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Existing floorplanuers that use shcing floorplans are efficient
in runtime and yet can pack modties tightly. Ho~vever,none
of them can handle pre-placed modules. In this paper, }ve
est end a ~ve~-kno~vnslicing floorplanner [10] to handle pre-
placed modules. Our main contribution is a novel shape
curve computation procedure \vhich can take the positions
of the pre-placed moddes into consideration. The shape
curve computation procedure is used repeatedly during the
floorplanning process to f~y exTloit the shape flexibility of
the modules to give a tight packing. Expenmentd results
sho~vthat the extended floorplanner performs very ~ve~.

1 Introduction

Floorplan design is an important step in the physical design
of \~LSIcircuits. It is the problem of placing a set of circuit
moddes on a chip to minimize total area and interconnect
cost. In this early stage of physical design, most of the
modules are not yet designed and thus are flexible in shape
(soft modules), some are completely designed and have no
flexibility in shape (hard modules), and some are even pre-
placed at cert tin fixed positions (pre-placed modules).

hfauy etisting floorplanners are based on shcing floor-
plans [10, 3, 5, 9] and they are designed to handle both
soft and hard modules. There are several advantages of us-
ing slicing floorplans: 1) Focusing only on slicing floorplaus
significantly reduces the searching space and this leads to
fast runtime. 2) The shape fle.xibilty of the modules can be
fully exTloited to pa& moddes tightly based on an efficient
shape curve computation technique [S, 6]. It has been sho~vn
mathematically that a tight packing is achievable [11]. As a
restit, etisting floorplanners that use shcing floorplans are
~’e~ efficient in ruutime and yet can pack modules tightly.

Recently, there are some interesting research activities
in the direction of non-sticing floorplans. T\vo methods,
bomd-slicefine-grid (BSG) [7] and sequence-pair [2], are pro
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Figure 1: Floorplan
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posed. These methods are origindy d=igned for placement
of hard modules only. The sequenc~pair method is ex-
tended recently to hande pre-placed modties [1] and soft
modules [4]. In order to handle soft modules, the sequence-
pair method [4] has to solve an exTensive convex program-
ming problem to determine the exact shape of ea& module
numerous times during the floorphmning process, and thus
restits in long runtime. For the same set of benchmark
problems (apte, xerox, hp, ami33, ami49) used in [4], }ve
run the slicing floorplauner in [10] and obtain comparable
restits using ody a fraction of the runtime. In fact, \vehave
less than 1% dead space using no more than 7 seconds for
each test problem.

It is important that a floorpl-er can hande pre-placed
modties. In fact, the problem of floorplting \vith irregu-
lar boundaries can dso be solved by treating the protruding
parts along the boundaries as pr~placed modules. An exam-
ple is sho}vn in figure 1. Unfortunately, none of the existing
slicing floorplanners has that capablfity. In this paper, \ve
extend a \veff-kno\vnslicing floorplanner by Wong and Liu
[10] to hande pre-placed modties. Our main contribution is
a novel shape curve computation procedure Jvhich can t&e
the positions of the pre-placed modules into consideration.
The shape curve computation procedure is used repeatedly
during the floorplanning process to fully exploit the shape
flexibility of the modules. E~erimentd results sho]v that
the extended floorplanner performs very \veff.

2 Problem Definition

A module A is a rectangle of height h(A), \vidth w(A)
and area area(A). The aspect ratio of A is defined as
h(A)/w(A). A floorplau for n moddes consists of an en-
veloping rectangle R subdivided by horizont d and vertical
hne segments into n non-overlapping rectangles such that
each rectangle i must be large enough to accommodate the
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Figure 2: Sficing floorplan and its sticing tree representation

modde ~~signed to it. A supermodde is a su~floorplan
\vhichcontains one or more moddes. For example, moddes

3 and “5” in figure 2 form a supermodtie. There are“2”, “ “
t~vo Mnds of floorplans: sticing and non-shcing. A sticing
floorpla is a floorplan \vhichcan be obtained by recursively
cutting a rectangle into t~voparts by either a vertical or a
horizontal tine. A non-sbcing floorplan is a floorplan \vhich
is not a shcing floorplan.

