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Abstract—In this paper, we present an efficient method to
solve the obstacle-avoiding rectilinear Steiner minimum tree
(OARSMT) problem optimally. Our work is a major improve-
ment over the work proposed in [1]. First, a new kind of
full Steiner trees (FSTs) called obstacle-avoiding full Steiner
trees (OAFSTs) is proposed. We show that for any OARSMT
problem there exists an optimal tree composed of OAFSTs only.
We then extend the proofs on the possible topologies of FSTs
in [2] to find the possible topologies of OAFSTs, showing that
OAFSTs can be constructed easily. A two-phase algorithm for the
construction of OARSMTs is then developed. In the first phase, a
sufficient number of OAFSTs are generated. In the second phase,
the OAFSTs are used to construct an OARSMT. Experimental
results on several benchmarks show that the proposed method
achieves 185 times speedup on average and is able to solve more
benchmarks than the approach in [1].

I. INTRODUCTION

Rectilinear Steiner minimum tree (RSMT) problem is one
of the fundamental problems in integrated circuit computer-
aided design (CAD). It has been widely used in the area
of VLSI design automation. Finding an RSMT is useful for
routing, global wire length estimation, and is also important
for congestion and timing estimation in floorplanning and
placement. The original RSMT problem assumes no obstacle
in the routing region. However, in modern nanometer VLSI
designs, there can be routing obstacles on the chip such as
macro cells, IP blocks and pre-routed nets. Therefore, the
obstacle-avoiding RSMT problem (OARSMT) has received a
lot of research attentions.

The RSMT problem has been shown to be NP-complete [3],
and the introduction of obstacles has made this problem even
more complicated. In recent years, many works have been
focusing on solving the OARSMT problem heuristically [4],
[5], [6]. Shen et al. [7] introduced a connection graph called
spanning graph. In their approach, an obstacle-avoiding span-
ning graph (OASG) was first constructed and then transformed
into an OARSMT. Lin et al. [8] extended the approach in [7]
by identifying many “essential” edges which can lead to more
desirable solutions in the construction of the OASG. A maze
routing based approach was proposed by Li et al. [9]. In their
work, multiple paths between terminals were kept until all
the terminals were reached. An MST based method was then
used to select between those paths to create an OARSMT.
Long et al. [10] proposed a four-step algorithm to construct an

OARSMT. They presented a quadrant approach to construct an
OASG and an edge-based heuristic to handle both global and
local refinements. Very recently, Ajwani et al. [11] presented
the FOARS, a top down approach for the OARSMT problem.
They applied the OASG to partition a solution and constructed
the OARSMT by using the obstacle-aware version of the fast
lookup table based wire-length estimation.

In comparison with heuristics, few exact algorithms have
been proposed. Maze routing [12] can give optimal solutions
to two-terminal nets. Ganley et al. [13] proposed a topology
enumeration algorithm to construct optimal three-terminal or
four-terminal OARSMTs. Recently, Li et al. [1] proposed an
exact algorithm for multi-terminal nets. They extended the
GeoSteiner approach in [15] to an obstacle-aware version. By
adding four virtual terminals to each obstacle, they proved that
the FSTs are simple and can be constructed efficiently. Optimal
solutions to problems with up to five hundred terminals are
reported. However, empirical results show that their algorithm
is severely affected by the number of virtual terminals re-
quired. Most of the test cases they used contain only ten
obstacles but the running time is still very expensive. Based
on the approach in [1], we propose a more efficient method
to construct OARSMTs in this paper. The main contributions
of this paper can be summarized as follows:

1) Different from the previous approach, the algorithm
presented in this paper works by introducing only two
virtual terminals to each obstacle. The essential idea is
to reduce the total number of constraints in the integer
program so that the performance of the algorithm can
be improved significantly.

2) We improve the two-phase algorithm in [1] by using
more powerful screening tests and more efficient sepa-
ration algorithms.

3) We adopt an incremental way to handle obstacles, which
can effectively reduce the running time for large scale
problems.

The rest of this paper is organized as follows. Section II
gives the OARSMT problem formulation. The definition and
the structures of OAFSTs are discussed in section III. Sec-
tion IV and V describe the iterative two-phase approach for
the construction of OARSMT in detail. Experimental results
and discussions are presented in section VI, followed by a
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Fig. 1: Forbidden edges in an OAFST.

conclusion in section VII.

