
Crosslink Insertion for Variation-Driven Clock Network
Construction

Fuqiang Qian, Haitong Tian, Evangeline Young

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{fqqian, httian, fyyoung}@cse.cuhk.edu.hk

ABSTRACT
Link based non-tree clock network is an effective and economic
way to reduce clock skew caused by variations. However, it is
still an open topic where links should be inserted in order to
achieve largest skew reduction with smaller extra resources. We
propose a new method using linear program to solve this problem
in this paper. In our approach, clock skew in a non-tree clock
network is computed using the delay model in [13] and the
information is used to select the node pairs for link insertion.
Tradeoff between crosslink length and skew reduction effect is
explored. Based on the analysis, we propose a new algorithm to
insert crosslinks into a clock network. We compare our work with
the method in [1] and a recent work [4] which inserts links
between internal nodes of a tree. Experiments show that our
method can reduce skew under variations effectively.

Categories and Subject Descriptors
B.7.2 [INTEGRATED CIRCUITS]: Design Aids---Placement
and routing

General Terms
Algorithm, Design

Keywords
Clock, Skew, Non-tree, Crosslink

1. INTRODUCTION
 Clock skew limits the performance of a synchronous digital
system. On the other hand, the effect of process variation is
becoming more significant. Clock skew caused by variations is
now one of the most critical problems that the design of large and
high performance system is facing today.

 Non-tree clock network is a promising way to address the skew
variation problem. Clock mesh, because of its inherent
redundancy, is more tolerant to process variation and is able to
provide lower skew variability compared with traditional clock
tree. However, clock mesh has the disadvantage of resulting in

much more power dissipation. A clock distribution network that
combines the advantages of tree and mesh is described in [5]. The
design is used on several microprocessor chips, achieving very
low skew. For analysis and optimization, Venkataraman et al. [6]
managed to reduce a clock mesh by retaining only the critical
edges. Their strategy offers designers a possibility of trade-off
between power and tolerance to process variation. In paper [7], a
sliding window based scheme is used to analyze the latency in a
clock mesh. A comprehensive and automated framework for
planning, synthesizing and optimization of clock mesh networks
is proposed in [8].

 Compared to the mesh structure, clock network constructed by
inserting crosslinks will consume much less power. Rajaram et al.
[1] propose a framework to construct such non-tree network and
present an analysis on the effect of link insertion on skew
variability. Lam et al. [9] present a statistical based non-tree clock
network construction technique. They use statistical timing
analysis to obtain the distribution of skew in a clock tree network.
The works in [10, 11] explore the challenges in buffered clock
tree link insertion and construct a buffered clock network with
crosslinks. In [12], wire sizing is performed to improve skew
variability in a non-tree topology with links which are generated
using the minimum weight matching-based method in [1].
Recently, a link insertion scheme that inserts crosslinks at higher
level internal nodes instead of sink nodes in a clock tree is
proposed [4]. Their work reduces skew variability and total
crosslink length.

 Although there are previous works on non-tree clock network
construction with crosslinks, some important questions are still
unanswered. Most existing works on link insertion attempt to
reduce skew variability while use the minimum wirelength.
However, the tradeoff between the length of a link and its ability
to reduce clock skew is not analytically studied. In this work,
efforts are made towards solving these problems. We use the load
redistribution and tree decomposition technique [13] to obtain the
delay and skew values in a non-tree clock network. We then
formulate the crosslink insertion problem as a sequence of linear
programs, with an objective to find a pair of nodes to insert a
crosslink such that the skew variability can be reduced the most
while the wirelength increase due to the link insertion is
constrained. By applying this technique recursively, we can add a
user-defined number of crosslinks and the clock skew will be
reduced progressively. Simulation results show that our method
can lead to significant skew reduction under variations. The
power consumption is also reduced comparing with previous
works. The major contributions of this paper can be summarized
as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05…$10.00.

321

 ·Our work computes signal delay and clock skew in a non-
tree clock network analytically when inserting links. The link
insertion process thus produces more effective result.

 ·We formulate the problem of finding a node pair for link
insertion in a non-tree clock network as a sequence of linear
optimization problems, with an objective function to consider the
tradeoff between clock skew reduction and link capacitance.