There are three hinds of modties:

Hard modules A hard modtie is free to move and rotate.
The height and ~vidth are given, and it has no flexibil-
ity in shape.

Soft modules A soft modtie is &o free to move. We are
ordy given its area, and the Io}ver and upper aspect
ratio bounds, p and q. The shape can be changed as
long as the aspect ratio is ~vithin the range ~, q]

Preplaced modules A pre-placed modde is fixed in p~
sition, height and ~vidth.

In our problem, ~ve are given three hinds of moddes
ill = HuFuP. His a set of hard moddes , F is a set of soft
moddes and P is a set of preplaced modties. We assume
that the given pre-placed moddes do not overlap and ~ of
them tie in the first quadrant of the xy-plane. We &o as-
sume that. the pre-placed moddes do not form a non-shcing
structure. Ho\veverthis can be easily handed by cutting the
pre-placed modties, ~vhich are given in a non-shcing man-
ner, into smder ones so that the paching becomes shcing.
A packng is a non-overlap placement of the basic modties.
A feasible pating is a paching in the first quadrant such
that d the pre-placed moddes are placed at their specified
positions, and the \vidth and height of fl the soft moddes
are consist ent }vith their aspect ratio constraints and area
constraints. Our objective is to construct a feasible floor-
plars R to minimize A + AIV \vhere A is the total area of
the paching R , 11~is an estimation of the interconnect cost
and A is a user-specified constant that controk the relative
importance of A and I,lr. We require that the aspect ratio
of the fid paching is bet~veen t~vogiven numbers r~in and
rmu=.

3 Wong & Uu’s Floorplanner

A s~cing floorplan can be represented by an oriented rooted
binary tree, c~ed a shcing tree ( figure 2 ). Each internal
node of the tree is labeled by a * or a +, corresponding to
a verticd or a horizontal cut respectively. Each leaf corr~
spends to a basic modtie and is labeled by a number from
1 to n. No dimension information on the position of each
cut is specified in the shcing tree. If \ve traverse a sficing
tree in postorder, ~veobtain a Pohsh expression. A Pofish
e~~ression is said to be normalized if there is no Coueative
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Figure 3: Floorplan transformation in Wong and Liu’s dg~
nthm

*>sor +JS in the sequence. It is proved in [10] that there is

a 1-1 correspondence bet~veen the set of normdzed PoUsh
eWressions of length 2n —1 and the set of shcing floorplans
~vith n moddes.

In [10], Wong and Liu used the set of fl norm~zed Pol-
ish e~ressions as the solution space. The simtiated armed-
ing method ~vasused. In order to search the solution space
efficiently, they defied three types of moves ( Ml, M2 and
M3 ) to transform a Potish esTression into another. Figure 3
sho~vsa series of floorplan transformations. They can mahe
use of the fletibihty of the soft modties to select the “best”
floorplan among fl the equivalent ones represented by the
same shcing structures. This is done by carrying out an ef-
ficient shape curve computation [6, 10] \vhenever a Pohsh
e.~ression is examined. The cost function is A + AUT\vhere
A is the total pa&ng area and Vlris the interconnect cost.
It is sho~vn in [10] that this dgonthm is very efficient and
the performance is very ;veH. We ]vi~ describe in the fol-
lo~vingsections our extensions in order to hande pre-placed
modties.

4 Our method

Our method is based on Wong and Liu’s dgonthm. They
assumed P = 0 in the problem and \veextended their dg~
rithm to hande pre-placed modties. In our algorithm, there
is a reference point associated \vitheach supermodtie to tahe
into account the pr~placed coordinates. We re-defie the
operations of combining supermoddes to hande reference
points, and \veadd t~vone~vtypes of transformations \vhich
are crucial in the case that some moddes are pre-placed.