II. PROBLEM FORMULATION

In the OARSMT problem, we are given a set V of n termi-
nals on the 2-D plane and a set B of m rectangular obstacles.
No obstacle can overlap with each other, but they can be line-
touched at the boundary. The objective of the problem is to
give an obstacle-avoiding tree with the shortest length that
connects all of those n terminals using only horizontal and
vertical lines. This tree is known as an OARSMT.

III. OARSMT DECOMPOSITION

In this section, we show how an OARSMT can be decom-
posed into small components called OAFSTs which are much
simpler to generate.

A. OAFST definition

First, for each obstacle, we introduce two virtual terminals
that are the two end points of a diagonal. Without loss of
generality, in the rest of this paper, we assume that the two
virtual terminals are located at the upper right and lower left
corners of an obstacle, respectively. We use V ′ to denote the
set of all virtual terminals. As defined in [2], if a tree T ′ can
be obtained from another tree T by shifting or flipping edges,
T ′ is equivalent to T . In the presence of obstacles, an OAFST
T over a set of terminals P ⊆ V + V ′ is defined as follows:

1) T is an OARSMT of P.
2) Every terminal t ∈ P has degree one in T and in all its

equivalent trees.
3) All the equivalent trees of T cannot contain edges that

pass through a virtual terminal as shown in Fig. 1.
Otherwise, we can split T into two smaller OAFSTs.

Theorem 1: Let V be a set of terminals, with |V | ≥ 2, then
V has an obstacle-avoiding rectilinear Steiner minimum tree
that consists of only OAFSTs. These OAFSTs intersect only
at real or virtual terminals of degree two or more.

Proof: Any OARSMT can be split into several small trees
by cutting at real terminals of degree more than one. If any of
these trees (or their equivalent trees) contain forbidden edges
that pass through virtual terminals, we can further split it
into smaller trees at these virtual terminals. As a result, an
OARSMT can be partition into several trees each of which
satisfies the definition of OAFSTs.

This theorem indicates a possible way to construct
OARSMT by concatenation of OAFSTs. To prove the effi-
ciency of this approach, the structures of OAFSTs are studied.
We will show how the properties defined can help in shaping
OAFSTs so that it can be generated easily.
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Fig. 2: A Steiner chain structure.

B. OAFST structures

In this section, we use Vxu(Vxd) to denote the vertical line
at point x which is above (below) x but excluding x itself.
Similarly Hxr (Hxl) denotes the horizontal line at point x which
is on the right (left) of x but excluding x itself. If a line ends at
a node and contains no other vertex, we call it a node line. If it
ends at a corner and contains no vertex, we call it a corner line.
In the following figures, we use an empty circle to represent
a Steiner point and an empty square to represent a terminal.
The steps of proof to derive the topologies of OAFSTs are
similar to those in [2]. Due to the limitation of space, the
corresponding proofs are not shown here.

Lemma 1: All Steiner points either have degree three or
degree four.

Lemma 2: Let A and B be two adjacent Steiner points in
an OAFST. Suppose that AB is a horizontal line and both VAu,
VBu exist. Then |VBu| ≥ |VAu| implies that VAu is a corner line
that turns away from VBu.

Corollary: Suppose VBu contains a vertex, then VAu must be
a corner line turning away from VBu and |VAu|< |VBu|.

Lemma 3: Suppose Vxu (x is a vertex) is a corner line
turning left (right), then Hxl (Hxr) does not exist.

Lemma 4: No Steiner point can have more than one corner
line.

Lemma 5: If s is an OAFST, the Steiner points in s form a
chain.

Lemma 6: Suppose s is an OAFST. Its Steiner chain cannot
contain the subgraph shown in Fig. 2, where B is adjacent to
A and C.

Lemma 7: Suppose s is an OAFST. The Steiner chain of s
is then a staircase.

Lemma 8: Suppose s is an OAFST. The Steiner chain of s
cannot contain a corner with more than one Steiner points on
the two neighboring lines.

Lemma 9: Suppose s is an OAFST. If the number of Steiner
points is greater than two, either every vertical line (on the
Steiner chain) contains more than one Steiner points (except
possibly the first and the last vertical lines) and every hori-
zontal line contains exactly one Steiner point, or vice versa.

Lemma 10: Suppose s is an OAFST. Every Steiner point
on s must have a horizontal node line.

Lemma 11: Suppose s is an OAFST and Ai is the ith Steiner
point on the Steiner chain. Then a corner connecting Ai and
Ai+1 can be transferred to one connecting Ai+2 and Ai+3,
regardless of whether the place it transfers to has a corner or
not. If the corner cannot be transferred due to some obstacles,
then Ai+3 is the last Steiner point on the chain. Similarly, this
corner can also be transferred to one connecting Ai−1 and Ai−2.
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Fig. 3: (a) OAFST structure type I. (b) OAFST structure type
II. (c) OAFST structure type III. (d) OAFST structure type IV.

