
Clustering Based Acyclic Multi-way Partitioning

Eric S. H. Wong
Department of CSE

The Chinese Univ. of H.K.

shwong@cse.cuhk.edu.hk

Evangeline F. Y. Young
Department of CSE

The Chinese Univ. of H.K.

fyyoung@cse.cuhk.edu.hk

W. K. Mak
Department of CSE

University of S. Florida

wkmak@csee.usf.edu

ABSTRACT
In this paper, we present a clustering based algorithm for
acyclic multi-way partitioning. Many existing partitioning al-
gorithms have shown that clustering can effectively improve
the solution quality. However, most of them do not con-
sider the signal direction and thus cannot maintain the acyclic
property. Our algorithm is based on clustering by computing
the modified fan-out free cones. Fan-out free cone clustering
can reduce a graph to a smaller and sparser one, and main-
tain the acyclic property at the same time. Experimental
results showed that our algorithm compares favorably with
the previous best acyclic multi-way partitioning algorithm in
cut-size.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided De-
sign (CAD)

General Terms
Design, Algorithm

Keywords
CAD, Partitioning, Clustering, Acyclic, Multi-way

1. INTRODUCTION
Circuit partitioning is a critical stage in the VLSI design

cycle. Good partitioning techniques can break down a com-
plex system to smaller subsystems such that each subsystem
can be designed independently to speed up the design process.
The existing partitioning algorithms can be classified into a
few categories including the group migration approach [5, 3],
the network flow approach [8, 6, 7] and the analytical ap-
proach [9, 10]. Some algorithms give two-way partitioning [5,
3] while some give multi-way partitioning [1, 6, 4]. A num-
ber of heuristic approaches have been developed to further
improve a partitioning solution. They includes logic replica-
tion [8], multilevel approach [1, 4] and clustering [1]. In logic
replication, some nodes are selected and duplicated into two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’03, April 28–29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004 ...$5.00.

or more partitions in order to reduce the cut-size. In multi-
level approach, a sequence of successively coarser hypergraphs
is constructed, and a bisection is obtained from it. The bisec-
tion of the original graph is obtained by successively project-
ing and refining the coarser hypergraph to the original graph.
clustering is another approach [1] that groups the nodes in a
network into clusters. It can significantly reduce the problem
size and give a simpler clustered network before applying a
partitioning algorithm.
Besides cut size, the longest delay of a path is also an impor-

tant issue to be considered. Acyclic partitioning is an effective
way to upper bound the largest number of inter-partition de-
lay along any path. The acyclic multi-way partitioning prob-
lem was defined in [2], it differs from the general partitioning
problem because of the restriction that the edges between dif-
ferent partitions of a solution cannot form a directed cycle.
Acyclic multi-way partitioning finds application in pipelining
of multi-chip designs, partitioning based logic minimization,
and parallel circuit simulation as described in [2].
Many existing clustering based partitioning algorithms have

shown that clustering can effectively improve the solution
quality. However, most of them do not take the signal di-
rection into account. Therefore, it is not possible to apply
them directly to obtain an acyclic partitioning. In [2], an
algorithm based on the maximum fanout free cone decompo-
sition followed by a restricted version of the FM algorithm
was proposed for the acyclic multi-way partitioning problem.
In this paper we show that a simple two-phase clustering pro-
cess based on a modified fanout free cone decomposition can
yield superior acyclic multi-way partitioning than that in [2].
In this paper, we will discuss the acyclic multi-way parti-

tioning problem and present a clustering based partitioning
algorithm to solve the problem. The rest of the paper is orga-
nized as follows. In section 2, we will formulate the multi-way
acyclic partitioning problem. Our clustering based acyclic
multi-way partitioning method will be introduced in section
3. The details of our algorithm will be discussed in section 4
to 7. In section 8, we will present some experimental results.
Finally, a conclusion will be given in section 9.

2. PROBLEM FORMULATION
In this paper, we want to solve the acyclic multi-way parti-

tioning problem in a combinational network. A combinational
circuit is represented by a directed acyclic graphG(V,E) where
V is a set of nodes representing the gates and E is a set of
directed edges representing the interconnections between the
gates. The fan-out of a node is the number of edges incident
from it and the fan-in of a node is the number of edges incident
to it. Primary input is a node with zero fan-in and primary
output is a node with zero fan-out. In the given acyclic graph

203

G, each node in V is assigned a unit weight except the pri-
mary input and output nodes. The primary input and output
nodes are assigned a zero weight each. The weight represents
the area occupied by the node. We assume that the areas of
all the gates are the same and each has one unit area. Note
that an acyclic partitioning of a sequential circuit can be ob-
tained as follows. We can compute an acyclic partitioning
of the combinational network obtained by removing all the
sequential elements. Then we can put back the sequential el-
ements into the proper partitions.

