
Generation of Optimal Obstacle-avoiding
Rectilinear Steiner Minimum Tree

Liang Li
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
lli@cse.cuhk.edu.hk

Zaichen Qian
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
zcqian@cse.cuhk.edu.hk

Evangeline F. Y. Young
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
fyyoung@cse.cuhk.edu.hk

ABSTRACT
1 In this paper, we present an efficient method to solve the obstacle-
avoiding rectilinear Steiner tree problem optimally. Our work is de-
veloped based on the GeoSteiner approach, modified and extended
to allow rectilinear blockages in the routing region. We extended
the proofs on the possible topologies of full Steiner tree (FST)
in [4] to allow blockages, where FST is the basic concept used in
GeoSteiner. We can now handle hundreds of pins with multiple
blockages, generating an optimal solution in a reasonable amount
of time. This work serves as a pioneer in providing an optimal
solution to this difficult problem.

1. INTRODUCTION
Construction of rectilinear Steiner minimum tree (RSMT) is an

important problem in VLSI physical design. It is useful for both
the detailed and global routing steps, and it is important for con-
gestion, wire length and timing estimations during the floorplan-
ning or placement step. The original RSMT problem assumes no
obstacles in the routing region. In today’s VLSI designs, there can
be many routing blockages, like macro cells, IP blocks and pre-
routed nets. Therefore, the RSMT problem with blockages, called
obstacle-avoiding RSMT (OARSMT) problem, has become an im-
portant problem in practice.

This OARSMT problem has been widely studied [7, 8, 9, 10,
11]. More recently, Hu et al. [12] developed an efficient hierar-
chical heuristic called FORst. Their method can tackle large scale
problems efficiently. Based on an ant colony optimization, Hu et
al. [13] proposed another non-deterministic local search heuristic,
called An-OARSMan, to handle small-scale OARSMT problems
with complex obstacle shapes. Although An-OARSMan is flexi-
ble in handling complex obstacles, it takes extremely long running
time for large scale designs. CDCTree proposed by Shi et al. [15]
is based on a current driven circuit model and it can achieve shorter
wire length than An-OARSMan. Shen et al. [14] proposed a con-

1The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. 4184/07)

nection graph based approach to solve the problem. An obstacle-
avoiding spanning graph is first constructed and then transformed
into an OARSMT. Feng et al. [16] proposed a method to construct
obstacle-avoiding Steiner tree in an arbitrary λ-geometry by Delau-
nay triangulation.

Very recently, Wu et al. [17] presented another algorithm for
constructing OARSMTs. Their approach first finds a minimum
spanning tree of all the terminals. The segments intersecting with
the obstacles will be removed, forming a set of sub-trees. An ant
colony optimization based approach is then used to connect the sub-
trees back into a single tree which is rectilinearized at the end to
given an OARSMT. Hentschke et al. [18] presented AMAZE, a fast
maze routing based algorithm to build Steiner trees. Another recent
work on this problem is by Lin et al. [19]. They extended the con-
nection graph based approach in [14] by identifying many “essen-
tial” edges which can lead to more desirable solutions in the con-
struction of the obstacle-avoiding spanning graph. A recent work
on this problem is by Li and Young [20]. In their work, a maze
routing based approach is used. Multiple paths between the pins
are kept until all the pins are reached. Then a MST based method is
used to select between those paths to create an OARSMT. Another
recent piece of work is by Long et al. [21]. They proposed an effi-
cient four-step algorithm to construct an OARSMT. They presented
a fast algorithm for the minimum terminal spanning tree construc-
tion. Very recently, Lin et al. [22] proposed a critical-trunk-based
tree growth mechanism and applied it to construct an OARSMT
with an objective to minimize sink delay and to maximize the worst
negative slack of the Steiner tree.

For the RSMT problem, there are ways to find optimal solutions
effectively, e.g., using the GeoSteiner approach, with which one
can compare with to get a better understanding of how far a pro-
posed method is away from the optimum. For this OARSMT prob-
lem, there is not yet any good methods to generate optimal solu-
tions effectively. The aim of this work is to study and provide such
an optimal approach for the OARSMT problem. Our work is de-
veloped based on GeoSteiner, modified and enhanced to allow rec-
tilinear blockages in the routing region. We extended the proofs on
the possible topologies of full Steiner tree (FST) in [4] to consider
blockages, where FST is the basic concept used in GeoSteiner. We
can now connect more than 500 pins with multiple blockages, gen-
erating an optimal solution in a few minutes. This work serves as a
pioneer in providing an optimal solution to this difficult problem.

