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ABSTRACT
In a placed circuit, there are a lot of movable cells that can
be flipped to further reduce the total wirelength, without
affecting the original placement solution. We aim at solv-
ing this flipping problem optimally. However, solving such
a problem optimally is non-trivial given the gigantic sizes of
modern circuits. We are able to identify a large portion of
cells (about 75%) of which the orientation (flipped or not
flipped) can be determined independent of the orientations
of all the other cells. We have derived three non-trivial con-
ditions to identify those so called independent cells, strictly
solvable cells and conditionally solvable cells. In this way,
we can greatly reduce the number of cells whose orienta-
tions are dependent on each other. Finally, the cell flip-
ping problem of the remaining dependent cells can be for-
mulated as a Mixed Integer Linear Programming (MILP)
problem and solved optimally. However, this may still be
too slow for extremely large circuits and we have applied
two other methods, Linear Programming (LP) and Linear
Programming followed by Mixed Integer Linear Program-
ming (LP+MILP) to solve the problem. Experimental re-
sults show that by identifying those independent and solv-
able cells first and applying the LP+MILP technique, we
can solve this flipping problem effectively and obtain results
just 0.01% more than the optimal. In addition, we can im-
prove the wirelength and number of overflow tiles by 5% and
9% respectively on the floorplanning benchmarks.

Categories and Subject Descriptors: B.7.2 [Design Aids]:
Placement and routing

General Terms: Algorithms, Design

Keywords: Floorplanning, Placement, Wirelength, Orien-
tation, Flipping

1. INTRODUCTION
Many wirelength-driven placement or floorplanning frame-

works have been proposed in recent years. However, the cell
flipping problem is not always considered in those frame-
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works. In fact, some movable objects in VLSI design can
be flipped or rotated. Because the flipping operations can
be performed without changing the original packing, we can
apply cell flipping to further reduce the total wirelength as
a post-processing step while keeping the positions of all the
cells unchanged. The optimal cell flipping problem has been
proven to be NP-complete [3], and many heuristics were pro-
posed to obtain sub-optimal solutions.

An analytical method [12] was proposed to obtain near op-
timal solutions for this cell flipping problem but Euclidean
distance was used to estimate the total wirelength. A neural
network approach [9] and a simulated annealing approach [10]
were later proposed and competitive solutions in compari-
son with the analytical method could be obtained. Some
simple greedy heuristics [4, 5, 6, 7] were also proposed and
it could be shown that the performances of these greedy
approaches were just marginally superior to those of the
more complex neutral network and simulated annealing ap-
proaches. However, only two-pin nets were considered in all
the above previous works and multi-pin nets were required
to be broken down into two-pin nets first. A symbolic al-
gorithm based on Boolean Decision Diagram (BDD) was
proposed recently [8] that could find the optimal wirelength
for small size circuits, e.g. 20-30 blocks, but it could not
handle cases with large number of blocks because complete
searching was performed.

In this paper, we will present a detailed study of this cell
flipping problem in a packing to reduce interconnect length.
We use the half-perimeter metric to measure wirelength and
the latest test cases from the ISPD-05 suite [11] and MCNC
benchmarks were used for the experments. The circuits
are first placed by a placer or a floorplanner. We then try
to identify those cells of which the orientations can be de-
termined independent of the orientations of all the other
cells. We have derived three non-trivial conditions to iden-
tify those so called independent cells, strictly solvable cells
and conditionally solvable cells. In this way, we can greatly
reduce the number of cells whose orientations are depen-
dent on each other. Finally, the cell flipping problem of
the remaining dependent cells cells can be formulated as a
Mixed Integer Linear Programming (MILP) problem. An
optimal solution can be obtained by solving it directly by a
MILP solver. We will also apply two other methods: Lin-
ear Programming (LP) and Linear Programming followed
by Mixed Integer Linear Programming (LP+MILP) to im-
prove the runtime and give results that are very close to the
optimal solutions.