Definition 1 An Acyclic K-Way Partitioning Problem:
Given a directed acyclic graph G(V, E), partition the set of
nodes V into k disjoint subsets, V1, V2, ... , Vk, such that
the sizes of the subsets do not exceed the size constraints, A1,
A2, ... , Ak, the cut-size is minimized, and the partitioned
solution is acyclic, i.e. there is no partitions Vi and Vj such
that i�=j, and there are directed paths running from Vi to Vj

and from Vj to Vi.

3. CLUSTERING BASED ACYCLIC MULTI-
WAY PARTITIONING

In clustering based acyclic multi-way partitioning, the given
network is first clustered into a sparser network. We use an
idea similar to that of maximum fan-out free cone to cluster
the nodes. The maximum fan-out free cone decomposition
aims at minimizing the number of edges coming out from a
cluster. This is a good strategy since it reduces the total
number of edges inside a clustered network globally. After
the decomposition, the number of edges is equal to the num-
ber of clusters because there is only one edge coming out from
each fan-out free cone. This produces a good initial solution
for the partitioning process since we aim at minimizing the
cut sizes between the resultant partitions. After the cluster-
ing phase, the nodes inside a cluster are collapsed to form
one node. As a result, the clustered network becomes simpler
and sparser. The number of edges and nodes are fewer com-
pared with the original network. It is easier to perform the
subsequent partitioning task as the size of the solution space
is directly proportional to the number of nodes and edges. In
our algorithm, we will use the modified fan-out free cone de-
composition to perform clustering. Details of the process will
be shown in the next section.
In the partitioning phase, we use a method similar to that

in the clustering phase because we believe that the modified
fan-out free cone decomposition is a good strategy. However,
in the partitioning phase, the size constraint is set to the pre-
defined partition size as we want to fill up each partition as
much as possible. We will work on the clustered network in
this phase. As a clustered node is actually a collection of
nodes, the weight of each clustered node can be large. There-
fore, it is hard to obtain an ideal fan-out free cone to fit the
size of a partition. In such cases, we will first find a maxi-
mally fit cone to put into a partition. Then, we will try to
fill up the partition as much as possible by taking in smaller
cones until no other matches is possible. We will discuss this
selection process in details in section 6.

4. MODIFIED FAN-OUT FREE CONE DE-
COMPOSITION

We use the idea of fan-out free cone to find the clusters
and partitions while maintaining the acyclic condition. An
input cone of v, cone(v), is a set of nodes consisting of v and

a subset of its predecessors such that any path connecting
a node in cone(v) to v lies entirely within cone(v). We can
observe that there exists many input cones for a specific node
(see Figure 1). A fan-out free cone of v, FFC(v), is an input
cone of v such that any fan-out of a node in FFC(v), except
that of node v, must also be in FFC(v). Fan-out free cone
of a node is again not unique (see Figure 2). But the number
of fan-out edge from any fan-out free cone must be equal to
one. We have made use of this size flexibilities to match the
size constraints in the clustering and partitioning phases.
In our modified fan-out free cone decomposition, after we

locate a cone of a node, we will remove the nodes inside the
cone and the edges connected to this cone from the network
before proceeding to form the next cluster. As a result, some
nodes connected to the cone will become a primary output
node after the removal. This step gives a higher probability
for the later steps to form larger clusters or partitions. A
simple example is shown in Figure 3. Note that the number
of fan-out edges from a cone may be larger than one in this
modified decomposition method. Experimental results have
shown that it is valuable to do such a modification.

Figure 1: Two Different Cones of a Node

Figure 2: Two Different Fan-out Free Cones of a Node

(MFFC Decomposition)
Clustering without removal of

edges

(Modified MFFC Decomposition)
Clustering with removal of edges

Assume that the maximum cluster size is 2

Figure 3: Results Obtained from Modified MFFC De-
composition and MFFC Decomposition

5. CLUSTERING PHASE
In the clustering phase, the given network is clustered to

form a sparser network using the modified maximum fan-out
free cone decomposition. Initially, a primary output is se-
lected randomly. It acts as the starting point of the clustering
process. We denote this selected node as v and assign it to a
cluster C. We will try to fill up the cluster by taking in nodes