In the rest of this paper, we first review the GeoSteiner approach.
Then, we give an overview of our approach. After that, we discuss
about the properties of FST, FST generation and FST concatenation
when blockages exist. Experimental results will be shown in the
last section, followed by a conclusion at the end.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’09, November 2–5, 2009, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

21

2. PROBLEM DEFINITION
In the obstacle-avoiding rectilinear Steiner minimum tree prob-

lem, we are given a set V of n pins on the 2-D plane and a set B of
m rectangular blockages, where the blockages cannot overlap with
each other, and the objective is to give a shortest interconnection of
those n pins using only horizontal and vertical lines without inter-
secting the blockages. This problem is well known to be NP-hard.

3. REVIEW ON GEOSTEINER
Rectilinear Steiner minimum trees (RSMTs) are unions of full

Steiner trees (FSTs) in which every pin is a leaf. GeoSteiner is
based on a framework in which subsets of pins are considered one
after another. For each subset, all its FSTs are determined and the
shortest one is kept. A number of checkings can be performed to
identify and prune away some of those FSTs that cannot be in any
RSMTs. Remaining FSTs are then selected and concatenated to
obtain a RSMT with the shortest length. There are two major steps
in this framework, FST generation and FST concatenation. For the
FST generation step, an efficient algorithm by Zachariasen [6] is
used that, based on some pre-processing information, grows FSTs
while applying several optimality conditions to prune away those
which will not be useful. The observed running time of this FST
generation step is quadratic and approximately 4n FSTs will be
generated on average for randomly generated problem instances.
For the FST concatenation step, Warme [5] found that the problem
is equivalent to the minimum spanning tree problem on a hyper-
graph with the set V of pins as vertices and subsets spanned by
FSTs as hyperedges. It can be formulated as an integer linear pro-
gram (ILP) and solved it using some branch-and-cut search.

4. OVERVIEW OF OUR APPROACH
For a given set of pins V and a set of blockages B, we want to

find an OARSMT connecting all the pins in V . First of all, we add
four virtual pins at the four corners of every blockage and we call
the set of all these virtual pins V ′.

Our algorithm is also based on the framework of GeoSteiner that
is composed of the two major steps, FST generation and FST con-
catenation. After adding all the virtual pins to the original set of
pins, we can show that the topologies of those FSTs with at least
three vertices will follow a particular structure and the proof is very
similar to that by Hwang [4]. For those FSTs with exactly two ver-
tices, we have devised some interesting methods to generate those
potentially useful ones effectively and this step is significantly dif-
ferent from that in GeoSteiner because of the existence of virtual
pins. In our approach, we will generate all the FSTs after adding
the virtual pins (one at each corner of a blockage) to the original set
of pins. Notice that these virtual pins may or may not be used in the
final optimal OARSMT. Following a similar fashion of GeoSteiner,
we will then set up an ILP to select and concatenate some FSTs to
form an OARSMT. The ILP is set up in such a way that those vir-
tual pins can be included or not in the final tree as long as a shortest
OARSMT is constructed. In the following sections, we will show
some of the proofs2 and explain each step in more details.

2We will not show all the proofs due to page limitation. A complete
proof will appear in an extended version of this paper.

5. STRUCTURES OF FST WITH VIRTUAL
PINS

5.1 Definition of FST
As defined in many previous works, a FST of a set P of pins

is a rectilinear Steiner minimum tree T of P such that in T and
all its equivalent trees, every pin is a leaf node. Using the same
definition in [4], a tree T ′ is equivalent to another tree T if and
only if T ′ can be obtained from T by shifting (Fig. 2(a)) or flipping
(Fig. 2(b)) some edges which have no pins on them. After adding
all the virtual pins to the original set of pins, an FST t with vertex
set Vt ⊆ (V +V ′) will have the following properties:

1. t is an OARSMT of the vertex set Vt and the degrees of the
vertices in Vt are one in all the equivalent trees of t.

