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ABSTRACT 
Link based non-tree clock network is an effective and economic 
way to reduce clock skew caused by variations. However, it is 
still an open topic where links should be inserted in order to 
achieve largest skew reduction with smaller extra resources. We 
propose a new method using linear program to solve this problem 
in this paper. In our approach, clock skew in a non-tree clock 
network is computed using the delay model in [13] and the 
information is used to select the node pairs for link insertion. 
Tradeoff between crosslink length and skew reduction effect is 
explored. Based on the analysis, we propose a new algorithm to 
insert crosslinks into a clock network. We compare our work with 
the method in [1] and a recent work [4] which inserts links 
between internal nodes of a tree. Experiments show that our 
method can reduce skew under variations effectively.  

Categories and Subject Descriptors 
B.7.2 [INTEGRATED CIRCUITS]: Design Aids---Placement 
and routing 

General Terms 
Algorithm, Design 

Keywords 
Clock, Skew, Non-tree, Crosslink 

1. INTRODUCTION 
    Clock skew limits the performance of a synchronous digital 
system. On the other hand, the effect of process variation is 
becoming more significant. Clock skew caused by variations is 
now one of the most critical problems that the design of large and 
high performance system is facing today. 

    Non-tree clock network is a promising way to address the skew 
variation problem. Clock mesh, because of its inherent 
redundancy, is more tolerant to process variation and is able to 
provide lower skew variability compared with traditional clock 
tree. However, clock mesh has the disadvantage of resulting in 

much more power dissipation. A clock distribution network that 
combines the advantages of tree and mesh is described in [5]. The 
design is used on several microprocessor chips, achieving very 
low skew. For analysis and optimization, Venkataraman et al. [6] 
managed to reduce a clock mesh by retaining only the critical 
edges. Their strategy offers designers a possibility of trade-off 
between power and tolerance to process variation. In paper [7], a 
sliding window based scheme is used to analyze the latency in a 
clock mesh. A comprehensive and automated framework for 
planning, synthesizing and optimization of clock mesh networks 
is proposed in [8]. 

    Compared to the mesh structure, clock network constructed by 
inserting crosslinks will consume much less power. Rajaram et al. 
[1] propose a framework to construct such non-tree network and 
present an analysis on the effect of link insertion on skew 
variability. Lam et al. [9] present a statistical based non-tree clock 
network construction technique. They use statistical timing 
analysis to obtain the distribution of skew in a clock tree network. 
The works in [10, 11] explore the challenges in buffered clock 
tree link insertion and construct a buffered clock network with 
crosslinks. In [12], wire sizing is performed to improve skew 
variability in a non-tree topology with links which are generated 
using the minimum weight matching-based method in [1]. 
Recently, a link insertion scheme that inserts crosslinks at higher 
level internal nodes instead of sink nodes in a clock tree is 
proposed [4]. Their work reduces skew variability and total 
crosslink length. 

    Although there are previous works on non-tree clock network 
construction with crosslinks, some important questions are still 
unanswered. Most existing works on link insertion attempt to 
reduce skew variability while use the minimum wirelength. 
However, the tradeoff between the length of a link and its ability 
to reduce clock skew is not analytically studied. In this work, 
efforts are made towards solving these problems. We use the load 
redistribution and tree decomposition technique [13] to obtain the 
delay and skew values in a non-tree clock network. We then 
formulate the crosslink insertion problem as a sequence of linear 
programs, with an objective to find a pair of nodes to insert a 
crosslink such that the skew variability can be reduced the most 
while the wirelength increase due to the link insertion is 
constrained. By applying this technique recursively, we can add a 
user-defined number of crosslinks and the clock skew will be 
reduced progressively. Simulation results show that our method 
can lead to significant skew reduction under variations. The 
power consumption is also reduced comparing with previous 
works. The major contributions of this paper can be summarized 
as follows: 
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    ·Our work computes signal delay and clock skew in a non-
tree clock network analytically when inserting links. The link 
insertion process thus produces more effective result. 

    ·We formulate the problem of finding a node pair for link 
insertion in a non-tree clock network as a sequence of linear 
optimization problems, with an objective function to consider the 
tradeoff between clock skew reduction and link capacitance. 

    ·We devise a method to speed up the linear program so that 
even for a clock network with several thousand sinks, the problem 
can be solved in a reasonable amount of time. 

