Retiming with Interconnect and Gate Delay

Chris Chu*, Evangeline F. Y. Young®, Dennis K. Y. Tong", and Sampath Dechu*
* Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011

T Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

¥ Physical Design Automation Group, Micron Technology, Inc., Boise, ID 83707

Abstract

In this paper, we study the problem of retiming of sequential circuits
with both interconnect and gate delay. Most retiming algorithms have
assumed ideal conditions for the non-logical portions of the data
paths, which are not sufficiently accurate to be used in high perfor-
mance circuits today. In our modeling, we assume that the delay of
a wire is directly proportional to its length. This assumption is rea-
sonable since the quadratic component of a wire delay is significantly
smaller than its linear component when the more accurate Elmore de-
lay model is used. A simple experiment is conducted to illustrate the
validity of this assumption. We present two approaches to solve this
problem, both of which have polynomial time complexity. The first
one can compute the optimal clock period while the second one is
an improvement over the first one in terms of practical applicability.
The second approach gives solutions very close to the optimal (0.13%
more than the optimal on average) but in a much shorter runtime.
A circuit with more than 22K gates and 32K wires can be optimally
retimed in 83.56 seconds by a PC with an 1.8GHz Intel Xeon proces-
sor.

1 Introduction

Retiming [1] is a useful and popular technique for performance
optimization of sequential circuits. It relocates registers to re-
duce the cycle time while preserving the functionality of the
circuit. Much effort has been made to apply this technique
in different areas like power reduction [2, 3], testability [4, 5],
logic resynthesis [6], circuit partitioning [7-9] and physical
planning [10]. Some extended its applicability in large practi-
cal circuits efficiently [11-18]. However, most retiming algo-
rithms have assumed ideal conditions for the non-logical por-
tions of the data paths, specifically ignoring the interconnect
delay. As process technology gets down to deep sub-micron,
interconnect delay becomes a major factor of path delay. With-
out including this delay component, existing retiming algo-
rithms are not sufficiently accurate to be used in practical high
performance circuits.

The choice of an accurate interconnect delay model and an
appropriate retiming algorithm are important. In some previ-
ous works [19, 20], interconnect delay was incorporated into
the retiming process, but simplified assumptions were made
such that the interconnect delay between adjacent registers on
the same wire was neglected. Another approach to integrate
retiming into detailed placement was presented in [21]. After
an initial placement and routing, heuristics were used to es-
timate interconnect delay. Retiming and post-retiming place-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD’03, November 11-13, 2003, San Jose, California, USA.

Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

ment were then performed to optimize the circuit performance.
A recent paper [22] by Tabbara et al. applied retiming in the
DSM domain and interconnect delay was considered. It was
done by having a lower bound on the number of registers on
each wire e,,,, while the delays at nodes were irrelevant. Regis-
ters could be retimed into a node that represented a component
and affected the total area of the component. Retiming was
performed to satisfy the constraint on the number of registers
on each wire while minimizing the total area of the compo-
nents. Another paper [13] by Deokar et al. used a combination
of clock skew and retiming to find a retiming solution which
was guaranteed to be at most one gate delay larger than the
optimal clock period. In their work, a clock skew solution cor-
responding to an optimal clock period was converted into a
retiming solution. However, their current approach to perform
this conversion considered only gate delays.

In this paper, we study the problem of retiming with both in-
terconnect and gate delay. In our modeling, the delay of a wire
is assumed to be directly proportional to its length. When a
wire is short, the quadratic component of the wire delay is sig-
nificantly smaller than its linear component. For a long wire,
buffer insertion can be performed to break the wire into short
segments. A simple experiment is conducted to illustrate the
validity of this assumption and the result is shown in Figure 1.
In this experiment, the Elmore delay model is used and the
parameters are based on the 0.07um technology. This graph
shows the relationship between wire delay (y-axis) and wire
length (x-axis). If the wire is shorter than 1.46 mm, the error
of using a linear approximation is at most 5.48%. If the wire
is longer than 1.46 mm, the delay can be reduced by inserting
a buffer and the error resulted is even less.