4.1 Supermodules with Reference Points

A normdzed Pofish eWressions can ody specify the relative
positions of the moddes. In order to place the pr+placed
moddes at some fixed positions, \veneed to consider their
pre-placed coordinates \vhen~vecombine modties. A simple
example is sho~vn in figure 4. Mod~e A and modtie ~
are pre-placed }vith Io\ver left corners at (1,1) and (2,2)
respectively. In the original algorithm, \vedo not consider
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bining moddes

the pre-placed coordinates, and the eWression CAB * +
}vi~ give us a floorplan as sho~vnin figure 4(a), but this has
violated the requirements of placing modtie A and modtie
B at (1,1) and (2,2) respectively. We ~vant to obtain a
floorplan as sho~vn in figure 4(b).

In order to t~e into consideration the pr~placed coor-
dinates, ~vea~sociate \vith each supermodde X a reference
point rej(.Y ) if it. cent aim at least one pre-placed modde.
These reference points correspond to some fixed coordinates
on the xy-plane. We *O keep the possible positions of this
reference point Ivithin the supermodtie by four numbers,
hottom(.Y), top(X), left(X) and right(A’). The reference
point cart be any~vhere ~vithirsthe rectangle enclosed by the
four tines: y = hotton3(X), y = h(.Y) – top(X), z = teft(X)
and x = w(.Y) — right(X), tahing the lo~ver left corner of
.Y as the origin. For example, in figure S(a), the reference
point can be any~vhere ;vithirz the dotted rectangle. The
reference point of a fire-placed modde is its lo~verleft cor-
ner, e.g. modde A in figure 5 is pre-placed \vith Io\ver-left
corner at (1, 1), so ref(A) = (1, 1) and its possible posi-
tion in the modtie is simply that point, so bottom(A) = O,
top(A) = 2, left(A) = O and right(A) = 1. A supermodtie
~vi~inherit its reference point from one of its tlvo children,
e.g. the reference point of A’ in figure 5 is inherited from A,
so ref(.y ) = (1, 1). Since B is not pr~placed, it can stide
vertical! along the right boundary of A as long as the total
area of.1 remains minimum, so the reference point of X can
locate any~vhere on the vertical Ene from P to Q along the
left boundary, i.e. bottom(X) = O, top(X) =2, left(X)= O
and right(.Y) = 2.

If ~vecombine the supermodde X in figure 5 \vith an-
other soft modtie C as in Y = CAB * + ( figure 6 ), the
reference point of the ne~vsupermodde Y is inherited from
AB*, so rc~(Y) = (1, 1). Since B and C are not pre-
placed, ~vecan move B verticwy and move C horizontfly
as long as the total area of Y remains the sm~est possible,
so bottom(Y) = 1, top(Y) = 2, left(Y) = O, right(Y) = 2.

Intuitively, ~vecan imagine the reference point of a su-
perrnodtie X as a pin fixed on the xy-plane ( figure 7). The
four fines: y = bottom(X), y = h(X) – top(X), z = left(X)
and z = w(.Y) – right(.Y) encloses a rectangtdar hole in X.
We cart put .S on the xy-plane, \viththe pin inside the hole,
and }ve can move it freely on the plane as long as the pin
is ~vithin the hole and A’ is in the fit quadrant. In the
next section, ~ve~vi~ describe the operations of combining
superrnoddes ~vithreference points and it is not dificdt to
prove lemma 1.

Lemma 1 The possible positions of a reference point in
a supermod~le can only be a single point, a vertical line, a
horizontal line or an upright rectangle.

1

dI

B3
2A2

(1,1)
11

Figure 5:
AB*

II

42A2
B3

(1,1)
1

-
1

Mtiule A is pre-plad tvitfr
lo!ver-leftcomer at (1,1),
so ref(A)= (1,1).
Mtiule B is a soft module.

2

D2 AB* ~

P

Q’ ,.
X=AB*

ref@~=(l,I)

Possible location of the reference point in X =

t

a1

1

B3
2A

(1.1)

I c1

3t

b
X=W*+

pnssible pndtions
nf the referencepnint
nfX m titin tis _
recogle

I I

refw)=(l,l)

Figure 6: Possible location of the reference point in Y =
CAB * +

Y

2 ---- ,..