 ·We devise a method to speed up the linear program so that
even for a clock network with several thousand sinks, the problem
can be solved in a reasonable amount of time.

 The paper is organized as following. Techniques for computing
signal delay and clock skew in non-tree clock networks will be
discussed in Section 2. In Section 3, our method to construct a
non-tree clock network with crosslinks will be presented. The
experimental results will be reported in Section 4. Finally,
concluding remarks will be made in Section 5.

2. SIGNAL DELAY AND CLCOK SKEW IN
NON-TREE CLOCK NETWORKS
 In this section, the delay calculation technique in general RC
network will be reviewed. This method can be used to evaluate
node delays and clock skew in a non-tree network with crosslinks.
Some analysis of the load redistribution effect of a link will be
provided.
 Calculation of the delays in a non-tree network is non-trivial,
because there are loops between the nodes, which makes possible
that one node is driving and loading another node at the same
time. The relationships between nodes are not explicit in a non-
tree clock network. Several techniques have been suggested to
model the delay in general RC network [3, 13, 14].

 Based on the Elmore delay model, a technique called tree
decomposition [13] is proposed to calculate the delays of all the
nodes in a general RC network with resistance loops. Suppose that
N is an arbitrary node in a general RC network and N has k
neighboring nodes, denoted by Mi where i = 1, …, k. Node N is
connected to Mi through edge Ei with a resistance of value Ri.
Denote the load capacitance of N as C. The idea is to partition and
distribute C into N’s k neighboring edges. Let Ci be the equivalent
load distributed to edge Ei, note that Ci can be negative.
According to the calculation of the Elmore delay, if the delay of
node Mi is Ti, the delay of node N will be T = Ti + RiCi. Then
there is a set of constraints as follows.

 Σi=1,…,k Ci = C (1)

 T = Ti + RiCi i = 1, …, k (2)

Applying the above idea, a general RC network can be
decomposed into a tree. Since the delays in a tree can be
determined efficiently, we are able to calculate the delays and
clock skews in the original RC network.

Consider the effect of inserting a link between two nodes Ni
and Nj with delays Di and Dj

 respectively in a tree as shown in
Fig.1(a). Assume that the load capacitances of node Ni and Nj are
Ci and Cj respectively before link insertion. After a link is inserted
between node Ni and Nj, node Nj becomes one of the neighboring
nodes of Ni. The loading capacitance of node Ni will be
redistributed as in Fig.2(b). In this example, the load capacitance
of node Ni is redistributed. Note that we can also split Nj instead

of Ni. Suppose Ci,1 is the capacitance remaining at node Ni and Ci,2
is the load redistributed from node Ni to node Nj through the
inserted link. Let Di

’ and Dj
’ be the new delays at node Ni and Nj

respectively, which can be calculated after this decomposing step.

Fig.1. Load Redistribution through a Link

 According the set of constraints (1) and (2), we have the
following equality constraints for this particular example:

 Ci,1+ Ci,2 = Ci (3)

 Di
’ = Dj

’+ Dlink (4)

 The delay difference between node Ni and node Nj becomes
Dlink = RlinkCi,2. Note that if Ci,2 is positive, it indicates that node
Nj is actually driving node Ni after this link insertion step and
node Nj load part of node Ni’s capacitance, which is Ci,2. If Ci,2 is
negative, it indicates that node Ni is driving node Nj instead. This
load redistribution is also applicable for node pairs with non-zero
skew.

The Elmore delay of node Ni in a tree T is

,i k k

k
R C∑ (5)

where k ∈ all nodes in T, Ri,k is the shared path resistance
between node Ni and node Nk and Ck is the capacitance of node Nk.
For a given tree, the resistances of edges and capacitances of the
nodes are known, so the delays at nodes Ni and Nj can be written
as follows with constants k, where i = 1, 2, 3, 4, 5, 6.