Notations Descriptions
M a set of rectangular cells
N a set of nets
mi ith cell in M
nj jth net in N
W total HPWL wirelength

(xi, yi) center of cell mi

(si,j , ti,j) offset of a pin on cell mi connecting to net
nj , with respect to the center of mi in the x
and y directions

aj(k) index of the kth cell connected by net nj

zj number of cells connected by net nj

bi(k) index of the kth net connecting cell mi

pi number of nets connecting cell mi

λi horizontal orientation of cell mi

1 : flipped, 0 : not flipped
(Lj , L′

j) coordinates of the lower-left corner of

the HPWL bounding box of net nj

(Rj , R′
j) coordinates of the upper-right corner of

the HPWL bounding box of net nj

LLj minimum possible x-coordinate of the left
boundary of the HPWL bounding box of net nj

LRj maximum possible x-coordinate of the left
boundary of the HPWL bounding box of net nj

RLj minimum possible x-coordinate of the right
boundary of the HPWL bounding box of net nj

RRj maximum possible x-coordinate of the right
boundary of the HPWL bounding box of net nj

Table 1: Notations

2. PROBLEM FORMULATION
Given a packing of a set of rectangular cells M , we want

to flip the cells horizontally or vertically without moving the
centers of the cells in order to minimize the total wirelength
where the total wirelength is measured by the half perimeter
bounding box (HPWL) method. The goal of the cell flipping
problem is to find the optimal orientations for the cells such
that the total wirelength is minimized.

It is obvious that horizontal flipping does not affect the y-
coordinates of the pins, and vice versa. Both horizontal and
vertical flipping operations can be performed independently
of each other. In the following, we will only discuss hori-
zontal flipping, while vertical flipping can be done similarly.
The notations used in following sections are summarized in
table 1.

3. PRELIMINARY
An example of changing the HPWL bounding box of a

net by flipping is shown in figure 1. Figure 1(a) is the initial
packing and we can measure the initial HPWL. If the cell
m1 is flipped, the x-coordinate of the left boundary of the
HPWL bounding box becomes larger as in figure 1(b). If the
cell m2 is flipped, the x-coordinate of the right boundary of
the HPWL bounding box becomes smaller as in figure 1(c).
If both m1 and m2 are flipped, the HPWL bounding box is
changed as in figure 1(d).

We define the bounding region (LLj , LRj , RLj , RRj) of a
net nj as follows. An illustration is shown in figure 1(e). LLj

(LRj) is the minimum (maximum) x-coordinate of the left
boundary of the bounding box of net nj . RLj (RRj) is the
minimum (maximum) x-coordinate of the right boundary of
the bounding box of net nj . In general, the values of LLj ,
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Pin position if the cell is not 
flipped horizontally

Pin position if the cell is 
flipped horizontally
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(a) A net connecting m1, m2 and m3 (b) m1 is flipped

(c) m2 is flipped (d) Both m1 and m2 are flipped

(e) Bounding region

Figure 1: An Example of Bounding Box and Bound-
ing Region of a Net nj

LRj , RLj and RRj can be evaluated as follows:

LLj = min
1≤k≤zj

{xaj(k) − |saj(k),j |}

LRj = min
1≤k≤zj

{xaj(k) + |saj(k),j |}

RLj = max
1≤k≤zj

{xaj(k) − |saj(k),j |}

RRj = max
1≤k≤zj

{xaj(k) + |saj(k),j |} (1)

4. FIXING CELL ORIENTATIONS
Today circuit designs are usually very big and involve a

large number of cells. If the cell flipping problem is directly
formulated and solved as a MILP, a large amount of memory
and extremely long runtime will be needed. It is thus a good
idea to reduce the number of cells with variable orientation
first before formulating the MILP problem. We found that
a lot of cells (about 75%) can actually be fixed with their
optimal orientations independently of the orientations of all
the other cells. According to the bounding region of each
net, we can divide the cells into three types:

Independent cells: The orientations of these cells will not
affect the total wirelength.

Strictly/Conditionally solvable cells: The orientations of these
cells will affect the total wirelength but they can be deter-
mined optimally independent of the orientations of all the
other cells.