2. All the equivalent trees of t will not contain the types of edges
(thickened) shown in Fig. 1, as splitting at the virtual pins
will be done otherwise.

3. For any edge in an equivalent tree of t, the rectangular region
covered by the two end points of the edge must contain no
blockages, for property (2) will be violated (by shifting the
edge to the boundary of the blockage) otherwise.

edge

edge

edge

Figure 1: Forbidden edge

In the following, we will show that the structure and shape of a
FST satisfying the above properties will follow some very simple
forms.

(a) Shifting (a) Flipping

Figure 2: Shifting and flipping

5.2 Notations
In the following, we will use the same notations as in [4]. A

vertex can be a pin (a pin refers to a real pin or a virtual pin unless
stated specifically) or a Steiner point. An edge between two vertices
is a sequence of alternating vertical and horizontal lines. We call
each turning point a corner. A line has only one direction but may
contain a number of vertices on it. Vxu (Vxd) denotes the vertical
line at x which is above (below) x but excluding x itself. Similarly
Hxr (Hxl) denotes the horizontal line at x which extends to the right
(left) of x but excluding x itself. An example is shown in Fig. 3.
If a line ends at a pin and contains no other vertices, we call it a
node line. If it ends at a corner and contains no vertices, we call it a
corner line. In the following figures for the proofs, an empty circle
represents a vertex, which can be a pin or a Steiner point, and an
empty square represents a pin.

22 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

HAr

AdV

AlH

AuV
A

Figure 3: A point with four adjacent lines

5.3 Properties of FST with Virtual Pins
In this section, we want to derive the structure and topology of

a FST in an OARSMT (V +V ′). The steps of proof are similar to
those in [4] but there are now blockages in the routing region. We
will see that after the introduction of virtual pins, the structures of
the FSTs are very similar to those without blockages [4]. In the
following, we will present the proof of only one of the lemmas to
illustrate the differences when blockages exist.

LEMMA 1. Let A and B be two adjacent Steiner points in a FST.
Suppose that AB is a horizontal line and both VAu and VBu exist.
Then |VBu| ≥ |VAu| implies that VAu is a corner line that turns away
from VBu.

V VBuAu

α

A B

Figure 4: Property of adjacent Steiner points

PROOF. See Fig. 4. Suppose A is to the left of B. We can claim
the following:

(i) VAu contains no pins at the opposite end of A, for otherwise,
we can shift AB to that vertex and obtain an equivalent tree in which
a pin has degree more than one. If the line AB cannot be shifted due
to some blockages, the FST (or its equivalent tree) will contain the
structure as shown in Fig. 1.

(ii) No Steiner points on VAu can have a line going right, for
otherwise we can replace AB by extending that line to meet VBu
and reduce the total length (thus not a FST, since FST is a Steiner
minimum tree). If the line cannot be extended due to blockages,
the FST (or its equivalent tree) will contain the structure as shown
in Fig. 1 (again, by shifting AB to the blockage).

(iii) Therefore, the other end point of VAu cannot be a Steiner
point since it has no lines going right or up (a Steiner point has
degree more than two), and it hence must be a corner turning left.

(iv) VAu can have no Steiner point on it, for let C be such a Steiner
point which is nearest to the corner point, then HCr does not exist
and hence HCl must exist. We can then shift the line between point
C and the corner point to the left to reduce the total length. If
the line cannot be shifted due to some blockages, the FST (or its
equivalent tree) will contain the structure as shown in Fig. 1.

THEOREM 1. Suppose s is a FST of a set P of pins and |P|= p.
Then s is in the form of one of the following two structures in one
direction as shown in Fig. 5.

6. GENERATION OF FST WITH VIRTUAL
PINS

6.1 Generation of FST with Two Pins
For those FSTs with exactly two vertices, we will construct them

separately for efficiency purpose by the following method. First of

Type 1 Type 2

Figure 5: Possible FST structures in one direction

all, these FSTs can be divided into two types. The first type is that
the two end points are both in V . The second type is that at least of
the two end points is in V ′.