    The paper is organized as following. Techniques for computing 
signal delay and clock skew in non-tree clock networks will be 
discussed in Section 2. In Section 3, our method to construct a 
non-tree clock network with crosslinks will be presented. The 
experimental results will be reported in Section 4. Finally, 
concluding remarks will be made in Section 5. 

2. SIGNAL DELAY AND CLCOK SKEW IN 
NON-TREE CLOCK NETWORKS 
    In this section, the delay calculation technique in general RC 
network will be reviewed. This method can be used to evaluate 
node delays and clock skew in a non-tree network with crosslinks. 
Some analysis of the load redistribution effect of a link will be 
provided.  
    Calculation of the delays in a non-tree network is non-trivial, 
because there are loops between the nodes, which makes possible 
that one node is driving and loading another node at the same 
time. The relationships between nodes are not explicit in a non-
tree clock network. Several techniques have been suggested to 
model the delay in general RC network [3, 13, 14]. 

    Based on the Elmore delay model, a technique called tree 
decomposition [13] is proposed to calculate the delays of all the 
nodes in a general RC network with resistance loops. Suppose that 
N is an arbitrary node in a general RC network and N has k 
neighboring nodes, denoted by Mi where i = 1, …, k. Node N is 
connected to Mi through edge Ei with a resistance of value Ri. 
Denote the load capacitance of N as C. The idea is to partition and 
distribute C into N’s k neighboring edges. Let Ci be the equivalent 
load distributed to edge Ei, note that Ci can be negative. 
According to the calculation of the Elmore delay, if the delay of 
node Mi is Ti, the delay of node N will be T = Ti + RiCi. Then 
there is a set of constraints as follows. 

 Σi=1,…,k Ci = C (1) 

 T = Ti + RiCi i = 1, …, k    (2) 

Applying the above idea, a general RC network can be 
decomposed into a tree. Since the delays in a tree can be 
determined efficiently, we are able to calculate the delays and 
clock skews in the original RC network. 

Consider the effect of inserting a link between two nodes Ni 
and Nj with delays Di and Dj

 respectively in a tree as shown in 
Fig.1(a). Assume that the load capacitances of node Ni and Nj are 
Ci and Cj respectively before link insertion. After a link is inserted 
between node Ni and Nj, node Nj becomes one of the neighboring 
nodes of Ni. The loading capacitance of node Ni will be 
redistributed as in Fig.2(b). In this example, the load capacitance 
of node Ni is redistributed. Note that we can also split Nj instead 

of Ni. Suppose Ci,1 is the capacitance remaining at node Ni and Ci,2 
is the load redistributed from node Ni to node Nj through the 
inserted link. Let Di

’ and Dj
’ be the new delays at node Ni and Nj 

respectively, which can be calculated after this decomposing step. 

 
Fig.1. Load Redistribution through a Link 

    According the set of constraints (1) and (2), we have the 
following equality constraints for this particular example: 

 Ci,1+ Ci,2 = Ci (3) 

 Di
’ = Dj

’+ Dlink (4) 

    The delay difference between node Ni and node Nj becomes 
Dlink = RlinkCi,2. Note that if Ci,2 is positive, it indicates that node 
Nj is actually driving node Ni after this link insertion step and 
node Nj load part of node Ni’s capacitance, which is Ci,2. If Ci,2 is 
negative, it indicates that node Ni is driving node Nj instead. This 
load redistribution is also applicable for node pairs with non-zero 
skew. 

The Elmore delay of node Ni in a tree T is 

 
,i k k

k
R C∑  (5) 

where k ∈  all nodes in T, Ri,k is the shared path resistance 
between node Ni and node Nk and Ck is the capacitance of node Nk. 
For a given tree, the resistances of edges and capacitances of the 
nodes are known, so the delays at nodes Ni and Nj can be written 
as follows with constants k, where i = 1, 2, 3, 4, 5, 6. 

 Di = k1Ci + k2Cj +k3 (6) 

 Dj = k4Ci + k5Cj +k6 (7) 

The skew between node Ni and Nj before link insertion is 

 qij = Di – Dj (8) 

After a link is inserted between Ni and Nj, the delays become 

 Di
’ = k1(Ci – Ci,2) + k2(Cj + Ci,2) + k3 (9) 

 Dj
’ = k4(Ci – Ci,2) + k5(Cj + Ci,2) + k6 (10) 

The skew becomes qij
’ = Di

’ – Dj
’, given by 

 qij
’  = qij – (k1 – k4)Ci,2 + (k2 – k5)Ci,2 (11) 

which equals RlinkCi,2, so we have 

 Ci,2 = qij/(k1 – k2 – k4 + k5+ Rlink) (12) 

The skew after link insertion is qij
’ = RlinkCi,2 = Rlink qij/(k1 – k2 – 

k4 + k5 + Rlink), the skew is thus scaled by Rlink/(k1 – k2 – k4 + k5 + 
Rlink). Therefore, the skew reduction effect of a link is affected by 
the resistance of the link Rlink. If a link resistance is large, its skew 
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reduction effect will be small. Although the above analysis is 
based on a structure that is a tree, the same argument can be 
applied even after several links are inserted since a non-tree 
network can be represented by a tree structure by applying the 
above load redistribution method.  