 Di = k1Ci + k2Cj +k3 (6)

 Dj = k4Ci + k5Cj +k6 (7)

The skew between node Ni and Nj before link insertion is

 qij = Di – Dj (8)

After a link is inserted between Ni and Nj, the delays become

 Di
’ = k1(Ci – Ci,2) + k2(Cj + Ci,2) + k3 (9)

 Dj
’ = k4(Ci – Ci,2) + k5(Cj + Ci,2) + k6 (10)

The skew becomes qij
’ = Di

’ – Dj
’, given by

 qij
’ = qij – (k1 – k4)Ci,2 + (k2 – k5)Ci,2 (11)

which equals RlinkCi,2, so we have

 Ci,2 = qij/(k1 – k2 – k4 + k5+ Rlink) (12)

The skew after link insertion is qij
’ = RlinkCi,2 = Rlink qij/(k1 – k2 –

k4 + k5 + Rlink), the skew is thus scaled by Rlink/(k1 – k2 – k4 + k5 +
Rlink). Therefore, the skew reduction effect of a link is affected by
the resistance of the link Rlink. If a link resistance is large, its skew

Ni
Ci

Nj

(a) (b)

Cj
Ni

Ci,1
Nj

Ci,2 Cj

322

reduction effect will be small. Although the above analysis is
based on a structure that is a tree, the same argument can be
applied even after several links are inserted since a non-tree
network can be represented by a tree structure by applying the
above load redistribution method.

3. LINK INSERTION FOR NON-TREE
CLOCK NETWORK

Based on the techniques discussed in section 2, we are able to
calculate signal delays in a clock network. In our approach, the
sink load capacitances are modeled as variables because they are
affected by various variations. Each sink node’s delay will change
according to the values of the sink capacitances. We use the worst
case skew value as a metric to evaluate the skew. A worst case
skew is defined as the maximum skew that might appear in the
clock network with variations under consideration.

Adding links between the node pairs which are most
susceptible to have the worst case clock skew will be beneficial.
Therefore, one important step is to identify the node pairs which
will have large skew under variations. A shared path length lij is
the length of the path shared between the path from the root s to
sink node Si and the path from s to Sj. It is obvious that if two
nodes share a long common path from the source in a tree
topology, the delay difference will be small. If the shared path
length lij is small or even zero, the delay difference between Si
and Sj can be high. Those node pairs with small shared path length
are topologically far away. In a clock tree, adding a link to those
topologically far away node pairs will be beneficial because they
are likely to have large clock skew. For example, in Fig. 2, adding
a link between node b and node c will generally be better than
adding a link between node b and node d, because node pair (b, d)
is less likely to have large skew.

When the clock network is no longer a tree structure after some
crosslinks are inserted, the relationship between nodes will not be
explicit. It is hard to tell if a node pair is topologically far away or
not. In Fig. 2, if we consider node pair (a, b) and node pair (d, c),
node pair (a, b) are topologically closer if no links are inserted,
since the lowest common ancestor (LCA) of (a, b) is at level 1
while the LCA of (d, c) is at the root (level 0). However, if a link
exists between node b and node c, it will be difficult to tell which
node pair are topologically closer thus less likely to exhibit worse
skew. In this case, we will use the non-tree delay calculation
technique (Section 2) to obtain the worst case skew of each sink
node pair in order to decide which pairs will likely have large
skew.

Fig. 2. Clock Network with Links

 In our approach, we will insert the first link between the two
subtrees of the root. We will find the node pair with the smallest
physical distance and thus the smallest resistance. Starting from
the second link, we will formulate a sequence of linear programs
to find the most beneficial node pair for inserting a link. Fig. 3
shows an overall flow of our algorithm to insert links. In the
following section we will discuss in more details of the sequence
of linear programs.