For the first type, we can construct them according to a lemma by
Föβmeier et al. [2]. Let G = (V,E) be a graph with edges assigned
mutually distinct weights and let U be a subset of V . Let T be a
MST of G and T ′ be a MST of G[U], the subgraph of G induced by
U . Then, every edge (u,v) in T where both u and v are in U will
also appear in T ′. We can show that the above property will also
hold for RMST with obstacles. In order to generate all possible
type one FSTs with two end points in V , we only need to construct
an obstacle avoiding RMST of V and include all the edges in it as
potential candidates.

For the second type, we will make use of a similar idea proposed
by Yao et al. [1]. We know that at least one of the two end points
of the edge under construction is in V ′ and the rectangular area
covered by the two end points of the edge is obstacle free. For
each virtual pin v′i ∈ V ′, we will divide its surrounding area into
eight regions Ri for i = 1 . . .8. In every region Ri, we will find the
point v j ∈V which has the shortest rectilinear distance (dv′iv j

) from
v′i and the rectangular area covered by v′i and v j has no obstacles.
Then, the edge containing v′i and v j is a potential candidate. In this
region Ri, we will also find those points u ∈V ′ where the distance
dv′iu ≤ dv′iv j

and the area covered by v′i and u is obstacle free. Then,
the edge containing v′i and u will also be a potential candidate.

Based on the above methods, we can find all the potentially
useful two pin FSTs. The number of this kind of edges is very
large. Therefore we adopt some techniques to remove redundancy.
Firstly, we will remove an edge if the rectangular area covered by
its two end points is not obstacle free. This can be easily understood
according to the definition of our FST with virtual pins. Secondly,
if the rectangular area covered by the two end points is obstacle
free but contains some pin points from V , we will also remove the
edge. This technique has also been adopted by Zachariasen in [6].

6.2 Generation of FST with Three or More
Pins

Actually, we are only interested in the FSTs that can be part of an
OARSMT. Thus we should identify some necessary conditions for
a FST to be a part of an OARSMT as in [6] to improve efficiency.
Most of the conditions in [6] are applicable to us with some modi-
fications. In the following, we will just focus on the modifications
made when blockages and virtual pins exist.

For example, the bottleneck Steiner distance can also be used to
eliminate useless FSTs when blockages exist. Let OARMST(V) be
an obstacle avoid rectilinear minimum spanning tree of the point set
V and vi, v j ∈ V be a pair of vertices. The bottleneck Steiner dis-
tance δOARMST (viv j) between vi and v j is equal to the length of the
longest edge on the unique path between vi and v j in OARMST(V).
Salowe et al. [3] proposed a theorem stating that if MST and SMT
are respectively a minimum spanning tree and a Steiner minimal
tree on a set of vertices V , then δMST (viv j) � δSMT (viv j) for any
vi,v j ∈V . We can show that the property will also hold for OARMST(V)
and OARSMT(V). However, we can only compare the edges of

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 23

which both end points are in V in the OARSMT with the bottle-
neck Steiner distance computed from the OARMST.

The empty diamond property proposed in [6] states that no other
points of an RSMT can lie in L (u,v), where uv is a (horizontal or
vertical) segment in the RSMT and L (u,v) is an area on the plane
where all the points in this area are closer to both u and v than u and
v from each other. However, when there are blockages and virtual
pins, the points which cannot lie in L (u,v) are the points in V only.
The empty corner rectangle property is also proposed in [6]. Let
uw and vw denote two perpendicular segments sharing a common
end point w. Then no other points of the RSMT can lie in the
interior of the smallest axis-aligned rectangle R(u,v) containing u
and v. However, when there are blockages and virtual pins, we only
need to consider points in V and can project on uw and vw without
intersecting with any blockages.

Based on all of the above properties, we can generate all the
potentially useful FSTs by growing them recursively as in [6]. We
have also implemented some efficient methods to find the shortest
distance between two points with blockages, the bottleneck Steiner
distance, the long leg terminal candidates and the short leg terminal
candidates to accelerate the process.

7. CONCATENATION OF FSTS WITH VIR-
TUAL PINS

After generating all the potentially useful FSTs, we can set up
an ILP as in the GeoSteiner approach to select and concatenate a
subset of FSTs to construct an OARSMT, connecting all the points
in V with the minimum total length.