We present two approaches in this paper both of which have
polynomial time complexity. The first one is extended from
the MILP approach in the paper [1] and can solve the prob-
lem optimally, i.e., relocating the registers to give the smallest
possible clock period. The second one transforms the prob-
lem into a single-source longest paths problem and then ap-
plies a technique to reduce the size of the graph for longest
path computation. It is an improvement over the first one in
terms of practical applicability. It gives solutions very close
to the optimal (0.13% more than the optimal on average) but
in a much shorter runtime. Experimental results showed that
a circuit with more than 22K gates and 32K wires could be
retimed in 83.56 seconds by a PC with an 1.8GHz Intel Xeon
processor. These retiming techniques will also find applica-
tions in flip-flop dropping in placement by estimating the best
possible register positions to optimize the circuit performance.

221

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

Delay (ps)
\

550 —
500 —

450 = No buffer

400 —

350 Linear Approx.

300 —
250 —
200 —
150 —
100 —

50 — —
| Wire
0 length

! \ \ \ \ \
0 05 1.0 15 20 g5 (mm)

Figure 1: A simple experiment to illustrate the relationship be-
tween wire delay and wire length.

The original placement solution will be modified to relocate
the registers according to the retiming solution. However the
effect will be minor if the original solution is not very densely
placed. This is a reasonable assumption today as area is not a
major concern while routability and congestion are the impor-
tant factors for circuit performance. Register relocations can
then be done by making use of the empty space or by shifting
the placed cells a little bit.

The remainder of this paper is organized as follows. We
present the problem statement in Section 2. The optimal ap-
proach and the fast approach are presented in Section 3 and
Section 4, respectively. Experimental results are shown and
discussed in Section 5. A conclusion follows in Section 6.

2 Problem Formulation

A sequential circuit can be represented by a directed graph
G(V,E), where each node v corresponds to a combinational
gate, and each directed edge e,, represents a connection from
the output of gate u to the input of gate v, through zero or
more registers. Without loss of generality, we assume that G
is strongly connected. If not, we can add a source node s and
connect it to all primary inputs, add a target node ¢ and connect
all primary outputs to it, and connect ¢ to s. Then the resulting
graph is strongly connected. If we set the delay of s, ¢ and all
the added edges to zero, and set the number of registers on e
to one and that on the other added edges to zero, a retiming
solution S of the modified graph will also be a valid retiming
solution of the original graph as long as e, still has one regis-
ter in S. Let wy, be the number of registers of edge e,,. Let
dy, be the interconnect delay of edge e, if all the registers are
removed. Note that the delay of an interconnect segment is as-
sumed to be proportional to the length of the segment. Let d,,
be the gate delay of node u.

Traditionally, interconnect delay is ignored during retiming.

Register with

longest delay N
to vertex v ‘x\(\i\elay=a(v)
‘>O I v

Registers Ll*>
/

Figure 2: An example to illustrate the meaning of a(v).

A retiming solution can be viewed as a labeling of the nodes
r:V — Z, where Z is the set of integers [1]. The retiming label
r(v) for a node v represents the number of registers moved from
its outputs toward its inputs. After retiming, the number of
registers Wy, on an edge ey, is given by Wy, = r(v) +wy, — r(u).

As interconnect delay is dominating in the VDSM technol-
ogy, the exact position of each register will affect the clock
period. A retiming solution should specify both the retiming
label r(v) for each node v and the exact positions of the w,,
registers on each edge e,,. Retiming should be formulated as
a problem of determining a feasible retiming solution, i.e., a
solution in which the number of registers w,, on each edge e,
is non-negative, such that the clock period of the retimed cir-
cuit is minimized. In the following, we show how to check
whether a particular clock period T can be achieved by a fea-
sible retiming solution. The minimum achievable clock period
Topr can then be found by binary search.