Dependent cells: The cells that are not independent nor
strictly/conditionally solvable. Their optimal orientations
are dependent on the orientations of the other dependent
cells.



4.1 Independent Cells
A cell mi is independent if:

xi − |si,bi(k)| > LRbi(k) and xi + |si,bi(k)| < RLbi(k) (2)

for all k ∈ {1, 2, ..., pi}. As all the possible pin positions do
not overlap with the bounding regions of the corresponding
nets, changes in orientations of these cells will not affect the
total wirelength.

4.2 Solvable Cells
For those cells which are not dependent, their orientations

will affect the total HPWL wirelength. But the orientations
of some of them can still be determined optimally indepen-
dent of the orientations of all the other cells. We called such
kind of cells solvable cells. There are two kinds of solvable
cells, strictly solvable and conditionally solvable. We will
explain both of them in details in the following.

4.2.1 Strictly Solvable Cells
Consider a cell mi. If it is not an independent cell, there

must be at least a net nj connecting mi such that:

xi − |si,j | ≤ LRj or xi + |si,j | ≥ RLj (3)

Consider the set of nets Q(mi) connecting mi and satisfy-
ing the above inequalities. If every net nj in Q(mi) satisfies
the condition that all the cells (except mi) connected by nj

do not overlap with cell mi (i.e., the x-coordinates of the
pins for nj on the other cells are all larger or smaller than
that of the pin for nj on cell mi), mi is called strictly solv-
able and the optimal orientation of mi can be determined
immediately.

This is because only the nets in Q(mi) will affect the ori-
entation of mi. Consider a net nj in Q(mi). The orientation
of mi will affect the position of the left or right boundary of
nj (since mi and nj satisfy inequalities (3)). However, no
other cells on net nj overlap with mi horizontally, so the ef-
fect of mi’s orientation on the wirelength of net mj is clear,
which is either 2 × |si,j | or −2 × |si,j |, depending whether
mi is on the left or the right boundary of nj and the original
orientation of mi. Therefore, we can compute the total ef-
fect of mi’s orientation on W by summing up it’s effects on
each net in Q(mi), and determine mi’s optimal orientation.

4.2.2 Conditionally Solvable Cells
If a cell mi is not strictly solvable, there must be at least

one net nj in Q(mi) such that some cells on nj overlap with
mi horizontally. Let Q1(mi) be a subset of Q(mi) such that
every net nk in Q1(mi) satisfies the condition that all the
cells (except mi) connected by nk do not overlap with cell
mi, and we denote Q(mi) − Q1(mi) by Q2(mi). Following
the same argument for strictly solvable cells, we can deter-
mine the effect of mi’s orientation on the total wirelength of
the nets in Q1(mi). Let this be δ1(mi). The value of δ1(mi)
will determine a potential orientation X of mi. Then, for
each net nj in Q2(mi), we can determine the largest possible
“adverse” effect on nj if mi follows the potential orientation
X. This largest possible adverse effect on nj will depend
on whether mi overlaps with the left or right bounding re-
gion of nj and the potential orientation X. Then we can
sum up all these adverse effects for each net nj in Q2(mi)
to obtain δ2(mi). If |δ2(mi)| < |δ1(mi)|, cell mi is a condi-
tionally solvable cell and its optimal orientation should be

X. Otherwise, mi is not solvable and its orientation will be
determined later.

The largest possible adverse effect δ2(mi, nj) on a net nj ∈
Q2(mi) if mi follows a potential orientation X depends on
whether mi overlaps with the left or right bounding region of
nj and the potential orientation X. There are three possible
cases. In the first case, mi overlaps with the right bounding
region of net nj only. In this case, if X is flipping mi to
the left (more exactly, it should be flipping the pin on mi

connecting to nj to the left), δ2(mi, nj) = 0. Otherwise,
δ2(mi, nj) can be obtained by assuming that all the other
cells on nj that overlap with mi are flipped in such a way
to minimize the wirelength of nj and δ2(mi, nj) will be the
difference in the wirelength of nj between the case of flipping
mi to the right and flipping mi to the left. The second
case of mi overlapping with the left bounding region of net
nj only can be considered similarly. In the third case, mi

overlaps with both the left and right bounding regions of
net nj . In this case, δ2(mi, nj) will be the difference in
the wirelength of nj between the case when mi follows the
orientation X and all the other cells are flipped in such a way
to maximize the wirelength and the case when mi follows the
opposite orientation of X and all the other cells are flipped
in such a way to minimize the wirelength.