In the following, let S be the set of all FSTs found, V be the set
of all real pins, T be the set of virtual pins (note that there is one
virtual pin on each corner of the blockages), n = |V |, m = |S| and
t = |T |. Each FST si ∈ S is associated with a binary variable xi
indicating whether si is taken. Besides, there are binary variables
yi for i = 1 . . . t indicating whether virtual pin ti ∈ T is connected in
the tree. We use |si| to denote the size of si, i.e., the number of pins
(including virtual pins) connected by si, and use len(si) to denote
the length of si. Then the ILP is as follows:

Minimize: ∑m
i=1 len(si)×xi (1)

Subject to:
∑m

i=1 xi(|si|−1) = n−1+∑t
i=1 yi (1a)

y j ≤ ∑t j∈si
xi ∀t j (1b)

y j ≥ xi ∀t j∀si s.t. t j ∈ si (1c)
∃si ∈ S s.t. si ∈ (X : V +T −X) and xi = 1
∀X ⊆V +T and V � X and X ∩V
= /0 (1d)
∑si:si∩X
= /0 xi(|si ∩X |−1) ≤ |X −T |+∑ti∈X yi −1
∀X ⊆V +T and X ∩V
= /0 and 2 ≤ |X | ≤ n+ t −1 (1e)
∑si:si∩X
= /0 xi(|si ∩X |−1) ≤ |X |−1 ∀X ⊆ T and X
= /0 (1 f)

The notation si ∈ (X : V + T −X) in (1c) means that si ∩X
= /0
and si∩ (V +T −X)
= /0. Constraint (1a) requires the right amount
of edges. Each selected FST si contributes |si|−1 edges for the tree.
Since we do not know the exact total number of pins (because of
the virtual pins), yi is added. Constraint (1b) ensures that if all FSTs
containing a virtual pin are not selected, that virtual pin will not be
in the tree. Constraint (1c) ensures that if a certain FST containing a
virtual pin is selected, the corresponding virtual pin is also selected.
Constraint (1d) requires that a solution should be connected – for
any cut with partitions X and V +T −X , there must be at least one
selected FST linking it up. We require X∩V
= /0, because we do not
care about the connectivity of the virtual pins. We require V � X
for the same reason that we do not need to connect to virtual pins if

V itself has been all connected. Both constraints (1e) and (1f) are
used to eliminate cycles. Consider a set X of two pins only. We can
allow to have at most one FST which are selected and contain both
pins of X . A cycle will be formed otherwise. Similar concept can be
extended for sets of larger size and this results in the formulation of
constraints (1e) and (1f). In (1e), we consider those sets X ∩V
= /0.
Since yi tells whether ti is selected, |X −X ∩ T |+ ∑ti∈X yi gives
the exact number of pins (including virtual pins) in X . In (1f), we
can just use |X | for the number of pins as X ⊆ T . From the above
formulation, we can know the number of variables in the ILP is
the summation of the number of FSTs and the number of virtual
pins. From the experiment results, we observed that the number of
FSTs is approximately a constant times the number of pins (pins
and virtual pins) when the number of virtual pins is small. We can
also see from the above formulation that the number of constraints
is exponential.

8. EXPERIMENTAL RESULTS
We implemented our algorithm based on geosteiner-3.1 and all

the experiments were performed in a computer with a 2.2GHz Intel
Pentium processor and 2GB memory running in the Linux environ-
ment. There are totally 22 benchmark circuits. All these test cases
are obtained from [19] by selecting some blockages. (If we allow k
blockages, we will take the first to the kth ones.)

Steiner Minimal Tree: 10 points, length = 25980, 233.22 seconds

Figure 6: The result of our algorithm with 10 points and 10
blockages

In table 1, we list the running time of the algorithm, and the
length of the optimal OARSMT constructed by our algorithm. The
running time includes the time of generating all the FSTs and the
time of solving the ILP. From the results, we can see that the time of
generating all the FSTs is very short and solving the ILP dominates
the total running time. We also list the lengths of the OARSMTs
constructed by some recently published heuristics [19], [20] and
[21]. As we do not have the executable of the approach in [19], we
have just listed the corresponding results appeared in their paper
(others are shown as N/A). For the other two approaches [20, 21],
we run the experiments with the executables provided by the au-
thors. For the test case ind3_10_20, the method in [21] cannot give
a solution and it is indicated with an N/A in the table. With our op-
timal method, we can easily compare the performance of different
approaches and see how far a heuristic solution is away from the
optimum.