(22) is tho rcfersncc puinL
i.e. mf(A)= (2.2).
lmJginca pinat (2.2). IVC
m mnvcA frwlym long
w lhcpin is wiOrintie hole
md A is in Orcfirst quadmnL

I
01

x
2

Figure 7: Placing a supermodtie \vithreference point on the
xy-plane

Figure S: Adding a supermodde \vithreference point to one
\vithout reference point

254



4.2 Combining Supermodules with Reference Points

In this section, we consider in detaik how we can combine su-
permodties with reference points. Here we ody consider the
addition operation ( pating supermoddes verticdy ). The
mdtiptication operation can be done symmetticfly. Con-
sider X = AB+, it is either (i) one of A or B has pr~placed
moddes, or (ii) both A and B have pr~placed modties.
The case that neither A nor B has pr~placed modde can
be handed as in [10].

4.2.1 O) Only one of A or B contains pre-placed modules

Without loss of generfity, we assume that ody A has pre-
placed moddes. Let a be the reference point of A. We now
put B above A as in figure 8. The reference point of the
new supermodde X is inherited horn A, so ref(X) = a
and bottom (X) = bottom(A), top(X) = top(A) + h(B),
Jeft(.Y) = left(A) and right(X)= right(A).

4.2.2 (ii) Both A and B contain preplaced modules

Let a(z., y=) and b(zb, yb) be the reference point of A and B
respectively. X can inherit the reference point from either
A or B. Assume that X inhefits the reference point from
B, i.e. ref(X) = b. Now we want to put B above A and we
can consider the operation along the vertical and horizontal
direction separately:

Vertical direction First, we che& that the reference point
of B is above that of A and the separation between
these two reference points is large enough to put d
the moddes between them :

Yb > Ya

Yb– y. > top(A)+ bottom(B)

If the above conditions are satisfied, we can put B
above A in one of the two ways as i~ustrated by fig-
ure 9, depending on the distance between a and b and
the size of the modties between them. We can imag-
ine two pins on the xy-plane, one at a and one at b,
and we place A and B on the plane such that the pin
at a must be tilde the rectan~ar hole enclosed by
y = bottom(A), y = h(A) – top(A), x = left(A) and
z = w(A) - right(A) in A tting the lower left corner
of A as the origin, and the pin at b must be tilde the
hole enclosed by y = bottom(B), y = h(B) – top(B),
x = left(B) and x = w(B) – right(B) in B tting
the lower left comer of B as the origin. We stift A
and B on the plane to minimize the total area of the
r~sdting supermodde. We *O want bottom(X) and
top[A’) to be as sm~ as possible in order to have the
highest flexibihty in subsequent pa&ng. In case one
of figure 9, there is no way of stifting A or B verticfly
without increasing the total area of X, so the possible
position of the reference point in X has no flexibfity
in the y-direction, i.e. top(X) + bottom(X) = h(X).
In case two, the values of bottom(X) and top(X) are
dependent on the positions of a and b. Figure 10 ex-
plaim~this further by showing the four subc~es which
give the formtia of top(X) and bottom(X) in figure 9.

Horizontal direction Without loss
Sume that xb > c.. Similarly,

of generfity, we ~
we can imagine the

he 1: y@) - y(a)> h(B)- u>p@)+ h(A)- bnWm(A)
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h(~ = trip(B)+ bnMm(A) + (y(b) - y(a))

be 2 ym) - y(a) - h@) - top~) + h(A) - bmtom(A)

in: top(ti = mm(top(B),
: -a-x-: tOp(A)+ h(B)- ~(b) - y(~)))

: .. . . . ; bnlmm(~ =mm{y(b) - y(a) +kttnm(A),

A: bnl@m[B) + b(A))
: h(w = h(B) + h(A)

X= AB+ ‘-

Figure 9: Consider the vertical direction when adding two
supermoddes with reference points

(a)

0)

Figure 10:
figure 9

B moot move dmvn A mnnot move dmvn

BB

A mnnot move up

Br ‘~-hi. . . . . .

.-. .