204

step by step until the predefined cluster size is reached. We
select a fan-in node of the nodes in C randomly and denote
it as u. A testing process is then performed on u to ensure
that the newly clustered nodes do not violate the property of
a modified fan-out free cone. If we cluster node u into C, the
node that can be reached from node u must also be clustered
into C. Otherwise, the fan-out free property cannot be main-
tained. So, we need to find the number of nodes that can be
reached from node u. If the cluster C can take in the whole set
of nodes that can be reached from u, we will cluster all these
nodes into C. Otherwise, we will reject this fan-in node u and
try another one. If no nodes can be selected, the process will
stop and one cluster is formed. An example of the selection
process is given in Figure 4. The resultant cluster will have a
size equal to or smaller than the predefined cluster size. After
one cluster is formed, we will remove the clustered nodes and
the edges connecting this new cluster from the network. We
will then work on the remaining network similarly as above.
We will build another cluster by starting from a randomly
picked primary output node of the remaining network and re-
peat the above process until all the nodes are clustered. An
example of the whole process is shown in Figure 5 and the
algorithm is given below.

Clustering Algorithm

Clustering(Network)
1. dolist = 0
2. Do
3. If dolist>0
4. i = a randomly selected node in dolist
5. Else if there is a primary output node
6. i = a randomly selected primary output node
7. Else exit
8. cluster = cluster + 1
9. Find Cluster(Network, dolist, i)
10. Remove the clustered nodes and their edges from

the network
11. End DO

Find Cluster(Network, dolist, i)
1. Add the fan-in nodes of i to local dolist
2. While local dolist are tested is not empty
3. If local dolist>0
4. i = a randomly selected node from local dolist
5. j = numbers of node that can be reached by i
6. If current cluster size + j <max cluster size
7. Assign the set S of nodes that can be reached

by i to the current cluster
8. Add all the fan-in nodes of S to dolist and

local dolist
9. Remove the clustered nodes from dolist and

local dolist
10. Else exit

6. PARTITIONING PHASE
In the partitioning phase, the clustered network is parti-

tioned into the desired size. Basically, the approach used in
partitioning is the same as that in clustering. The main differ-
ence is that we work on the clustered network and the cluster
size constraint is set to the partition size constraint. There is
no limit for the number of clusters in the clustering phase. In
the partitioning phase, we must keep the number of partitions
to a predefined value. Therefore, we cannot treat the size of
each partition as loosely as in clustering. We must match each
partition as much as possible. In the clustering phase, if no
fan-in nodes can be selected to be put into a cluster anymore,
we will close the cluster and continue the clustering process
with a new empty cluster. But in the partitioning phase, if

Assume that the maximum cluster size is 3

Number of nodes that can be
reached by this grey node
(except the clustered nodes) = 0
current cluster size + 1 + 0 = 2
It is smaller than 3. Accepted.

Number of nodes that can be
reached by this grey node
(except the clustered nodes) = 1
current cluster size + 1 + 1 = 4
It is larger than 3. Rejected.

The number of nodes that can
be reached by this grey node
(except the clustered nodes) = 0
current cluster size + 1 + 0 = 3
It is equal to 3. Accepted.
(Cluster Full)

Figure 4: Fan-in Node Selection in the Clustering
Phase

no fan-in clusters can be selected to put into a partition any-
more, we will first remove the currently partitioned clusters
together with their incoming edges from the network and then
continue with another cluster that is a primary output of the
remaining network to put into the partition until the parti-
tion size is reached or no clusters can fit into it. An example
of the whole partitioning process is shown in Figure 6 and the
algorithm is given below.

Partitioning Algorithm

Partitioning(Clustered Network)
1. dolist = 0
2. Do
3. If dolist>0
4. i = a randomly selected cluster from dolist
5. Else if there are primary output clusters
6. i = a randomly selected primary output cluster
7. Else exit
8. partition = partition + 1
9. Find Partition(Network, dolist, i)
10. If current partition is not full yet
11. partition = partition - 1
12. Remove the partitioned clusters and their edges from

the network
13. End Do

The algorithm of Find Partition() is exactly the same as
that of Find Cluster(), so we do not repeat it in this section
again.

7. THE ACYCLIC CONSTRAINT
As we are performing acyclic partitioning, we must ensure

that the acyclic property is not destroyed in each clustering
and partitioning step. We have the following lemmas about
the correctness of our algorithm. Since the length of the pa-
per is limited, the proofs of the lemmas are not included here.

Lemma 1: The modified maximum fan-out free cone clus-
tering process produces acyclic clustered network only.
Lemma 2: The partitioning process produces an acyclic par-
titioned network only.