If the corner cannot be transferred due to some obstacles, then
Ai−2 is the first Steiner point on the chain.

Lemma 12: Suppose s is an OAFST. There exists an s′

equivalent to s such that all the Steiner points are on a straight
line except possibly the last one.

To summarize, if the Steiner chain is a vertical line, the
horizontal node lines at the Steiner points must alternate in
the left-right directions. Hence, each Steiner point has exactly
one horizontal node line except the first and the last one. By
putting all of the above lemmas together, we can have the
following conclusion:

Theorem 2: Suppose s is an OAFST over a set P of
terminals. Then s is in the form of one of the four structures
in one direction as shown in Fig. 3.

As we can observe from the figures, the structures of
OAFSTs are very similar to those of FSTs as described in [2]
and [1], except that OAFSTs have two additional structures,
namely type II and type IV.

IV. TWO-PHASE ALGORITHM

The similarity between OAFSTs and FSTs indicates that we
can utilize the method for the construction of FSTs to generate
OAFSTs efficiently. The resulting OAFSTs are then combined
into an OARSMT.

A. OAFST generation

The first phase of the algorithm is to generate a sufficient
number of OAFSTs. In our approach, we modify the FST
generation algorithm in [14] for the generation of OAFSTs
with three or more terminals. By using the bottleneck Steiner
distance, empty diamond, empty corner rectangle and empty
inner rectangle properties, the algorithm recursively grows the
OAFSTs for every terminal v ∈V +V ′ in both the horizontal
and vertical directions. For OAFSTs with exactly two termi-
nals, we construct them by using the same method as in [1].

B. OAFST concatenation

The second phase of the algorithm is to use the OAFSTs
generated in the first phase to construct an OARSMT. We
show that the OAFST concatenation can be formulated as an
integer program (IP) and solved by using the branch-and-cut
algorithm extended from [15].

Let V be the set of real terminals, V ′ be the set of virtual
terminals and T be the set of all OAFSTs generated in the
first phase. Let n = |V |, n′ = |V ′|, and m = |T |. Let I be the
index set of T such that ti (i ∈ I) is an OAFST in T spanning
terminal set Si. Let ci be the length of ti. We use variable xi to
denote whether ti is taken as a part of the OARSMT solution.
xi = 1 for the OAFSTs that are in the OARSMT, while xi = 0
for the OAFSTs that are not parts of the OARSMT. Besides,
we use variable yi to denote whether a virtual terminal v′i ∈V ′

is connected in the OARSMT. In the following, (A : B) means
{i ∈ I : (Si ∩A ̸= /0)∧ (Si ∩B ̸= /0)}. The IP formulation of the
OAFST concatenation problem is as follows.

Minimize:
∑m

i=1 cixi (1)
Subject to:
∑i∈I xi(|Si|−1) = n−1+∑n′

j=1 y j (2)
2y j ≤ ∑v′j∈Si

xi for all v′j ∈V ′ (3)
y j ≥ xi for all v′j and ti such that v′j ∈ Si (4)
∑i∈(S:V+V ′−S) xi ≥ 1 (5)
for all S ⊆V +V ′ and V * S and S∩V ̸= /0

∑i∈I max{|Si ∩S|−1,0}xi ≤ |S∩V |+∑v′j∈S y j −1 (6)
for all S ⊆V +V ′ and S∩V ̸= /0 and 2 ≤ |S|< n+n′

∑i∈I max{|Si ∩S|−1,0}xi ≤ ∑v′j∈S y j −maxv′j∈Sy j (7)
for all S∩V = /0 and |S| ≥ 2

Constraint (2) requires the right number of edges to con-
struct a spanning tree. Constraints (3) ensure that if a virtual
terminal is selected, at least two OAFSTs connecting it are
selected as well. Constraints (4) ensure that if a certain OAFST
containing a virtual terminal is selected, the corresponding
virtual terminal is also selected. Constraints (5) require that
a solution should be connected, that is, for any cut (S :
V +V ′ − S), there must be at least one selected OAFST to
connect them. Constraints (7) and (8) are used to eliminate
cycles. The IP described above is solved via a branch-and-cut
framework. We adopt Warme’s [15] algorithm and extend it
for solving the OAFST concatenation problem. Details of the
algorithm are omitted due to space limitation.

