module re-
structuring. Proceedings IEEE International Conference on
Computer-Aided Design, pages 478—483, 1996.

[10] D.F. Wong and C.L. Liu. A new algorithm for floorplan de-
sign. Proceedings of the 28rd ACM/IEEE Design Automa-
tion Conference, pages 101-107, 1986.

[11] F.Y. Young and D.F. Wong. How good are slicing floor-
plans. Integration, the VLSI journal, 23:61-73, 1997. Also
appeared in ISPD97.