:2: A

~-

top~ = top(A)+ h@)
- 00) - Y(a))

bortomfi) = bortom(A) bottomx) = bottom@)
+ &@)- Y(a)) + b(A)

Cdtiate top(X) and bottom(X) in case 2 of

pins and the holes on the xy-plane. We want to Dlace
the supermodties such tha~ the resdting tot~ ~ea is
minimal and the values of left(X) and right(X) are
as smd as possible. Figure 11 summarizes how we
can compute left(z), right(x) and w(X) and figure 12
shows the different sub cases wtich give the forrmdae
of left(X) and right(X) in figure 11. The width of X
is *O dependent on the positions of a and b and this
is explained by figure 13.

We can summarize the computations as fo~ows:

1. X = AB+

Pr+condltions:

Yb > Y.
Yb– Y. ~ top(A)+ bottom(B)

Computations: There aret~vocase=
if(~b~~.)

rej(x’) = ref(B)

h(X) = max
{

tOp(B) + bOt~om(A) + (Yb– Y.),
h(B) + h(A) )
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Fi~e 11: Consider the horizontal direction \vhen adding
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Fi~e 12: Cdtiate left(X) and right(X) in figure 11

bl L= left(A)+ right@)+ (Xb) - X(3))

G$c > w(A)> L
wm) =< L

,...-.

B

7

B;
,-. . . .
: b%:
. . . . . .

a...
~-:

A

We 4 w(A)> L
wm)> L

R

----,

B
~.---
~b :.---.,

: . . .
:--~a

A
,.-..

wfi? = right(A)+ Ieft@) - (x@)- x(a))

{

w(A), w(B),

w(X) = max right(A) + left(B) - (Z5 - z.),
left(A) + right(B) + (Cb - z.) }

bottom(X) = max
{

bottom(A) + Yb - y=,
bottom(B) + h(A)

{

}

tOp(X) = max
tOp(B),
top(A) + h(B) - (Yb – Yo) }

left(X) = max
{

lejt(B),
lejt(A) + (zb – c=) }

right(X) = ma
{

right (B),
right(A) - (Zb – co) }

else
rej(X) = ref(B)

h(X) = ma
{

top(B) + bottom(A) + (Yb - Y.),
h(B) + h(A)

{

}
w(A), w(B),

w(X) = max lejt(A) + right(B) – (CO - $b),
right (A) + left(B) + (z= – z*) }

bottom(X) = rnax
{

bottom(A) + Yb - y.,

bottom(B) + h(A) }

tOp(X) = mu
{

tOp(B),
top(A) + h(B) - (Yb - y.) }

lejt (X) = max
{

lejt(B),
lejt(A) - ($0 - C5) }

right(X) = ma-
{

right (B),
right(A) + (z. – Cb) }

POst-cOn&ltiOns:

x~ ~ lejt(X)

yb ~ bottom(X)

2. X = AB*

Pr&cOn&ltiOns:

Zb > Z.

xb -z= ~ right(A)+ lejt(B)

Computations: There aretv~oc~es:
if(yb~y.)

rej(X) = rej(B)

{

h(A), h(B),
h(X) = max top(A) + bottom(B) - (Yb - Ya),

bottom(A) + tOp(B) + (Yb – Y.) }

w(X) = m=
{

right(B) + Iejt(d) + (Zb - x.),
w(B) + w(A) }

bottom(X) = max
{

bottom(B),
bOttOm(d) + (Yb – Y.) }

tOp(X) = rnax
{

top(B),
top(A) – (Yb - Ya)

{

}

lejt(X) = ma Jejt(A) + cb - z.,
lejt(B) + w(A) }

right(X) = mu
{

right(B),
right(A) + w(B) - (Zb - c.) }

else
rej(X) = rej(B)

{

h(A), h(B),
h(X) = m= bottom(A) + tOp(B) - (Ya – Yb),

top(A) + bottom(B) + (Y. - Yb) }

w(X) = max
{

right(B) + lejt(A) + (Cb - xc),
w(B) + w(A) }

{

/ejt(A) + Zb – Z.,
~ejt(x) = ‘ax lejt(B) + w(A)} }

right(X) = max
{

right(B),
right(A) + w(B) - (Cb – z=) }

bottom(X) = m=
{

bottom(B),
bottom(A) - (Y. - Yb) }

tOp(X) = max
{

top(B),
tOp(A) + (Ye - Yb) }

Fi~e 13: Cddate the \vidth of X in figure 11
Post-conditions:
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4.3 Computation of Shape Curves