3. LINK INSERTION FOR NON-TREE 
CLOCK NETWORK 

Based on the techniques discussed in section 2, we are able to 
calculate signal delays in a clock network. In our approach, the 
sink load capacitances are modeled as variables because they are 
affected by various variations. Each sink node’s delay will change 
according to the values of the sink capacitances. We use the worst 
case skew value as a metric to evaluate the skew. A worst case 
skew is defined as the maximum skew that might appear in the 
clock network with variations under consideration.  

Adding links between the node pairs which are most 
susceptible to have the worst case clock skew will be beneficial. 
Therefore, one important step is to identify the node pairs which 
will have large skew under variations. A shared path length lij is 
the length of the path shared between the path from the root s to 
sink node Si and the path from s to Sj.  It is obvious that if two 
nodes share a long common path from the source in a tree 
topology, the delay difference will be small. If the shared path 
length lij is small or even zero, the delay difference between Si 
and Sj can be high. Those node pairs with small shared path length 
are topologically far away. In a clock tree, adding a link to those 
topologically far away node pairs will be beneficial because they 
are likely to have large clock skew. For example, in Fig. 2, adding 
a link between node b and node c will generally be better than 
adding a link between node b and node d, because node pair (b, d) 
is less likely to have large skew. 

When the clock network is no longer a tree structure after some 
crosslinks are inserted, the relationship between nodes will not be 
explicit. It is hard to tell if a node pair is topologically far away or 
not. In Fig. 2, if we consider node pair (a, b) and node pair (d, c), 
node pair (a, b) are topologically closer if no links are inserted, 
since the lowest common ancestor (LCA) of (a, b) is at level 1 
while the LCA of (d, c) is at the root (level 0). However, if a link 
exists between node b and node c, it will be difficult to tell which 
node pair are topologically closer thus less likely to exhibit worse 
skew. In this case, we will use the non-tree delay calculation 
technique (Section 2) to obtain the worst case skew of each sink 
node pair in order to decide which pairs will likely have large 
skew.     

 
Fig. 2. Clock Network with Links 

    In our approach, we will insert the first link between the two 
subtrees of the root. We will find the node pair with the smallest 
physical distance and thus the smallest resistance. Starting from 
the second link, we will formulate a sequence of linear programs 
to find the most beneficial node pair for inserting a link. Fig. 3 
shows an overall flow of our algorithm to insert links. In the 
following section we will discuss in more details of the sequence 
of linear programs. 

 
    Fig.3. Link Insertion Overview 

3.1 Linear Programs for Selecting Node Pairs 
    Given a non-tree clock network, we will first make use of the 
techniques discussed in Section 2 to decompose the network into 
a tree structure and redistribute the load capacitances. An example 
is illustrated in Fig. 4(a). In Fig. 4(a), a link k is added between 
sink nodes S1 and S2, with load capacitance C1 and C2 respectively. 
First we add half of the link capacitance Clink to endpoints S1 and 
S2 of the link. When the tree is decomposed, we pick one of the 
link endpoints to decompose. In this example, we pick node S1 to 
be viewed as being split into two nodes as in Fig. 4(b). The new 
node S3 is connected to S2 through the added link. The new 
loading capacitance at node S1 is C1 + Clink/2 – ck where ck is the 
capacitance distributed to node S2. Suppose that there are m links 
in the clock distribution network, similar decomposition can be 
done for all the links. We can use m variables c1, c2, …, cm to 
describe the load redistribution from one endpoint of a link to the 
other. Finally, we obtain a tree structure with some way of load 
distribution. The Elmore delays in the clock network can then be 
found. 