 Fig.3. Link Insertion Overview

3.1 Linear Programs for Selecting Node Pairs
 Given a non-tree clock network, we will first make use of the
techniques discussed in Section 2 to decompose the network into
a tree structure and redistribute the load capacitances. An example
is illustrated in Fig. 4(a). In Fig. 4(a), a link k is added between
sink nodes S1 and S2, with load capacitance C1 and C2 respectively.
First we add half of the link capacitance Clink to endpoints S1 and
S2 of the link. When the tree is decomposed, we pick one of the
link endpoints to decompose. In this example, we pick node S1 to
be viewed as being split into two nodes as in Fig. 4(b). The new
node S3 is connected to S2 through the added link. The new
loading capacitance at node S1 is C1 + Clink/2 – ck where ck is the
capacitance distributed to node S2. Suppose that there are m links
in the clock distribution network, similar decomposition can be
done for all the links. We can use m variables c1, c2, …, cm to
describe the load redistribution from one endpoint of a link to the
other. Finally, we obtain a tree structure with some way of load
distribution. The Elmore delays in the clock network can then be
found.

Fig. 4. Decomposition of Clock Network with Links

 Once the network is decomposed into trees and the load
capacitances are redistributed, according to equation (5), we can
write the Elmore delay of each sink node as a linear function of
the sink load capacitances. For a buffered clock network, the

b ca d

Algorithm: Add Links
Input: A clock distribution network
Output: m crosslinks
1. Insert the first link between node pair (a, b) where a and b are in

the left and right subtree of the root and are closest to each other
physically

2. k ← 1
3. While k < m
4. For each sink node pair (u, v)
5. Construct an LP to find the largest fu,v value
 * fu,v is an objective function described below
6. Return the node pair with the largest fu,v value for adding a link
7. k ← k + 1
8. End

S1

S2

S1 S3

(a) (b)

S2

323

delay can also be expressed as a linear function of the sink
capacitances. Let n be the total number of sinks and m be the
number of links, the delay of a sink node Su is

 tu = fu(C1, C2, …, Cn, c1, c2, …, cm) (13)

The skew between sink node Su and Sv is

 qu,v = |tu – tv| (14)

Then we can formulate the worst case skew between a pair of
nodes under variations. However, adding a link between the pair
with the worst skew might involve very long route and a
significant increase in wirelength. If the length of the link is large,
the resistance of the link will be high. Firstly, this will make the
clock network not practical. Secondly, a large wirelength will
lower the skew reduction effect of a link as discussed in Section 2.
In Fig. 2, if we do not consider the resistance of the link, adding a
link between node b and node c will be better than adding a link
between node a and node b, since node a and node b share some
parts of their paths from the source and the delay difference will
be smaller. However, if the distance between node b and node c is
larger than the distance between node a and node b, it will be
difficult to say which link is better. A tradeoff between the length
of a link and its clock skew reduction effect is needed. Therefore,
when selecting node pairs, we consider both clock skew and link
length to find the node pairs which are most beneficial for link
insertion. We thus define an objective function to strike a balance
between the worst case skew and the link resistance ru,v as follows:

 fu,v = qu,v/ru,v (15)

This objective function is established empirically. From the
experimental results, we find that this objective function can
achieve low clock skew effectively. We can find the maximum of
fu,v subject to changes in the load capacitance values and a set of
linear equality constraints as described above.

The sink load capacitances have upper and lower bounds. For
each sink node Si

 li < Ci < ui (16)

We also have a set of linear equality constraints to describe the
delay equalities due to the links. Let Sleft(k) and Sright(k) be the two
endpoints of link k. W.l.o.g, let Sleft(k) be the node being split and
Sleft(k) becomes Sleft(k) and Smid(k) after splitting. Assume that the
delays at Sleft(k) and Sright(k) are tk1 and tk2 respectively, and the
delay at Smid(k) is tk3. Dk

link is the delay on the link connecting Smid(k)
and Sright(k). Assume that the link resistance is Rk

link, the equality
constraints due to the kth link can be written as:

 tk1 = tk3 = tk2 + Dk
link (17)

 Dk
link = Rk

linkck (18)

 To summarize, the optimization problem for maximizing the
objective function fu,v between node Su and Sv is:

Maximize: fu,v = |tu – tv|/ru,v

Constraints:

 tu = fu(C1, C2, …, Cn, c1, c2, …, cm) (19)

 tv = fv(C1, C2, …, Cn, c1, c2, …, cm) (20)

 li < Ci < ui i = 1,…,n

 tk1 = tk2 + Dk
link k = 1,…,m (21)

In our implementation, instead of calling a linear solver, we
will first use Gaussian elimination to solve the k equality
constraints (21), so the k variables ci can be expressed by C1,
C2, …, Cn. Equation (19) and (20) become

 tu = fu’(C1, C2, …, Cn) (22)

 tv = fv’(C1, C2, …, Cn) (23)

Then the maximum objective value subject to changes in the
sink load capacitances can be computed directly from the upper
and lower capacitance bounds.