In Wong and Liu’s algorithm, they can exploit fly the
flexibihty of the soft moddes to select the “best” floorplan
among ~ the equivalent ones represented by the same shc-
ing structures. This is done by representing the shape of
each modtie by a shape curve. A shape curve is a decreas-
ing function y of z and it represents the tradeoff bet~veen
the height and the tvidth of a modtie. In the original dg~
nthm, M shape curves are piece~vise Enear. Starting from
the modties at the leaves of the shcing trees, the algorithm
\vorksup~vards to the root, computing the shape curves at
each internal node. At the end, the shape curve at the root
represents the possible shapes of the floorplan, and \veselect
one such that the aspect ratio is \vitbin the bounds.

In our case, the shape curves are either piece~vise hear
(if the supermodde does not contain any preplaced mod-
de ) or are step functions ( othemvise ). Let r and A be
t~voshape curves in our case, to compute r+ A ( or r * A ),
~vecan combine pair~vise the points on r and the points on
A to give a restitant hst. Ho\vever, \vefound from practice
that it is much more efficient if }ve combine ody those pairs
of points ~vith the same z values ( or y values for r * A )
and there is no degradation in performance. The restit ant
hst ~vi~sti~ be a shape curve, i.e. y decreases \vith z, and
}ve can repeat this computation procedure bottom up until
reaching the root of the shcing tree.

4.4 Moves

In order to hande pre-placed moddes, ~vemodify the moves
Ml and M3 in [10], and introduce a ne~v move M4. A con-
tiguous sequence of operators is cded a c~ain. We use l(c)
to denote the length of a chain c. The complement of a chain
is one obtained bs~interchanging the operator * and +. For
example, in 1 23 + * 4 5 6 7 * + * + S *, the subsequence
* +*+ is a chain, and complementing it gives a ne~vexpres-
sion: 123+ *4567 +*+*S *. Leta=a1a2. ..a2n_1
be a normdzed Pohsh expression. a can dso be \vritten
as comIclm2c2 . . . c~-lm~cn ;vhere n1z2 . . . rn is a permuta-
tion -c 1,2 , . . . . n, and the ci’s are chains ( possibly of zero
length ), and ~ l(c,) = n– 1. T\vo operands in a are said to
be adjacent iff they are consecutive elements in ml72... rn.
An operand and an operator are said to be adjacent iff they
are comsecutlve elements m al a2 . . . a2n-1.

Here }ve define the operation of combining t~vooperands.
We can combine t~vooperands combine(xi, rj), \vherexi =
a~, nj = aZ and l(c, ) # 0, by moving a~ and a~+l to posi-
tion 1+ 1 and 1+ 2 respectively, giving . . . a[akak+l . . . . For

example, let o = 1 2 3 + * 4 5 * +. Since “3” is fo~o~ved
by a chain of non-zero length, \vecan combine “3” and “4”
to give a ne~vexpression 12 * 43 + 5 *+. In the fo~o~ving,
}ve define the reduced Polish expression of a normtized Pol-
ish expression a assuming that a cent sins pr~placed mod-
ties. a can be ~vritten as dO~ldl@2dz . . . d2~_2~2~_ld2~_l
\vherem is the number of pre-placed modties and ~i is ei-
ther an operand corresponding to a pre-placed modtie or
an operator in a such that both its children subtrees in
the sticing tree of a contain preplaced modties. We detie
D = @1P2... P2m-1 as the reduced Polish expression of a,
\vhi& is another Pohsh expression giving the relative posi-
tions of the preplaced modties. A simple example is sho~vn
in Figure 14.