: Pin position if the cell is not flipped horizontally
: Pin position if the cell is flipped horizontally
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(a) A net n5 connecting to m2, m4 and m5

(b) A net n6 connecting to m4 and m5
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Figure 2: An Example of a Conditionally Solvable
Cell m5

An example of a conditionally solvable cell is shown in
figure 2. We can look at cell m5 in figure 2. It overlaps
with the bounding regions of both net n5 and net n6, so
it is not an independent cell. It does not overlap with the
other cells on n6 but overlaps with cell m2 on n5. Thus,
we have Q1(m5) = {n6} and Q2(m5) = {n5}. It is obvious
that m5 should not be flipped to give a smaller HPWL when
considering n6 only. Thus, the value of δ1(m5) for this po-
tential orientation X of not flipping is 2×|s5,6| = 11. Then,
we need to determine the largest possible adverse effect on
n5 ∈ Q2(m5) if m5 does not flip. The cell m5 overlaps with
the left bounding region of n5. Since the potential orienta-



tion X will put the pin on m5 connecting to net n5 to the
left, δ2(m5, n5) will be the difference in the wirelength of n5

between not flipping and flipping m5 when the orientation of
m2 is such that the wirelength of n5 is minimized, i.e., flip-
ping the pin connecting m2 to net n5 to the right. This value
is 7 in this example. Finally, we have |δ2(m5)| < |δ1(m5)|,
so the cell m5 is a conditionally solvable cell and its optimal
orientation should be “not flipped”.

After we fix the orientations of those independent cells and
strictly/ conditionally solvable cells, some of the remaining
cells will become independent or solvable. In our approach,
we will repeatedly find independent and solvable cells to fix
their orientations until there are less than ten new inde-
pendent or solvable cells found in one iteration. For those
remaining cells of which the orientations cannot be fixed yet
(called dependent cells), we will formulate a MILP to de-
termine their orientations. The numbers of cells of which
the orientations can be fixed after this cell orientation fixing
step are shown in table 2. With this orientation fixing step,
about 70 − 80% of cells can get their optimal orientations
fixed immediately.

Orientation fixing stepTest
No. of No. ofcases
cells fixed cells

Percentage

adaptec2 255023 184009 72.15%
adaptec4 496045 374140 75.42%
bigblue1 278164 184207 66.22%
bigblue2 557866 408528 73.23%
bigblue3 1096812 873452 79.64%
bigblue4 2177353 1665630 76.50%
Average −−− −−− 73.86%

Table 2: Percentage of Cells Got Fixed with Optimal
Orientations after the Orientation Fixing Step

5. SOLVING DEPENDENT CELLS
In this section, we will describe how we formulate the

cell flipping problem for the remaining dependent cells as
a MILP. A pseudo code of the whole process is shown in
figure 3. Now, we focus on the step of finding the opti-
mal orientations for the remaining dependent cells (step 3).
Consider a net nj connecting a set of zj cells, the coor-
dinates of the pin on the cell mi connecting to nj where
i ∈ {aj(1), aj(2), ..., aj(zj)} can be represented by:

(xi + si,j(1 − 2λi), yi + ti,j(1 − 2λ′
i))

The variable λi tells whether cell mi will be flipped horizon-
tally and λ′

i tells whether cell mi will be flipped vertically.
If mi is flipped horizontally (vertically), λi (λ′

i) is 1; other-
wise, it is 0. Because all the pins connecting to nj should
be located inside the bounding box of nj , we have:

xi + si,j(1 − 2λi) ≤ Rj

xi + si,j(1 − 2λi) ≥ Lj

yi + ti,j(1 − 2λ′
i) ≤ R′

j

yi + ti,j(1 − 2λ′
i) ≥ L′

j (4)

for all i ∈ {aj(1), aj(2), ..., aj(zj)}. Finally, we want to min-
imize the total wirelength of the packing, so we have the
objective function as follows:

W =

|N|∑

j=1

(Rj − Lj + R′
j − L′

j) (5)

It is easy to see that it is a MILP with a set of linear in-
equality constraints (4) and a linear objective function (5).
We can solve it optimally by invoking a MILP solver. How-
ever the runtime for extremely large test cases will still be
un-affordable even after fixing the orientations of about 75%
of cells.

We have tried three different methods to solve the above
MILP problem. We can obtain optimal solution by solving
it directly with a MILP solver. We can also solve it more
efficiently as a LP to obtain a near optimal solution. The
best compromise will be solving it with a combination of
LP and MILP. We will discuss each of them with details in
the following sections. We have also implemented a simple
greedy approach for comparison purpose.

1 Placement results from placer
2 Cell orientation fixing step

Repeat
Orientation fixing for independent cells 
Orientation fixing for strictly/conditionally
solvable cells

Until (no. of newly fixed cells < 10)
3 Find the orientations of remaining dependent cells

Formulate the cell flipping problem as MILP
Solve the problem by MILP, LP, or LP+MILP

Figure 3: The Design Flow of our Approach

5.1 MILP
The MILP can be solved separately in the horizontal and

vertical directions. We assume the x-direction in the follow-
ing discussion and the y-direction can be handled similarly.
The MILP in the x-direction is formulated as follows:

Minimize:

W =

|N|∑

j=1

(Rj − Lj) (6)

Subject to

xi + si,j(1 − 2λi) ≤ Rj

xi + si,j(1 − 2λi) ≥ Lj (7)

∀j ∈ {1, 2, ..., |N |} and ∀i ∈ {aj(1), aj(2), ..., aj(zj)}. Al-
though we can obtain the optimal solution, the runtime is
slow and the memory usage is huge. However, the optimal
solution can be used as a reference point to see how good
the other approaches are.

5.2 LP
With the same formulation, we can solve the problem by

LP instead. When there are real numbers in the solution,
we can simply round the solution to 1 or 0:

λi = 1 if λi > 0.5

λi = 0 otherwise (8)

From the experimental results, we found that more than
half of the λis will be set to either one or zero after solving
the LP. The result is quite close to the optimal but the
runtime will be much shorter.

5.3 LP+MILP
In order to have a good balance between runtime and solu-

tion quality, we can combine the LP and MILP approaches.
As mentioned above, we found from the experimental results



that a significant portion of λis will be set to either zero or
one after solving the LP. We can then fix the orientations
of those cells and formulate another MILP for the remain-
ing cells. This combined approach will be slower than the
LP approach but solutions very close to the optimal can be
obtained.

5.4 Greedy Approach
In the greedy approach, we will try to flip each cell one

after another to obtain a smaller total wirelength. In each
iteration, every cell is considered once. A cell is flipped
if and only if flipping that cell will lead to a smaller total
wirelength. This process is repeated as long as the total
improvement on W in one iteration is more than 0.02%.
Notice that in each step of computing the orientation of a
cell, only the wirelengths of the nets which are connected to
the cell under consideration are required to be calculated.

6. EXPERIMENTAL RESULTS
In the first set of experiments, the test cases used are

the ISPD-05 suite circuits [11]. Detailed information of the
testing circuits are shown in table 3. The pre-placed cir-
cuits are obtained from the ISPD-05 placement contest web
site. We will apply our approaches on all the placement re-
sults and show the average runtime and the improvement in
wirelength.