The maximum fu,v (called pu,v) for a pair of node Su and Sv can
be obtained by solving the above linear program. Finally, we can
find a node pair with the largest pu,v. A crosslink is added between
this node pair to reduce the clock skew while constraining the
wirelength of the link. By applying the technique recursively, we
can add a user-defined number of crosslinks to construct a link
based clock network.

3.2 Reducing the Number of Optimizations
 Although the optimization problem for a pair of nodes can be
solved quickly as formulated above, we need to run it for all pairs
of nodes to get the node pair with pmax. The running time will
increase quickly when the number of nodes increases to thousands.
Therefore, we devised a method to speed up the process when the
number of sinks is large. In order to reduce the running time,
instead of trying all pairs of sinks, we will choose some node
pairs which are more likely to have the pmax. Actually there are
some pairs that we do not need to consider, e.g., nodes that are
topologically close to each other. This is because these node pairs
share a long mutual sub-path from the source and the delay
differences between them will not be big.

Starting from the sink node level, we will travel up to find a set
of internal nodes I such that the set S of subtrees rooted at these
internal nodes should cover all the sink nodes. The detailed
procedure to find the internal nodes is shown in Fig. 5. Compared
with the total number of sinks, the number of these internal nodes
will be smaller. Since the sink nodes within a subtree in S will
likely to have similar delays, we will not consider their skews.
We will pick one node from each subtree in S to find their skew.
In our implementation, we will also consider the number of sinks
in each subtree in S and limit them to be less than or equal to 16.
In this way, even benchmarks with a large number of sinks can be
solved in a reasonable amount of time.

Fig. 5. Find a Set of Internal Nodes I

Algorithm: Find Nodes
Input: A clock network
Output: Internal node set I
1. I = Φ
For each sink node Si

2. If Si is contained in a subtree rooted at a node in I
3. Continue
4. Else
5. k ← 1, r ← 1, Ii ← Si
6. While r < lower bound in the sink number of a subtree
7. k ← k + 1, Ii ← parent of Ii, temp ← Ii
8. r ← number of sinks contained in the subtree rooted at Ii
9. End
10. If r ＞ upper bound in the sink number of a subtree
11. Ii ← temp
12. Add Ii to I

324

4. EXPERIMENTS
 Our algorithm to select node pairs for non-tree clock network
construction with crosslinks is implemented in C. The
experiments are performed on a 3.2 GHz Intel CPU Linux
machine with 4GB memory. To verify the effectiveness of our
method, we will compare our link insertion scheme with the work
in [1] and the work in [4]. These works did not consider non-tree
delay when inserting links. We implemented the minimum weight
matching-based link insertion method which is the best method in
[1]. We start with the same zero skew clock tree which is obtained
from the bounded skew tree method [2]. The benchmarks and the
bounded skew tree code are downloaded from the GSRC
bookshelf (http://vlsicad.eecs.umich.edu/BK/). For comparison
with the work in [4], experiments are performed on the ISPD
2010 contest benchmark. In our implementation and simulations,
the per unit wire resistance is 10-4 Ω/nm and the per unit wire
capacitance is 2×10-4 fF/nm. Ngspice is used to simulate our clock
distribution network. Process variations are accounted in the
simulations for VDD variations and sink capacitance variations.
We allow 15% variations in the VDD and the sink capacitances
and all the variations follow a normal distribution. For each clock
network, 500 spice simulations are performed to obtain the worst
case skew (WCS).