8. EXPERIMENTAL RESULTS
In order to evaluate the performance of our algorithm, we

implemented our clustering based partitioning method using

205

Assume that the maximum cluster size is 2

Figure 5: An Example of the Clustering Phase

1 2

4 5

3

6

Assume that the maximum partition size is 2

1 2

4

3

1 2

1 2Partition is full. Start a new
partition.

Partition is not yet full. Continue
to fill it with another starting
cluster

2

This way will be followed in the
clustering phase.

Figure 6: An Example of the Partitioning Phase

C language. The testing platform is Sun Ultra 5/270. The
benchmarks are obtained from ISCA85. These data sets con-
tain information of the signal direction. Therefore, we can
use it to test our algorithm. Moreover, we can compare our
results with that of another clustering based algorithm [2]
using the same data suit which is the lastest best results of
this problem. We compared our results with two algorithms,
K-AFM and K-MAFM. The experimental results of K-AFM
and K-MAFM are obtained from [2]. For all the experiments,
the number of partitions is 8 and the maximum cluster size
is 1/2 of the target partition size. Each partition allows ±5%
deviation from its target size. The results of K-AFM and
K-MAFM shown in Table 2 are the best partitioning result
obtained by running the program ten times. The results of
our algorithm are also the best results obtained by running
the program until ten partitioning results are generated. Ta-
ble 1 shows the characteristics of the benchmarks. Table 2
shows the cut-size results of different partitioning algorithms
and the runtime of our algorithm. Note that the runtimes of
K-AFM and K-MAFM are not shown because they are not
reported in [2].
In comparisons with K-AFM and K-MAFM, our algorithm

gives better performance in most of the cases. For smaller
circuits, our algorithm is not as good as K-AFM algorithm.
However, the results of our algorithm are better for large size
circuits. The average improvement to the K-MAFM algo-
rithm is 30%. Our method out-performs K-MAFM when the
circuit size increases. This result suggests that the perfor-
mance of the FM algorithm drops when the size of the circuit
increases.

Circuit No. of Gates No. of PIs No. of Edges

c880 383 60 729
c1355 546 41 1064
c1908 880 32 1064
c2670 1193 233 2076
c3540 1669 50 2939
c5315 2307 178 4386
c6288 2416 32 4800

Table 1: Characteristics of the Benchmarks

Circuit Cluster K-AFM K-MAFM Our Algorithm Our Algorithm
K=8 size (net-cut) (net-cut) (net-cut) Runtime (Sec)

c880 28 156 52 68 23.6
c1355 37 184 23 80 34.3
c1908 57 327 112 84 26.7
c2670 89 443 246 115 41.3
c3540 107 575 232 137 61.8
c5315 155 866 238 218 114.4
c6288 153 491 487 373 85.2

Table 2: Results of Different Partitioning Algorithms

9. CONCLUSIONS
In this paper, we presented a new acyclic multi-way parti-

tioning algorithm. We first use the modified fanout-free cone
decomposition to cluster a given network. This decomposition
effectively reduces the given network to a smaller and sparser
one while maintaining the acyclic property of the network.
Then we use this decomposition again to further partition the
clustered network into the desired number of partitions. Our
algorithm is able to obtain acyclic multi-way partitioning so-
lutions with smaller cut-sizes compared to the best algorithm
reported previously [2].

10. REFERENCES
[1] C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel

circuit partitioning. DAC, pages 530–533, 1997.

[2] J. Cong, Z. Li, and R. Bagrodia. Acyclic multi-way
partitioning of boolean networks. Proceeding ACM/IEEE
31st Design Automation Conference, pages 670–675,
June 1994.

[3] C. M. Fiduccia and R. M. Mattheyses. A linear-time
heuristic for improving network partitions. Design
Automation Conference, pages 241–247, 1982.

[4] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. ACM/IEEE Design Automation
Conference, pages 343–348, 1999.

[5] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, pages 291–307, 1970.

[6] H. Liu and D. F. Wong. Network flow based circuit
partitioning for time-multiplexed fpga. ICCAD, pages
497–504, 1998.

[7] H. Yang and D. F. Wong. Efficient network flow based
min-cut balanced partitioning. IEEE ICCAD, pages
50–55, November 1994.

[8] H. Yang and D. F. Wong. New algorithms for min-cut
replication in partitioned circuits. ICCAD, pages
216–222, 1995.

[9] R. Boppana. Eigenvalues and Graph Bisection: An
Average-Case Analysis. IEEE Symp. on Foundations of
Computer Science, pages 280–285, 1987.

[10] P. K. Chan and D. F. Schlag and J. Zien. Spectral
K-way Ratio-Cut Partitioning and Clustering. Proceeding
ACM/IEEE Design Automation Conference, pages
749–754, 1993.

206