We show an optimal result for the test case rc1 generated by
our algorithm in Fig. 6. The points which are not connected is the
virtual points we added at the corners of the blockages.

24 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Test Cases CPU Time (s) L (O) Other Heuristics Di = (Hi −O)/Hi (%)
name_n_m FST ILP [19] (H1) D1 [20] (H2) D2 [21] (H3) D3

ind1_10_20 0.05 318.68 604 N/A N/A 619 2.42 648 6.82
ind2_10_22 0.04 206.59 9300 N/A N/A 9300 0.00 9600 3.13
ind3_10_20 0.02 23.81 587 N/A N/A 590 0.51 N/A N/A
ind4_25_20 0.05 380.03 1078 N/A N/A 1088 0.92 1100 2.00
ind5_33_11 0.04 225.07 1295 N/A N/A 1304 0.69 1326 2.34

rc1_10_10 0.06 240.76 25980 26900 3.42 25980 0.00 26120 0.54
rc2_30_10 0.06 108.99 41350 42210 2.04 42010 1.57 41630 0.67
rc3_50_10 0.10 2.35 54160 55750 2.85 54390 0.42 55010 1.54
rc4_70_10 0.10 2.06 59070 60350 2.12 59740 1.12 59250 0.30

rc5_100_10 0.23 9.61 74070 76330 2.96 74650 0.78 76240 2.85
rc6_100_15 0.40 120.67 76436 N/A N/A 77720 1.65 77715 1.65
rc7_200_10 0.67 301.67 105305 N/A N/A 106951 1.54 106891 1.48
rc8_200_10 0.75 139.67 107652 N/A N/A 109161 1.38 110260 2.37
rc9_200_10 0.63 24.63 105712 N/A N/A 107644 1.79 107630 1.78

rc10_500_10 4.59 106.04 162230 N/A N/A 165580 2.02 165460 1.95

rt1_10_15 0.06 71.28 1858 N/A N/A 1858 0.00 1963 5.36
rt2_50_15 0.15 198.72 44294 N/A N/A 45796 3.28 45263 2.14
rt3_100_10 0.28 553.32 7579 N/A N/A 7736 2.03 7664 1.11
rt4_100_10 0.20 81.79 7678 N/A N/A 7820 1.82 7851 2.20
rt5_200_10 0.58 28.64 42748 N/A N/A 43680 2.13 43481 1.69

Average 2.68 1.30 2.21
n is the number of pins, m is the number of blockages and L denotes the length of the OARSMT.

Table 1: Optimal OARSMT lengths and comparisons with some recent heuristics

9. CONCLUSION
In this paper, we extended the well known GeoSteiner method

to solve the obstacle-avoiding RSMT problem optimally. We can
now handle hundreds of pins with multiple blockages, generating
an optimal solution in a reasonable amount of time. Our future
work is to improve further the efficiency of this method to handle
data with even more pins and obstacles. This work serves as a
pioneer in providing an optimal solution to this important obstacle-
avoiding RSMT problem.

10. ACKNOWLEDGMENT
The authors want to thank Professor Chris Chu and Hai Zhou for

their kind help.

11. REFERENCES
[1] Andrew C.C. Yao, “On Constructing Minimum Spanning Trees in

k-dimensional spaces and related problems”, SIAM Journal on
Computing, Vol.11, No.4, pp.721-736, 1982.

[2] U. Föβmeier and M. Kaufmann, “On Exact Solutions for the
Rectilinear Steiner tree problem”, Technical Report WSI-96-09, 1996.

[3] J.S. Salowe and D.M. Warme, “Thirty-Five Point Rectilinear Steiner
Minimal Trees in a Day”, Networks, Vol.25, No.2, pp.69-87, 1995.

[4] F.K. Hwang, “On Steiner Minimal Trees with Rectilinear Distance”,
Proceedings SIAM Journal on Applied Mathematics, Vol.30,
pp.104-114, 1976.

[5] D.M. Warme, “A New Exact Algorithm for Rectilinear Steiner
Minimal Trees”, Technical Report, System Simulation Solutions, Inc.,
Alexandria, VA 22314, USA, 1997.