 
Fig. 4. Decomposition of Clock Network with Links 

    Once the network is decomposed into trees and the load 
capacitances are redistributed, according to equation (5), we can 
write the Elmore delay of each sink node as a linear function of 
the sink load capacitances. For a buffered clock network, the 

b ca d

Algorithm: Add Links  
Input: A clock distribution network  
Output: m crosslinks 
1. Insert the first link between node pair (a, b) where a and b are in    

the left and right subtree of the root and are closest to each other    
physically 

2. k ← 1 
3. While k < m 
4.     For each sink node pair (u, v) 
5.         Construct an LP to find the largest fu,v value 
            * fu,v is an objective function described below 
6.     Return the node pair with the largest fu,v value for adding a link 
7.     k ← k + 1 
8. End 

S1 

S2 

S1 S3 

(a) (b) 

S2 
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delay can also be expressed as a linear function of the sink 
capacitances. Let n be the total number of sinks and m be the 
number of links, the delay of a sink node Su is 

 tu = fu(C1, C2, …, Cn, c1, c2, …, cm) (13) 

The skew between sink node Su and Sv is 

 qu,v = |tu – tv| (14) 

Then we can formulate the worst case skew between a pair of 
nodes under variations. However, adding a link between the pair 
with the worst skew might involve very long route and a 
significant increase in wirelength. If the length of the link is large, 
the resistance of the link will be high. Firstly, this will make the 
clock network not practical. Secondly, a large wirelength will 
lower the skew reduction effect of a link as discussed in Section 2. 
In Fig. 2, if we do not consider the resistance of the link, adding a 
link between node b and node c will be better than adding a link 
between node a and node b, since node a and node b share some 
parts of their paths from the source and the delay difference will 
be smaller. However, if the distance between node b and node c is 
larger than the distance between node a and node b, it will be 
difficult to say which link is better. A tradeoff between the length 
of a link and its clock skew reduction effect is needed. Therefore, 
when selecting node pairs, we consider both clock skew and link 
length to find the node pairs which are most beneficial for link 
insertion. We thus define an objective function to strike a balance 
between the worst case skew and the link resistance ru,v as follows: 

 fu,v = qu,v/ru,v (15) 

This objective function is established empirically. From the 
experimental results, we find that this objective function can 
achieve low clock skew effectively. We can find the maximum of 
fu,v subject to changes in the load capacitance values and a set of 
linear equality constraints as described above. 

The sink load capacitances have upper and lower bounds. For 
each sink node Si 

 li < Ci < ui (16) 

We also have a set of linear equality constraints to describe the 
delay equalities due to the links. Let Sleft(k) and Sright(k) be the two 
endpoints of link k. W.l.o.g, let Sleft(k) be the node being split and 
Sleft(k) becomes Sleft(k) and Smid(k) after splitting. Assume that the 
delays at Sleft(k) and Sright(k) are tk1 and tk2 respectively, and the 
delay at Smid(k) is tk3. Dk

link is the delay on the link connecting Smid(k) 
and Sright(k). Assume that the link resistance is Rk

link, the equality 
constraints due to the kth link can be written as: 

 tk1 = tk3 = tk2 + Dk
link (17) 

 Dk
link = Rk

linkck (18) 

    To summarize, the optimization problem for maximizing the 
objective function fu,v between node Su and Sv is: 

Maximize: fu,v = |tu – tv|/ru,v 

Constraints: 

 tu = fu(C1, C2, …, Cn, c1, c2, …, cm) (19) 

 tv = fv(C1, C2, …, Cn, c1, c2, …, cm) (20) 

  li < Ci < ui           i = 1,…,n 

 tk1 = tk2 + Dk
link k = 1,…,m  (21) 

In our implementation, instead of calling a linear solver, we 
will first use Gaussian elimination to solve the k equality 
constraints (21), so the k variables ci can be expressed by C1, 
C2, …, Cn. Equation (19) and (20) become 

 tu = fu’(C1, C2, …, Cn) (22) 

 tv = fv’(C1, C2, …, Cn) (23) 

Then the maximum objective value subject to changes in the 
sink load capacitances can be computed directly from the upper 
and lower capacitance bounds. 

The maximum fu,v (called pu,v) for a pair of node Su and Sv can 
be obtained by solving the above linear program. Finally, we can 
find a node pair with the largest pu,v. A crosslink is added between 
this node pair to reduce the clock skew while constraining the 
wirelength of the link. By applying the technique recursively, we 
can add a user-defined number of crosslinks to construct a link 
based clock network. 