3 An Optimal Approach

This approach is extended from the mixed integer linear pro-
gramming (MILP) approach in [1]. In the original formulation,
only gate delay is considered and there is thus no difference be-
tween having one or more than one registers on a wire. Their
technique can be extended to solve the problem with both gate
and interconnect delay optimally by modifying some of the
constraint formulation. In order to formulate the problem as
an MILP, for each gate v, we need to define a term a(v) that
represents the maximum arrival time at the output of gate v.
An example to illustrate this definition is shown in Figure 2.
We can then formulate the problem as the following MILP:

d,<alv) WeVvV (1)

av)<T WweV (2

r(v)+wy—r(u) >0 Ve, €E (3)

a(v) > a(u) +dy+d, —T(r(v) +wyy —r(u)) Vey € E (4)

where T is the clock period that we want to check whether it
is achievable. Since a(v) is the longest delay to the output of
gate v from a register connected directly to an input of v, this
delay must be at least the delay of gate v, so d, < a(v) as stated
in (1). Besides, this delay cannot exceed the clock period T as
required in (2). Constraint (3) is needed for a feasible retiming
solution. Constraint (4) is to ensure that enough registers are
on each edge e, to achieve a clock cycle 7. As the largest
possible delay between two adjacent registers is 7', the right-
hand side of constraint (4) is reduced by T for each register on

222

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

edge e,,. Note that this constraint also captures the scenario
when there is no registers on edge e,,. In that case, the arrival
time at node u contributes directly to the arrival time at node v.
By introducing a variable R(v) at each node v that is defined
as a(v)/T 4 r(v), the above set of constraints (1)—(4) can be
rewritten as a set of difference constraints as follows:

R(v)—r(v) > d? eV %)
R(v)—r(v)<1 WeV (6)

r(u) —r(v) <wyy, Vew €E (7

RO)-R@) > &y VewcE ®

Notice that (5)—(8) is a set of difference constraints involving
both integer and real variables. There are |V| real variables
R(v), |V| integer variables r(v), and 2|V |+ 2|E| constraints.
This can be solved in polynomial time of O(|V||E|lg|V|+
|V|>1g? |V|) if Fibonacci heap is used as the data structure [23].

If the above set of constraints is solvable, the values of r(v)
and a(v) for all v € V are known. We can then find the exact
position of each register on a wire one by one as follows. For
each edge ey, if there are registers retimed on it, i.e., r(v) +
wyy — r(u) > 0, the first register on this edge will be placed at
a distance of delay T — a(u) from the output of gate u. Other
registers are then placed as far from each other as possible, i.e.,
at a distance of delay T from the previous one, until reaching
the gate v. All the remaining registers on this edge are then
placed right before v.

4 A Fast Near-Optimal Approach

In this approach, we first replace each gate by a wire of the
same delay and then solve the problem with only interconnect
delay optimally and efficiently. Those registers retimed “into”
a gate are moved either to the input or the output wires of the
gate. The exact positions of the registers on the wires are then
determined by a linear program to minimize the clock period.
The solution obtained by this approach is very close to the op-
timal on average as shown by the experimental results. In the
following, we first show how the retiming problem with inter-
connect delay only can be solved optimally. Then we describe
in details how gate delay can be handled simultaneously.

4.1 Retiming with Interconnect Delay Only

In this subsection, we assume d, = O for all v € V. We first
show that the clock period feasibility problem can be reduced
to a single-source longest paths problem. We then present a
fast algorithm to solve the longest paths problem.

4.1.1 Reduction to Single-Source Longest Paths Problem

We solve the set of constraints (5)—(8) with the help of the fol-
lowing lemma.

Lemma 1 Given R(v) for all v € V satisfying constraint (8),
we can obtain a solution to constraints (5)—(8) by setting
r(v) =|R()| forallveV.