[6] M. Zachariasen, “Rectilinear Full Steiner Tree Generation”,
Networks, Vol.33, pp.125-143, 1999.

[7] K.L. Clarkson and S. Kapoor and P.M. Vaidya, “Rectilinear Shortest
Paths through Polygonal Obstacles in O(nlog2n)”, Proceedings ACM
Symposium on Computational Geometry, pp.251-257, 1987.

[8] Y.F. Wu and P. Widmayer, M.D.F. Schlag and C.K. Wong,
“Rectilinear Shortest Paths and Minimum Spanning Trees in the
Presence of Rectilinear Obstacles”, IEEE Transaction on
Computer-Aided Design, Vol.36, No.3, pp.321-331, 1987.

[9] J. Ganley and J.P. Cohoon, “Routing a Multi-terminal Critical Net:
Steiner Tree Construction in the Presence of Obstacles”, Proceedings
International Symposium on Circuits and Systems, pp.113-116, 1994.

[10] S.Q. Zheng and J.S. Lim and S.S. Iyengar, “Finding
Obstacle-avoiding Shortest Paths using Implicit Connection Graphs”,
IEEE Transaction on Computer-Aided Design, Vol.15, No.1,
pp.103-110, 1996.

[11] Y. Yang and Q. Zhu and T. Jing and X. Hong and Y. Wang,
“Rectilinear Steiner Minimal Tree Among Obstacles”, Proceedings
IEEE ASICCON, pp.348-351, 2003.

[12] Y. Hu and Z. Feng and T. Jing and X. Hong and Y. Yang and G. Yu
and X. Hu and G. Yan, “FORst: a 3-step Heuristic for
Obstacle-avoiding Rectilinear Steiner Minimal Tree Construction”,
Journal of Information and Computational Science, pp.107-116,
2004.

[13] Y. Hu and T. Jing and X. Hong and Z. Feng and X. Hu and G. Yan,
“An-OARSMan: Obstacle-avoiding Routing Tree Construction with
Good Length Performance”, Proceedings ASP-DAC, pp.7-12, 2005.

[14] Z. Shen and C. Chu and Y. Li, “Efficient Rectilinear Steiner Tree
Construction with Rectilinear Blockages”, Proceedings ICCD,
pp.38-44, 2005.

[15] Y. Shi and T. Jing and L. He and Z. Feng and X. Hong, “CDCTree:
Novel Obstacle-avoiding Routing Tree Construction based on Current
Driven Circuit Model”, Proceedings ASP-DAC, 2006.

[16] Z. Feng and Y. Hu and T. Jing and X. Hong and X. Hu and G. Yan,
“An O(nlogn) Algorithm for Obstacle-avoiding Routing Tree
Construction in the λ-geometry Plane”, Proceedings ISPD, pp.48-55,
2006.

[17] P.C. Wu and J.R. Gao and T.C. Wang, “A Fast and Stable Algorithm
for Obstacle-avoiding Rectilinear Steiner Minimal Tree
Construction”, Proceedings ASP-DAC, pp.262-267, 2007.

[18] R. Hentschke and J. Narasimham and M. Johann and R. Reis, “Maze
Routing Steiner Trees with Effective Critical Sink Optimization",
Proceedings ISPD, 2007.

[19] C.W. Lin and S.Y. Chen and C.F. Li and Y.W. Chang and C.L. Yang,
“Efficient Obstacle-avoiding Rectilinear Steiner Tree Construction”,
Proceedings ISPD, 2007.

[20] L. Li and Evangeline F.Y. Young, “Obstacle-avoiding Rectilinear
Steiner Tree Construction”, Proceedings ICCAD, 2008.

[21] J.Y. Long and H. Zhou and S.O. Memik, “EBOARST: An Efficient
Edge-Based Obstacle-Avoiding Rectilinear Steiner Tree Construction
Algorithm”, IEEE Transaction on Computer-Aided Design, Vol.27,
No.12, pp.2169-2182, 2008.

[22] Y.H. Lin and S.H. Chang and Y.L. Li, “Critical-Trunk Based
Obstacle-Avoiding Rectilinear Steiner Tree Routings for Delay and
Slack Optimization ”, Proceedings ISPD, 2009.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Times-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