Test No. of No. of No. of
cases cells nets pins

adaptec2 255023 254457 1069482
adaptec4 496045 494716 1912420
bigblue1 278164 277604 1144691
bigblue2 557866 534782 2122282
bigblue3 1096812 1095519 3833218
bigblue4 2177353 2169183 8900078

Table 3: Information of the Testing Circuits

We used CPLEX9.0 as the LP and MILP solver. The
tolerance was set to 0.02%. It means that the solutions ob-
tained from the solver are at least 0.02% close to the optimal
solutions. All programs were written in C and were run on
a Sun Blade 2500 workstation with a 1.6GHz UltraSPARC
IIIi CPU and 2GB RAM.

A summary of the improvement is shown in table 4. Be-
cause the circuits are pre-placed by wirelength-driven plac-
ers, the optimal improvement is around 1 − 2% on average.
We can see that the solutions by LP+MILP are very close
to the optimal solutions. The improvement by LP is about
10% worse than the optimal improvement. The improve-
ment by the greedy approach is about 26% worse than the
optimal improvement. Note that we cannot obtain a result
by MILP nor LP+MILP on the circuit bigblue4 because of
the excessive memory usage. Table 5 shows the runtime of
different methods. We can see that the runtime is improved
significantly when LP is applied.

In the second set of experiments, the test cases used are
the MCNC benchmark circuits. Detailed information of the
testing circuits is shown in table 6. The pre-placed circuits
are obtained from the floorplanner Parque [2]. We will ap-
ply our approaches on all the floorplan results and show
the average runtime and the improvement in wirelength and
routability by global routing [1].

A summary of the improvement in HPWL is shown in
table 7. The optimal improvement is around 3% − 10% on

Test With orientation fixing (s) Greedy
cases MILP LP+MILP LP (s)

adaptec2 1688.45 717.66 158.95 37.29
adaptec4 2996.40 1000.15 330.57 79.33
bigblue1 1707.92 417.06 160.32 37.91
bigblue2 6567.07 2313.76 554.96 409.02
bigblue3 11522.79 2415.38 809.83 240.46
bigblue4 −−− −−− 3854.34 1478.53
w.r.t. LP 11.15 3.48 1.00 0.36

Table 5: Runtime of Different Methods

Test No. of No. of No. of No. of
cases cells nets pins pads
hp 9 97 264 73

xerox 10 203 696 2
apte 11 83 214 45

ami33 33 123 480 42
ami49 49 408 931 22

Table 6: Information of the Testing Circuits

average. We can see that the solutions by LP+MILP are
very close to the optimal solutions. The improvement by
LP is on average 4% worse than the optimal improvement.
The improvement by the greedy approach is on average 20%
worse than the optimal improvement. In addition, We can
also see that the difference between the optimal HPWL and
the HPWL obtained from the floorplanner is quite large.

To study further the effect of flippings on wirelength and
routability, the floorplans before and after the optimal flip-
ping step will be routed by a global router and the results on
wirelength and routability are shown in table 8 and table 9
respectively. We can see that there is about 5% improve-
ment on total wirelength and about 10% reduction in the
number of overflow tiles in global routing with optimal flip-
ping. This shows that we can also improve the routability
significantly by optimal block flipping.

Test Wirelength from global routing (nm)
cases No optimal flipping W/ optimal flipping
hp 131343.60 126122.60

xerox 704591.80 668223.70
apte 339564.30 318032.50

ami33 60073.60 54135.60
ami49 1237478.00 1171123.40

Average 494610.26 (1.00) 467527.56 (0.95)

Table 8: Wirelength after Global Routing

Table 10 shows the runtime of different methods. We also
compare with the results of the BDD based approach [8].
Notice that both our method and the BDD based approach
can obtain optimal HPWL with flipping. However, the run-
time of our method is much faster than that of the BDD
based approach. It is because the orientation fixing step
can reduce the problem size significantly and solving the
remaining mixed integer linear programming problem be-
comes much easier. The BDD based approach cannot be
applied to those large placement benchmark circuits.