Proof: Tt is clear that 0 < R(v) — |[R(v)| < 1 for all v € V.
Therefore, (5) and (6) are satisfied. For any ¢, € E,

r(w)—r(v) < R(u)—r(v) asr(u) <R(u)
dyy d,
< (f—i—R(u)) r(v) as % >0
< (ww+R(¥))—r(v) by constraint (8)
< wp+1l asR(v)—r(v)<1
As r(u) — r(v) is an integer, it must be less than or equal to
wuy. Hence, constraint (7) is also satisfied.]

Lemma 1 implies that we can first solve constraint (8) to find
R(v) and it is then easy to find r(v) to satisfy the other three
constraints. Notice that if d, # 0 for some v € V, Lemma 1
does not hold as constraint (5) is not satisfied. In other words,
this idea cannot be applied to the retiming problem with both
interconnect and gate delay discussed in Section 3.

The problem of finding R(v) for all v € V to satisfy con-
straint (8) can be viewed as a single-source longest paths prob-
lem on G with length [, equals d,,/T — w,,, for each e,, € E.
As G is strongly connected, we can pick an arbitrary node as
the source node s.! Note that edge lengths can be positive. If
G has a positive cycle, the set of constraints has no solutions.
It means that the clock period T is infeasible. The solution to
this problem is presented in the following subsection.

4.1.2 Fast Single-Source Longest Paths Algorithm

The single-source longest paths problem in Section 4.1.1 can
be solved by the Bellman-Ford algorithm [24]. The time com-
plexity is O(|V||E|), which is at least a factor of ©(1g|V|) faster
than the optimal algorithm in Section 3. In practice, it is a fac-
tor of ©(Ig?|V|) faster as |E| = O(|V|). However, this algo-
rithm may still be slow in practice. In this section, we present
a single-source longest paths algorithm which is faster in prac-
tice. The basic idea is to reduce the size of G by compacting
some paths into edges before the Bellman-Ford algorithm is
applied. The details are given below.

We first transform the graph G(V, E) into a directed acyclic
graph (DAG) G'(V',E’) by performing a depth-first traver-
sal [24] starting from the source node s. The depth-first traver-
sal defines a tree in G. Those non-tree edges running from a
node u to an ancestor v of u are called back edges. If we point
all incoming back edges of a node v to an extra node v/, the
resulting graph will be a DAG because every simple cycle in G
involves exactly one back edge. Formally, we use Ej, to denote
the set of back edges and V,, to denote the set of nodes with an
incoming back edge. For each node v in V},, we introduce an
extranode v'. The back edge e, is removed from the graph and
the edge e,,,s is added. The resulting DAG is G'(V',E’) where
Vi=VU{/veVy} and E' = (E — Ep) U{e,v|ewy € Ep}.
We set the length [,,, of the edge e, to [,,. To illustrate
the transformation, consider the graph G in Figure 3(a) with
source node A. Suppose the depth-first traversal visits the
nodes in the order ACDEFB. Then E, = {epa,eca,erc,era}
and V, = {A,C}. We introduce two extra nodes A" and C’, and
replace the four edges eca, eps, era and epc with the edges

UIf the original circuit is not strongly connected, a source node s has already
been added.

223

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

Depth first traversal
from node A

(a) Original graph G

(b) Directed acyclic graph G’

Figure 3: An example to illustrate the transformation to a DAG.

eca’s epals epa and epcr, respectively. The resulting DAG is
shown in Figure 3(b).

We then construct a graph H with node set V,,. The edge set
Epy contains an edge ey, for u,v € V}, if there exists a path in G
with either no back edge or one back edge at the end from u
to v. The length {2 of the edge e, is the longest path distance
among those paths. Note that the longest path distance in G
with no back edge (respectively, with one back edge at the end
of the path) from u to v equals the longest path distance in
G’ from u to v (respectively, from u to /). Hence /£, for all
u,v €V, can be computed by solving |V,| single-source longest
paths problems in G’ for different source nodes in V,. As G’ is a
DAG, each single-source longest paths problem can be solved
in linear time by visiting the nodes in topological order. The
time complexity to construct H is therefore O(|V,||E|).