Let a = com1c1n2c2. . . c.- 1r.cn be the current PoEsh
expression, and ~ be the reduced Pohsh expression of a.
Rec~ that P and F are the set of pr~placed modties and
soft modties respectively. We have four kinds of moves.

m1
A

2C
B

%

*

+

~\

+

B I*

/~

A

2 c

Po~uhap~sion=B 1+2 C* A+*
Rduti Pl)!kh c~prmil]n = B C A + ●

Figure 14: An example of reduced Pohsh expression

Hc=)m

A3+12+B+* A32++I B+*

Figure 15: An example of M4

Ml S\vapadjacent operands:

M2

M3

M4

M1.1 S\vap t~vo adjacent operands of Jvhich at least
one is in P.

M1.2 S\vap t~vo adjacent operands of Ivhich at least
one is in F.

Complement a chain of non-zero length.

S\vapadjacent operand and operator:

M3.1 S~vapt~voadjacent operand and operator in ~.

M3.2 S~vapt~voadjacent operand and operator in a.

Combine t.~vooperands combine(ri, m, ) \vhere r, and
n, are operands and l(c,) # O. . “’ -

It is clear that Ml and M2 d~vays produce a norma-
lized Potish expression. This is not the case for M3 and M4.
We sh~ ody accept those M3 and M4 \vhich resdt in nor-
mdzed Pohsh eWressions. M1.1 and M3.1 are speci~y
designed to change the relative positions of the pr~placed
modties qui~y. They are crucial in speeding up the search-
ing process. For example, if modtie A and B are pre-placed
~vith lo}ver left corners at (O,O) and (O, 1) respectively, B
must be to the right of A in the PoUsh expression. If this
is violated, it ~vi~probably take a very long time to correct
a ~vithout these moves. M4 is designed to move modties
out of some congested area. A simple example is sho~vn in
figure 15. If modde A and B are pre-placed \vith lo~verleft
corner at (O,O) and (1, 1) respectively, it is infeasible to pile
up modtie 1 and 2 on the right hand side of A belo]v B.
Cornbine(2, 3) can move 2 out of the congested area.

These moves are invoked \vith different probabihty at
different stag=. When the relative positions of the pre-
placed moddes are incorrect, \ve~vi~invoke M1.1, M2 and
M3.1 \vithhigher probabihty, At the other times, M1.2, M2,
M3.2 and M4 are invoked more frequently. These four types
of moves are sufficient to ensure a possible transformation
from a normdzed Pofish expression into any other via a
sequence of moves.
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4.5 Cost Function

The cost function is defied as A + Allr + YD \vhereA is the
total area of the packing obtained from the shape curve at
the root of the shcing tree. ItTcurrently is a simple estima-
tion of the interconnect cost as in [10]. This can be easily
replaced by a more sophisticated and accurate estimation
in the future. D is a penalty term \vhich is zero \vhen the
paching is feasible, and is an estimation of the area \vhere
the free modties overlap ;vith the pr~placed modties other-
}vise. D \viHdrop to zero as the annedng process proceeds.
A and -j are com~tants \vhichcontrol the relative importance
of the three terms. A is usudy set such that the area term
and the interconnect term are approximately bahmced. y
is set to a large value to pti the pr~placed modties to the
desired positions at the beginning of the process.

5 Experimental Results

llre tested our method on some kIICNC building blocks ex-
amples and on some randomly generated data. For the
MGNC data, ~vepicked three to four of the larger ones as
pre-placed modties and treated the rest as soft moddes.
The starting temperature ~va~decided such that an accept
ratio ~vasahnost 100Yo. The temperature ~vaslo~vered at a
constant rate, and the number of iterations for one tempera-
ture step varied bet~veen t~ventyto thirty times the number
of modties. AH the experiments \verecarried out on a 300
hIHz Pentium II Intel processor.

The resdts are sho~vn in table 1. JVe can see that the
dead space percentage is at most 6.6% in the presence of
pre-placed modties and the time t~en is less than six min-
utes. lVe ako tested the method ~vithsome larger randomly
generated examples ( 50 to 70 moddes ) and the runtime is
sti~ reasonably about six minutes. Figure 16 sho~vs the re
stit. packing of ami33. The packing is reasonably tight given
the constraints of the pre-placed moddes and the runtime
is short, though it can be faster \vhenthere is no pr~placed
modde.

I Data A I Total area with I Dead space I Time I

Table 1: Performance of our method on hlCNC examples
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