3.2 Reducing the Number of Optimizations 
    Although the optimization problem for a pair of nodes can be 
solved quickly as formulated above, we need to run it for all pairs 
of nodes to get the node pair with pmax. The running time will 
increase quickly when the number of nodes increases to thousands. 
Therefore, we devised a method to speed up the process when the 
number of sinks is large. In order to reduce the running time, 
instead of trying all pairs of sinks, we will choose some node 
pairs which are more likely to have the pmax. Actually there are 
some pairs that we do not need to consider, e.g., nodes that are 
topologically close to each other. This is because these node pairs 
share a long mutual sub-path from the source and the delay 
differences between them will not be big. 

Starting from the sink node level, we will travel up to find a set 
of internal nodes I such that the set S of subtrees rooted at these 
internal nodes should cover all the sink nodes. The detailed 
procedure to find the internal nodes is shown in Fig. 5. Compared 
with the total number of sinks, the number of these internal nodes 
will be smaller. Since the sink nodes within a subtree in S will 
likely to have similar delays, we will not consider their skews. 
We will pick one node from each subtree in S to find their skew. 
In our implementation, we will also consider the number of sinks 
in each subtree in S and limit them to be less than or equal to 16. 
In this way, even benchmarks with a large number of sinks can be 
solved in a reasonable amount of time. 

 
Fig. 5. Find a Set of Internal Nodes I 

Algorithm: Find Nodes 
Input: A clock network 
Output: Internal node set I 
1. I = Φ 
For each sink node Si 

2. If Si is contained in a subtree rooted at a node in I 
3.     Continue 
4. Else 
5.     k ← 1, r ← 1, Ii ← Si 
6.     While r < lower bound in the sink number of a subtree 
7.         k ← k + 1, Ii ← parent of Ii, temp ← Ii 
8.         r ← number of sinks contained in the subtree rooted at Ii 
9.     End 
10.   If r ＞ upper bound in the sink number of a subtree 
11.       Ii ← temp 
12. Add Ii to I

324



4. EXPERIMENTS 
    Our algorithm to select node pairs for non-tree clock network 
construction with crosslinks is implemented in C. The 
experiments are performed on a 3.2 GHz Intel CPU Linux 
machine with 4GB memory. To verify the effectiveness of our 
method, we will compare our link insertion scheme with the work 
in [1] and the work in [4]. These works did not consider non-tree 
delay when inserting links. We implemented the minimum weight 
matching-based link insertion method which is the best method in 
[1]. We start with the same zero skew clock tree which is obtained 
from the bounded skew tree method [2]. The benchmarks and the 
bounded skew tree code are downloaded from the GSRC 
bookshelf (http://vlsicad.eecs.umich.edu/BK/). For comparison 
with the work in [4], experiments are performed on the ISPD 
2010 contest benchmark. In our implementation and simulations, 
the per unit wire resistance is 10-4 Ω/nm and the per unit wire 
capacitance is 2×10-4 fF/nm. Ngspice is used to simulate our clock 
distribution network. Process variations are accounted in the 
simulations for VDD variations and sink capacitance variations. 
We allow 15% variations in the VDD and the sink capacitances 
and all the variations follow a normal distribution. For each clock 
network, 500 spice simulations are performed to obtain the worst 
case skew (WCS). 

    All the benchmark information and the experimental results of 
our work and the method in [1] are shown in Table 1. The 
benchmark sizes, worst case skews (WCS), and the wire 
capacitances of the clock trees are given. We list the number of 
links inserted, WCS results, link capacitance results of the Link-
M method and our work. The Link-M method refers to the 
minimum weight matching based link insertion method in [1]. 
From the table, we observe that our method always outperforms 
the Link-M method in terms of clock skew reduction. Besides, for 
a same number of links, Link-M method costs 249% link 
capacitance comparing with ours on average. The reason is that 
the Link-M method does not consider non-tree delay when 
inserting links, which may result in ineffective crosslink insertion 
into the clock tree. By considering the balance between clock 
skew and link resistance, we can achieve more clock skew 
reduction, and the link capacitance can also be reduced. We list 
the CPU time in seconds in the table. The CPU time for the Link-
M method is ignorable so it is not listed in the table. The 
technique discussed in Section 3.3 can be used to control the 
running time and we can see the running time is acceptable. 