It is obvious that every path in H corresponds to at least one
path in G of the same length. Therefore if H contains a positive
cycle, G will also contain a positive cycle. On the other hand,
if G contains a positive cycle, the cycle can be broken up into a
set of paths p1, p2,. .., px such that both endpoints of each path
p; are in V;,. Notice that each path p; corresponds to an edge in
H of at least the same length. So H must also contain a posi-
tive cycle. Therefore we can solve the positive cycle detection
problem in H instead of in G. If H has no positive cycles, R(v)
for all v € V,, can be found from H. R(v) forall v € V —V,, can
then be found in linear time by propagating R(v) for all v € V,
through G’ in topological order.

4.1.3 The Retiming Algorithm and Time Complexity

The complete retiming algorithm I-Retiming() is summarized
below. The most time consuming steps are step 7 and step 8
inside the binary search loop. Step 7 can be done in O(|V;||E])
time as discussed above. Step 8 can be done in O(|Vp||Ex|)
time by the Bellman-Ford algorithm. As Vj, contains much
fewer nodes than V and Ep usually contains comparable or
fewer edges than E, this technique is usually much more effi-
cient than applying the Bellman-Ford algorithm to G directly.
The total time complexity is O(|V,|max{|E|,|Ex|}1g eTI,f,,,)’
where € is the error bound for the binary search, K is the differ-
ence between the upper and lower bounds of the clock period

Representing a
node by an edge

—3

2

(b) Transformed graph G

(a) Original graph G

Figure 4: Representation of gates by wires.

initially, and T, is the optimal clock period.

Algorithm I-Retiming()

Input: A sequential circuit C with interconnect delay only
Output: An optimally retimed circuit of C

Build graph G(V,E) from C

Ju—

2. Build DAG G’ by DFS(G)

3. Cyp = afeasible clock, C,,, = an infeasible clock

4. Do

5. T = (Cup+Ciow)/2

6. Update edge lengths of G’ according to T

7. Build graph H(Vy, Egy) with Eg = {e|u € anc(v) Uanc(v')}
by finding single-source longest paths in G/

8. If H does not have any positive cycle then

9. Cip=T

10. Else

11. Ciow=T

12. while (Cyp — Ciow)/Cup > €

13.T =Cyp /I Cyp is always a feasible clock period
14. Compute R(v) and r(v) for each node v € V

15. Compute the exact position of each register on a wire

4.2 Retiming with Interconnect and Gate Delay

In this section, we discuss how to consider interconnect and
gate delay simultaneously based on the above algorithm for
interconnect delay only. To consider gate delay, we first repre-
sent a gate v with delay d, by a wire e,,,, with delay d,,,, = d,.
This transformation for the circuit in Figure 3(a) is shown in
Figure 4(b). We can then obtain an optimal retiming on this
transformed circuit G using the algorithm in Section 4.1. How-
ever the retiming solution obtained on G may not be feasible
for the original circuit G because some registers may be re-
timed into a wire that represents a gate. Therefore, we need to
perform a post-processing step to get back a feasible retiming
solution for G from the optimal retiming solution for G. This
is done by linear programming.

First of all, we move the registers in a gate either backward
to the input wires or forward to the output wires of the gate,
depending on which direction has a shorter distance. An ex-
ample showing the relocation of registers is given in Figure 5.
After this relocation step, the number of registers w,, on each
edge ey, is fixed. A linear program is used to determine the

224

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

Registers are moved
away from the wires
that represent gates

—>

F

(a) A retimed solution in G (b) Registers are relocated in G

Figure 5: Relocation of registers retimed into a gate.

exact positions of the registers on the edges. The objective of
the linear program is to minimize the clock period T subject
to the constraints in register count on each edge. In the fol-
lowing, we use x¥ to denote the delay from the k" register to
the k4 1* register of the wire from node u to node v in G for
k=0,1,...,W,, . Notice that when W, = 0, x, is the delay
of the whole wire, and when k =0 and k = w,, > 0, x’;v are
the delays of the wire from node u to the first register and from
the last register to node v, respectively. The linear program is
formulated as follows:

Minimize T

Subject to zfgbx{;v =d,

X+ d, < a(v)

Ve, € E (A)

4 Ve € E s.t. Wy, >0 (B)
a(u)+x9, <T Ve, €Est.w, >0 (C)
a(u)+d, <a(v) Ve, €Est w, =0 (D)

For the circuit in Figure 5(b), example constraints are ng +
xéD = dcp for type (A), xlp, +dp < a(D) for type (B), a(C) +
xep < T for type (C), and a(B) +dpp < a(D) for type (D).
We can solve this linear program to obtain the best possible
clock period T* under the register count constraint on each
edge. The overall algorithm IG-Retiming() to handle both in-
terconnect and gate delay is summarized as follows:

Algorithm /G-Retiming()

Input: A sequential circuit C with both interconnect and gate delay
Output: A retimed circuit of C

1. Build graph G from C

Build G by replacing each gate in G by a wire of the same delay
Solve the retiming problem of G by I-Retiming()

Move registers away from wires that represent gates

Set up a linear program based on the register count on each edge
Solve the linear program to obtain a feasible retiming solution
and the smallest possible clock period T*

A

S5 Experimental Results

We implemented the two approaches in a 1.8GHz Intel Xeon
PC with 512 KB cache and 512 MB RAM. We tested them
with circuits from the ISCAS89 benchmark suite. In our ex-
periments, we implement the circuits in a 0.25 um process. We
layout the circuits by Silicon Ensemble. Wire delays are then

extracted according to the layout. In our current implementa-
tion, the lower and upper bounds of the binary search are set
to 0 and 100ns respectively. In the near-optimal approach, we
perform the procedure I-Retiming() with an error bound of 1%.
After assigning the registers retimed into a gate to the appro-
priate wires, a linear program is set up to relocate the registers
on the wires to get the smallest possible clock period 7*. In
the optimal approach, binary search is performed until an error
bound of 0.01% is obtained. We call the resulting clock period
T,pr. Notice that we do not need to obtain a very accurate re-
sult from I-Retiming() because the solution is optimized by the
linear program afterwards. On average, the number of binary
search iterations is 9.6 for the near-optimal approach and 16.5
for the optimal approach.

The results are shown in Table 1. The second and third
columns give the number of nodes and the number of edges
in the graph G, respectively. Notice that all circuits are not
strongly connected. The number of nodes and edges listed are
those after the addition of the source node, the target node, and
the associated edges. The fourth and fifth columns show the
number of nodes and the number of edges in the reduced graph
H, respectively. These two values are dependent on the node
chosen as the root in the depth-first traversal. In our current im-
plementation, we always pick the additional node s as the root.
We notice that using other nodes as the root does not change
the result significantly. The speedup of the Bellman-Ford al-
gorithm by the graph reduction approach in Section 4.1.2 is
(IVIIE])/(IVs||EH]|), which is given in the sixth column. The
graph reduction approach is faster in all circuits except s38584.
On average, it is faster by 30.61 times. However, the speedup
is less (may even be less than one) for larger circuits. The rea-
son is that |Ep| is roughly quadratic in |V}|. For the circuits in
Table 1, the ratio of |Ey| to [V,|? is from 0.11 to 0.86 with an
average of 0.41. Therefore, the graph reduction approach may
not be useful for large circuits. We can avoid a slowdown of
the Bellman-Ford algorithm by determining whether to use G
or H based on the ratio (|V||E|)/(|Vs||En|)- |V»| and |Eg| can
be found in O(|V,||E|) time. Moreover, we only need to per-
form this checking once for each circuit. Hence, the runtime
overhead is insignificant compared with the total runtime.