 All the benchmark information and the experimental results of
our work and the method in [1] are shown in Table 1. The
benchmark sizes, worst case skews (WCS), and the wire
capacitances of the clock trees are given. We list the number of
links inserted, WCS results, link capacitance results of the Link-
M method and our work. The Link-M method refers to the
minimum weight matching based link insertion method in [1].
From the table, we observe that our method always outperforms
the Link-M method in terms of clock skew reduction. Besides, for
a same number of links, Link-M method costs 249% link
capacitance comparing with ours on average. The reason is that
the Link-M method does not consider non-tree delay when
inserting links, which may result in ineffective crosslink insertion
into the clock tree. By considering the balance between clock
skew and link resistance, we can achieve more clock skew
reduction, and the link capacitance can also be reduced. We list
the CPU time in seconds in the table. The CPU time for the Link-
M method is ignorable so it is not listed in the table. The
technique discussed in Section 3.3 can be used to control the
running time and we can see the running time is acceptable.

To compare our proposed method with the most recent work
[4] which inserts links in the internal nodes of a tree and insert
links while constructing the tree, we obtain the clock network
results from the authors of [4]. The links added between the
internal nodes are removed before our method is applied to
generate crosslinks into the clock network. Table 2 compares our
work with the method in [4]. LCS refers to the local clock skew
constraint on the benchmark in ISPD 2010 High Performance
Clock Network Synthesis Contest [15]. Our work uses less link
resources to achieve similar LCS results. Note that the CPU time
of our work in the table is for the link insertion phase only, while
the tree construction time is not included. Please note that the two
results are not directly comparable, because in [4], the links are
inserted while the trees are being constructed, so their tree
construction performs in such a way to favor the link insertion. In
our case, we take their trees and insert the links in a post
processing way, so the results are hard to be compared. However,
we still want to display the comparisons to show that our method

can also handle the clock trees with buffer and can perform
actually quite well comparing with [4] in which the link insertion
and the tree construction are performed simultaneously.

5. CONCLUSION
 In this paper, signal delay and clock skew in non-tree clock
networks are discussed. Based on the analysis, a new method is
proposed to select node pairs for link insertion in a clock network.
Experimental results show that this method can be applied to
insert links effectively.

6. REFERENCES
[1] A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew

variability via crosslinks. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 6,
2006, 1176–1182.

[2] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao.
Bounded-skew clock and steiner routing under Elmore delay.
In Proceedings of the 1995 IEEE/ACM International
conference on Computer-aided design, 1995, 66–71.

[3] P. Chan and K. Karplus. Computing signal delay in general
RC networks by tree/link partitioning. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
vol. 9, no. 8, 1990, 898–902.

[4] T. Mittal and C.-K. Koh. Cross link insertion for improving
tolerance to variations in clock network synthesis. In
Proceedings of the 2011 international symposium on
Physical design, 2011, 29–36.

[5] P. Restle, T. McNamara, D. Webber, P. Camporese, K. Eng,
K. Jenkins, D. Allen, M. Rohn, M. Quaranta, D. Boerstler, et
al.. A clock distribution network for microprocessors. IEEE
Journal of Solid-State Circuits, vol. 36, no. 5, 2001, 792–
799.

[6] G. Venkataraman, Z. Feng, J. Hu, and P. Li, Combinatorial
algorithms for fast clock mesh optimization. In Proceedings
of the 2006 IEEE/ACM international conference on
Computer-aided design, 2006, 563–567.

[7] H. Chen, C. Yeh, G. Wilke, S. Reddy, H. Nguyen, W.
Walker and R. Murgai. A sliding window scheme for
accurate clock mesh analysis. In Proceedings of the 2005
IEEE/ACM International conference on Computer-aided
design, 2005, 939–946.

[8] A. Rajaram and D. Z. Pan. MeshWorks: An efficient
framework for planning, synthesis and optimization of clock
mesh networks. In Proceedings of the 2008 Asia and South
Pacific Design Automation Conference, 2008, 250–257.

[9] W. -C. D. Lam, J. Jain, C. -K. Koh, V. Balakrishnan, and
Yiran Chen. Statistical based link insertion for robust clock
network design. In Proceedings of the 2005 IEEE/ACM
International conference on Computer-aided design, 2005,
588-891.

[10] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri, A.
Rajaram, P. McGuinness, and C. Albert. Practical techniques
for minimizing skew and its variation in buffered clock
networks. In Proceedings of the 2005 IEEE/ACM
International conference on Computer-aided design, 2005,
592–596.