Reduction in total wirelengthTest
MILP LP+MILP LP Greedycases

x-dir. y-dir. total x-dir. y-dir. total x-dir. y-dir. total x-dir. y-dir. total
adaptec2 0.81% 0.43% 1.24% 0.80% 0.43% 1.23% 0.75% 0.39% 1.14% 0.65% 0.37% 1.02%
adaptec4 0.97% 0.55% 1.52% 0.96% 0.55% 1.51% 0.92% 0.52% 1.44% 0.80% 0.45% 1.25%
bigblue1 0.79% 0.68% 1.47% 0.79% 0.67% 1.46% 0.78% 0.61% 1.39% 0.72% 0.56% 1.28%
bigblue2 1.03% 0.77% 1.80% 1.03% 0.76% 1.79% 0.98% 0.73% 1.71% 0.84% 0.60% 1.44%
bigblue3 0.87% 0.46% 1.33% 0.87% 0.46% 1.33% 0.80% 0.44% 1.24% 0.58% 0.34% 0.92%
bigblue4 −−− −−− −−− −−− −−− −−− 0.75% 0.34% 1.09% 0.55% 0.25% 0.80%
Average 0.89% 0.58% 1.47% 0.89% 0.58% 1.47% 0.83% 0.51% 1.34% 0.69% 0.43% 1.12%

w.r.t MILP 1.00 1.00 1.00 0.99 1.00 1.00 0.92 0.86 0.90 0.75 0.71 0.74

Table 4: A Summary of the Improvement on Total Wirelength by Different Methods on the Placement
Benchmarks

Reduction in total wirelengthTest
MILP LP+MILP LP Greedycases

x-dir. y-dir. total x-dir. y-dir. total x-dir. y-dir. total x-dir. y-dir. total
hp 1.75% 1.90% 3.65% 1.75% 1.90% 3.65% 1.69% 1.85% 3.54% 1.55% 1.57% 3.13%

xerox 2.29% 2.75% 5.04% 2.29% 2.74% 5.03% 2.28% 2.74% 5.02% 1.93% 2.56% 4.48%
apte 2.66% 2.48% 5.14% 2.64% 2.48% 5.11% 2.64% 2.48% 5.11% 2.27% 2.18% 4.45%

ami33 5.01% 5.25% 10.26% 5.01% 5.25% 10.26% 4.74% 4.64% 9.38% 3.88% 3.65% 7.53%
ami49 2.93% 2.49% 5.42% 2.91% 2.44% 5.35% 2.91% 2.40% 5.30% 2.30% 1.89% 4.19%

Average 2.93% 2.97% 5.90% 2.92% 2.96% 5.88% 2.85% 2.82% 5.67% 2.39% 2.37% 4.76%
w.r.t MILP 1.00 1.00 1.00 0.99 1.00 1.00 0.97 0.95 0.96 0.81 0.79 0.80

Table 7: A Summary of the Improvement on Total Wirelength by Different Methods on the Floorplanning
Benchmarks

Test No. of overflow tiles from global routing
cases No optimal flipping W/ optimal flipping
hp 13.00 13.00

xerox 27.00 25.00
apte 17.00 16.00

ami33 11.00 10.00
ami49 43.00 37.00

Average 22.20 (1.00) 20.20 (0.91)

Table 9: No. of Overflow Tiles after Global Routing

Test With orientation fixing (s) Greedy BDD
cases MILP LP+MILP LP (s) based1 (s)
hp 0.01 0.01 0.01 0.01 0.90

xerox 0.14 0.13 0.06 0.01 2.10
apte 0.06 0.05 0.03 0.01 0.90

ami33 0.06 0.07 0.04 0.01 2.30
ami49 0.22 0.20 0.08 0.01 19.00
w.r.t.
LP

2.23 2.09 1.00 0.22 113.66

1Using Intel P4 with 3GHz CPU and 2G memory.

Table 10: Runtime of Different Methods

7. CONCLUSION
We have presented a detailed study on the optimal cell

flipping problem in placement and floorplanning. Experi-
ment results show that we can obtain solutions very close to
the optimal by the LP+MILP approach together with the
orientation fixing step. Results show that the runtime of this
cell flipping step is short in comparison with the runtime of
the placement or floorplanning step. Our approach is thus
desirable to be applied as a post-processing step in place-
ment or floorplanning to improve wirelength and routability.
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