The seventh, eighth, and ninth columns show the runtime of
the I-Retiming() procedure, the time taken to solve the linear
program, and the total runtime, respectively. The tenth col-
umn shows the runtime for the optimal approach. We can see
that the near-optimal approach is much more efficient than the
optimal approach (especially for large circuits). The eleventh
and twelfth columns show the clock period T* and T, ob-
tained by the near-optimal approach and the optimal approach,
respectively. The last column is the percentage increase of 7
over Ty, The clock period produced by the near-optimal ap-
proach is only 0.13% more than that by the optimal approach
on average. The optimal clock period is found in seven out of
thirteen circuits.

6 Conclusion

We have presented two elegant approaches to perform retim-
ing on sequential circuits with both interconnect and gate de-
lay. This is a pioneer work in solving this problem as far as we

225

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

No. of No. of No. of No. of CPU Time Clock Period

Circuit | Nodes Edges Nodes Edges [VIIE| | I-Retiming + LP = IG-Retiming ~ Optimal T* Topt T%;"’”

inVv inE inV, in Ey AN (sec) (sec) (sec) (sec) (ns) (ns) (%)
s1488 655 1405 27 627 54.36 0.09 0.19 0.28 5.62 18.85 18.82 0.16
s1494 649 1411 30 749 40.75 0.09 0.16 0.25 4.37 20.78 20.78 0.00
s3271 1574 2707 112 3360 11.32 0.38 0.71 1.09 33.70 1024 10.24 0.00
s3330 1791 2890 56 1200 77.02 0.13 0.37 0.50 43.14 27.05 27.05 0.00
s3384 1687 2782 98 2041 23.46 0.16 0.58 0.74 25.19 2421 24.16 0.21
s4863 2344 4093 154 20413 3.05 2.13 0.99 3.12 87.75 23.58 23.58 0.00
s5378 2781 4261 66 2554 70.30 0.55 0.61 1.16 138.68 27.27 27.25 0.07
s6669 3082 5399 67 1876 132.38 0.36 1.55 1.91 177.59 23.07 22.96 1.00
s9234 5599 8005 325 26570 5.19 2.69 1.39 4.08 512.86 4273 4273 0.00
s13207 7953 11302 550 44825 3.65 6.45 1.66 8.11 1161.07 | 72.34 72.34 0.00
s15850 9774 13794 603 100738 2.22 21.42 2.60 24.02 1545.59 | 67.82 67.82 0.00
$35932 | 16067 28590 884 163945 3.17 54.59 6.66 61.25 8644.27 | 29.59 29.54 0.17
s38417 | 22181 32135 1657 308790 1.39 72.64 10.92 83.56 7680.79 | 36.53 36.52 0.03
s38584 | 19255 33010 1924 1115868 0.30 433.82 11.81 445.63 > 15000 | 94.26

Table 1: The runtime of the algorithms and the clock periods obtained.

know. Most traditional retiming algorithms have neglected in-
terconnect delay. Our first approach is extended from the MILP
approach in the paper [1] and can solve the problem optimally.
Our second approach is an improvement over the first one in

[10] Jason Cong and Sung Kyu Lim. Physical Planning with Retim-
ing. In Proc. ICCAD, pages 2-7, 2000.
N. Shenoy and R. Rudell. Efficient Implementation of Retiming.
In Proc. ICCAD, pages 226-233, 1994.

(1]

terms of practical applicability. The main idea is to transform [12] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Re-

the problem into a single-source longest paths problem in a timing of Circuits with Single Phase Transparent Latches. In

reduced graph. We have implemented both algorithms, and Proc. ICCAD, pages 86-89, 1991.

compared their performance on ISCAS89 benchmark circuits. [13] Rahul B. Deokar and Sachin S. Sapatnekar. A Fresh Look at

Experimental results show that the second approach gives so- Retiming via Clock Skew Optimization. In Proc. DAC, pages

lutions that are only 0.13% larger than the optimal on average 310-315, 1995.

but in a much shorter runtime. [14] Marios C. Papaefthymiou. Asymptotically Efficient Retiming
under Setup and Hold Constraints. In Proc. ICCAD, pages 396—
401, 1998.