To compare our proposed method with the most recent work 
[4] which inserts links in the internal nodes of a tree and insert 
links while constructing the tree, we obtain the clock network 
results from the authors of [4]. The links added between the 
internal nodes are removed before our method is applied to 
generate crosslinks into the clock network. Table 2 compares our 
work with the method in [4]. LCS refers to the local clock skew 
constraint on the benchmark in ISPD 2010 High Performance 
Clock Network Synthesis Contest [15]. Our work uses less link 
resources to achieve similar LCS results. Note that the CPU time 
of our work in the table is for the link insertion phase only, while 
the tree construction time is not included. Please note that the two 
results are not directly comparable, because in [4], the links are 
inserted while the trees are being constructed, so their tree 
construction performs in such a way to favor the link insertion. In 
our case, we take their trees and insert the links in a post 
processing way, so the results are hard to be compared. However, 
we still want to display the comparisons to show that our method 

can also handle the clock trees with buffer and can perform 
actually quite well comparing with [4] in which the link insertion 
and the tree construction are performed simultaneously. 

5. CONCLUSION 
    In this paper, signal delay and clock skew in non-tree clock 
networks are discussed. Based on the analysis, a new method is 
proposed to select node pairs for link insertion in a clock network. 
Experimental results show that this method can be applied to 
insert links effectively. 
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Table 1. Benchmark information, worst case skew and wire cap results with 15% variations in vdd and sink capacitances 

Bench 
-mark #Sinks WCS 

(ps) 

Wire 
Cap 
(fF) 

#Links 
Link-M 

WCS (ps) 
a (a/b) 

Our 
WCS (ps) 

b 

Link-M 
Link 

Cap (fF) 
c (c/d) 

Our 
Link 

Cap (fF) 
d 

CPU 
(s) 

r1 267 0.364 264.1 
4 0.314 (1.33) 0.236 9.7 (3.24) 2.9 0.81 

16 0.162 (1.41) 0.115 16.3 (1.23) 13.2 3.21 
22 0.122 (1.20) 0.102 60.0 (3.14) 19.1 4.52 

r2 598 0.802 523.7 
4 0.772 (1.68) 0.460 6.9 (4.93) 1.4 9.23 

20 0.286 (1.39) 0.206 21.0 (1.60) 13.1 46.47 
40 0.192 (1.42) 0.135 40.7 (1.46) 27.9 94.09 

r3 862 1.250 678.2 
6 0.470 (1.09) 0.433 10.2 (1.96) 5.2 2.74 

24 0.305 (1.08) 0.282 25.9 (1.07) 24.3 11.73 
48 0.229 (1.36) 0.168 101.6 (1.91) 53.2 27.21 

r4 1903 2.054 1357.8 
8 1.565 (1.55) 1.008 41.6 (8.67) 4.8 9.21 

40 0.448 (1.21) 0.370 57.3 (1.23) 46.5 64.34 
68 0.336 (1.03) 0.327 125.3 (1.42) 88.3 140.3

r5 3101 2.612 2005.5 
8 1.451 (1.14) 1.276 43.2 (7.20) 6.0 36.17 

40 0.740 (1.14) 0.648 76.2 (1.67) 45.7 229.8
72 0.589 (1.16) 0.506 95.9 (1.08) 89.0 510.5

s1423 74 0.048 21.30 
4 0.042 (1.83) 0.023 1.33 (1.17) 1.14 0.03 
8 0.036 (2.57) 0.014 2.77 (1.07) 2.60 0.03 

s5378 179 0.061 35.10 
4 0.063 (1.75) 0.036 1.60 (2.86) 0.56 0.29 

12 0.025 (1.09) 0.023 5.94 (2.57) 2.31 0.89 

s15850 597 0.136 89.65 
4 0.111 (1.34) 0.083 0.56 (1.27) 0.44 10.62 

22 0.053 (1.39) 0.038 3.88 (1.56) 2.48 59.82 
 

Table 2. Comparison of our method with the work in [4] 

Bench 
-mark #Sinks Method LCS (ps) Ratio of 

Link Cap CPU(s) 

01 1107 [4] 
Our work 

7.88 
10.67 

1.007 
1 

1092 
52.4 

02 2249 [4] 
Our work 

8.32 
8.17 

1.223 
1 

4314 
424 

03 1200 [4] 
Our work 

6.34 
5.89 

1.073 
1 

383 
10.6 

04 1845 [4] 
Our work 

7.42 
7.33 

1.001 
1 

934 
33.8 

05 1016 [4] 
Our work 

5.90 
5.87 

1.199 
1 

278 
5.36 

06 981 [4] 
Our work 

6.78 
8.98 

1.003 
1 

285 
6.69 

07 1915 [4] 
Our work 

6.77 
6.05 

1.228 
1 

818 
49.8 

08 1134 [4] 
Our work 

6.42 
8.59 

1.225 
1 

327 
8.34 
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