325

Table 1. Benchmark information, worst case skew and wire cap results with 15% variations in vdd and sink capacitances

Bench
-mark #Sinks WCS

(ps)

Wire
Cap
(fF)

#Links
Link-M

WCS (ps)
a (a/b)

Our
WCS (ps)

b

Link-M
Link

Cap (fF)
c (c/d)

Our
Link

Cap (fF)
d

CPU
(s)

r1 267 0.364 264.1
4 0.314 (1.33) 0.236 9.7 (3.24) 2.9 0.81

16 0.162 (1.41) 0.115 16.3 (1.23) 13.2 3.21
22 0.122 (1.20) 0.102 60.0 (3.14) 19.1 4.52

r2 598 0.802 523.7
4 0.772 (1.68) 0.460 6.9 (4.93) 1.4 9.23

20 0.286 (1.39) 0.206 21.0 (1.60) 13.1 46.47
40 0.192 (1.42) 0.135 40.7 (1.46) 27.9 94.09

r3 862 1.250 678.2
6 0.470 (1.09) 0.433 10.2 (1.96) 5.2 2.74

24 0.305 (1.08) 0.282 25.9 (1.07) 24.3 11.73
48 0.229 (1.36) 0.168 101.6 (1.91) 53.2 27.21

r4 1903 2.054 1357.8
8 1.565 (1.55) 1.008 41.6 (8.67) 4.8 9.21

40 0.448 (1.21) 0.370 57.3 (1.23) 46.5 64.34
68 0.336 (1.03) 0.327 125.3 (1.42) 88.3 140.3

r5 3101 2.612 2005.5
8 1.451 (1.14) 1.276 43.2 (7.20) 6.0 36.17

40 0.740 (1.14) 0.648 76.2 (1.67) 45.7 229.8
72 0.589 (1.16) 0.506 95.9 (1.08) 89.0 510.5

s1423 74 0.048 21.30
4 0.042 (1.83) 0.023 1.33 (1.17) 1.14 0.03
8 0.036 (2.57) 0.014 2.77 (1.07) 2.60 0.03

s5378 179 0.061 35.10
4 0.063 (1.75) 0.036 1.60 (2.86) 0.56 0.29

12 0.025 (1.09) 0.023 5.94 (2.57) 2.31 0.89

s15850 597 0.136 89.65
4 0.111 (1.34) 0.083 0.56 (1.27) 0.44 10.62

22 0.053 (1.39) 0.038 3.88 (1.56) 2.48 59.82

Table 2. Comparison of our method with the work in [4]

Bench
-mark #Sinks Method LCS (ps) Ratio of

Link Cap CPU(s)

01 1107 [4]
Our work

7.88
10.67

1.007
1

1092
52.4

02 2249 [4]
Our work

8.32
8.17

1.223
1

4314
424

03 1200 [4]
Our work

6.34
5.89

1.073
1

383
10.6

04 1845 [4]
Our work

7.42
7.33

1.001
1

934
33.8

05 1016 [4]
Our work

5.90
5.87

1.199
1

278
5.36

06 981 [4]
Our work

6.78
8.98

1.003
1

285
6.69

07 1915 [4]
Our work

6.77
6.05

1.228
1

818
49.8

08 1134 [4]
Our work

6.42
8.59

1.225
1

327
8.34

[11] Anand Rajaram and David Z. Pan. Variation tolerant
buffered clock network synthesis with cross links. In
Proceedings of the 2006 international symposium on
Physical design, 2006, 157–164.

[12] Z. Li, Y. Zhou, and W. Shi. Wire sizing for non-tree
topology. IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 5, 2007, 872–880.

[13] T. M. Lin and C. A. Mead. Signal delay in general RC
networks. IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 3, no. 4, 1984, 331–349.

[14] P. K. Chan and M. D. F. Schlag. Bounds on signal delay in
RC mesh networks. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 8, no. 6, 1989, 581–589.

[15] http://archive.sigda.org/ispd/contests/10/ispd10cns.html.

326