References [15] H.J. Touati and R. K. Brayton. Computing the Initial States of
Retimed Circuits. /IEEE TCAD, 12:157-162, 1993.

[1] Charles E. Leiserson and James B. Saxe. Retiming Synchronous [16] 1. Karkowski and R.H.J.M. Otten. Retiming Synchronous Cir-
Circuitry. Algorithmica, 6:5-35, 1991. cuitry with Imprecise Delay. In Proc. DAC, pages 322-326,

[2] C. V. Schimpfle, Sven Simon, and Josef A. Nossek. Optimal 1995.

Placement of Registers in Data Paths for Low Power Design. In [17] Vigyan Singhal, Sharad Malik, and Robert K. Brayton. The
Proc. ISCAS, pages 2160-2163, 1997. Case for Retiming with Explicit Reset Circuitry. In Proc. IC-

[3] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential CAD, pages 618-625, 1996.

Circuits for Low Power. In Proc. ICCAD, pages 398-402, 1993. [18] N. Maheshwari and S. S. Sapatnekar. An Improved Algorithm

[4] A.El-Maleh, T. E. Marchok, J. Rajski, and W. Maly. Behavior for Minimum-area Retiming. In Proc. DAC, pages 2-7, 1997.
and Testability Preservation under the Retiming Transformation. [19] T. Soyata and E. G. Friedmann. Retiming with nonzero clock
IEEE TCAD, 16:528-542, 1997. skew, variable register and interconnect delay. In Proc. ICCAD,

[5] S.Dey and S. Chakradhar. Retiming Sequential Circuits to En- pages 234-241, 1994.
hance Testability. In Proc. IEEE VLSI Test Symposium, pages ~ [20] Kumar N. Lalgudi and Marios C. Papaefthymiou. DELAY: An
28-33, 1994. Efficient Tool for Retiming with Realistic Delay Modeling. In

[6] Rajeev K. Ranjan, Vigyan Singhal, Fabio Somenzi, and Proc. DAC, pages 304-309, 1995.

Robert K. Brayton. On the Optimization Power of Retiming and ~ [21] Tzu-Chieh Tien, Hsiao-Pin Su, and Yu-Wen Tsay. Integrating
Resynthesis Transformation. In Proc. ICCAD, pages 402407, Logic Retiming and Register Placement. In Proc. ICCAD, pages
1998. 136-139, 1998.

[7] Peichen Pan, Arvind K. Karandikar, and C. L. Liu. Optimal [22] Abdallah Tabbara, Robert K. Brayton, and A. Richard Newton.
Clock Period Clustering for Sequential Circuits with Retiming. Retiming for DSM with Area-Delay Trade-offs and Delay Con-
IEEE TCAD, 17(6):489-498, 1998. straints. In Proc. DAC, pages 725-730, 1999.

[8] Jason Cong, Honching Li, and Chang Wu. Simultaneous Cir- [23] C.. E. Leiserson anq James B. .Saxe. A Mixed-Integer Program-
cuit Partitioning/Clustering with Retiming for Performance Op- ming Problem Which is Efficiently Solvable. Journal of Algo-
timization. In Proc. DAC, pages 460-465, 1999. rithms, 9:114-128, 1988.

[9] Jason Cong, Sung Kyu Lim, and Chang Wu. Performance [24] Tbomas H. Corm.en and Charles E. Leiserson e'lnd Ronald L
Driven Multi-level and Multiway Partitioning with Retiming. In Rlvest‘ Introduction to Algorithms. McGraw Hill, eighth edi-
Proc. DAC, pages 274-279, 2000. tion, 1992.

226

Proceedings of the International Conference on Computer Aided Design (ICCAD’03)
1092-3152/03 $ 17.00 © 2003 ACM