V. INCREMENTAL CONSTRUCTION

In order to avoid explosion of OAFSTs, we adopt an
incremental way to construct an OARSMT. An obstacle list
is maintained during the generation of the OARSMT. The list
is responsible for keeping track of the obstacles we need to
avoid during the construction. Initially, the OARSMT problem
with an empty list of obstacles is solved resulting in an RSMT.
We then check for obstacles that overlap with the solution
and add them to the obstacle list. A new iteration then starts
again by solving the OARSMT problem with the obstacles in
the renewed list. This procedure repeats until no overlapping
obstacle can be found. This approach is effective as in most
cases only a fraction of the obstacles will affect the final
OARSMT.



TABLE I: Results of our approach in comparison with the approach in [1].

Bench m k Ours Li [1] ω Bench m k Ours Li [1] ω
L1 t1 L2 t2 L1 t1 L2 t2

IND1 10 32 604 1 - - - RT4 100 1000 9693 228558 - - -
IND2 10 43 9500 1 - - - RT5 200 2000 - - - - -
IND3 10 50 600 1 - - - IND1′ 10 20 604 1 604 498 498×
IND4 25 79 1086 1 - - - IND2′ 10 22 9300 1 9300 365 365×
IND5 33 71 1341 2 - - - IND3′ 10 20 587 1 587 43 43×
RC1 10 10 25980 1 25980 130 130× IND4′ 25 20 1078 1 1078 474 474×
RC2 30 10 41350 1 41350 101 101× IND5′ 33 11 1295 1 1295 179 179×
RC3 50 10 54160 1 54160 4 4× RC6′ 100 15 76436 1 76436 250 250×
RC4 70 10 59070 1 59070 3 3× RC7′ 200 10 105305 14 105305 1647 178×
RC5 100 10 74070 2 74070 27 13× RC8′ 200 10 107652 48 107652 1314 28×
RC6 100 500 79714 5033 - - - RC9′ 200 10 105712 4 105712 82 20×
RC7 200 500 108740 12328 - - - RC10′ 500 10 162230 82 162230 552 7×
RC8 200 800 112564 127822 - - - RT1′ 10 15 1858 1 1858 124 124×
RC9 200 1000 111005 96831 - - - RT2′ 50 15 44294 1 44294 335 335×
RC10 500 100 164150 944 - - - RT3′ 100 10 7579 1 7579 913 913×
RC11 1000 100 230837 27131 - - - RT4′ 100 10 7678 4 7678 149 37×
RT1 10 500 2146 639 - - - RT5′ 200 10 42748 7 42748 35 5×
RT2 50 500 45852 208 - - - Average 185×
RT3 100 500 7964 874 - - -

m denotes the number of real terminals. k denotes the number of obstacles. L1 and L2 denote the length of the resulting OARSMT.
t1 and t2 denote the CPU time in seconds. ω = t2/t1(×) is the speedup. “-” denotes no solution after 72 hours.

VI. EXPERIMENTAL RESULTS

We implement our algorithm based on GeoSteiner-3.1 and
all the experiments are conducted on a Sun Blade 2500
workstation with two 1.6GHz processors and 2GB memory.
We test our algorithm using 21 benchmark circuits. Bench-
marks IND1-IND5 are industrial test cases from Synopsys.
Benchmarks RC1-RC11 are adopted from [5]. Benchmarks
RT1-RT5 are random test cases used in [8]. Table I shows the
results of our method in comparison with the approach in [1].
We execute the algorithm in [1] on our platform. In order
to show the efficiency of our approach, we also tabulate the
results of fifteen additional test cases (IND1′-IND5′, RC6′-
RC10′, and RT1′-RT5′) which are used in [1]. These test
cases are obtained by selecting the first few obstacles from
the corresponding benchmarks. We run each test case for 72
hours at most. As can be observed from the table, the time
required for the OARSMT generation has been improved a
lot by our method. Comparing with the approach in [1], our
method can solve problems with up to one thousand obstacles,
while the approach in [1] can only deal with cases with about
ten obstacles. Among those solvable cases, our approach is 185
times faster than the approach in [1] on average. However, the
proposed method still cannot solve RT5 in which there are
two thousand obstacles.

VII. CONCLUSION

In this paper, we presented an optimal approach to solve the
OARSMT problems. In the proposed approach, OARSMTs are
constructed by concatenation of OAFSTs. Experiment results
show that our approach can handle problems with hundreds
of terminals in the presence of up to one thousand obstacles.
Our future work is to enhance the performance of the proposed
method in solving large cases.
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