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Abstract

In this paper we address the test scheduling problem for Built-
in Self-tested (BISTed) embedded SRAMs (e-SRAMs) when
Data Retention Faults (DRFs) are considered. The proposed
test scheduling algorithm utilizes the ”retention-aware” test
power model [1] to minimize the total testing time of e-
SRAMs while not violating given power constraints. With-
out losing generality, we consider both cases where the pause
time for data retention faults is fixed and cases where it can be
varied. Experimental results show that the ”retention-aware”
test scheduling algorithm can reduce the testing time of e-
SRAMs up to more than 98 percent at the computational time
within a second.

1 Introduction

Embedded memories, in particular embedded SRAMs (e-SRAMs),
tend to consume most of the silicon area in today’s system-on-a-
chips (SoCs), ranging from register files as small as 64bits to larger
caches with sizes of hundreds of kilobits or even megabits [2]. Be-
cause of their extreme density, e-SRAMs are more prone to manu-
facturing defects than the other types of on-chip circuitry (e.g., stan-
dard cells) and it is important to test them thoroughly to ensure an
acceptable SoC yield. Therefore, how to efficiently and effectively
test these hundreds of instances of e-SRAMs on-chip becomes a ma-
jor challenge for the SoC system integrators [3]. On the one hand,
we would like to let more e-SRAMs be tested in parallel to reduce
the total testing time and hence the SoC test cost. On the other
hand, however, the test power constraint becomes a major concern
because power consumption in test mode is usually higher than the
one in functional mode [17]. Therefore, efficient power-constrained
test scheduling techniques (e.g., [12]) play a key role on reducing
e-SRAM test cost.
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Figure 1. The retention-aware test model.

Most prior work in test scheduling assumes a constant power con-
sumption during the entire test process. Although simple and effec-
tive for logic testing, this model is overly pessimistic for e-SRAM
testing when data retention faults (DRFs) are considered [1]. DRFs
model the defects in SRAM bit cells that fails to retain a stored
logic value. The most common retention test method is simply to
load a known value into the cell and wait for a period of time (up
to hundreds of milliseconds [2]), and read it out. During the two
DRF pause time (for retention test of both logic ’0’ and logic ’1’),
no read/write operations are performed and hence it consumes near-
zero test power. By taking this property into account, Wang et al. [1]
proposed a ”retention-aware” test power model for testing built-in
self-tested (BISTed) e-SRAMs, in which each e-SRAM test is rep-
resented by three rectangles A, B, and C with interval TAB and TBC,
as shown in Figure 1. Empirical analysis is given in [1] that shows
this model may significantly reduce the total e-SRAM testing time.
However, automatic test scheduling algorithms are not provided in
their work. Therefore, in this paper, we propose ”retention-aware”
test scheduling techniques for e-SRAMs based on the test power
model presented in [1]. Experimental results show that our approach
significantly reduces the total testing time under given power con-
straints.

The remainder of this paper is organized as follows. Section 2
reviews the related work in this domain. The detailed ”retention-
aware” test scheduling algorithms are presented in Section 3. Next,
Section 4 presents our experiments on four test cases. Finally, Sec-
tion 5 concludes this paper.



2 Prior Work

Related Work in DRF Tests: As discussed in [2], retention testing
needs to consider the slow process corner case, whose leakage (re-
sponsible for the loss of the stored logic value) actually slows from
130nm to 90nm. Because of this, the pause time for testing DRFs
does not decrease significantly with the increasing chip operational
frequency, and hence the testing time for DRFs dominates the to-
tal e-SRAM testing time. To address this problem, many design for
test (DFT) techniques have been proposed to completely remove the
pause time from the test flow, by introducing customized circuitry
[2, 10, 14, 15]. Although effective, the above DFT techniques often
come with high cost in terms of hardware/performance overhead and
design efforts. Moreover, the memory compiler supplied by mem-
ory vendors often does not provide the feature to apply the above
DFT techniques. As a result, in this paper we assume the DRF tests
are applied in the traditional way with extended wait period.

Related Work in Test Scheduling: Many test scheduling tech-
niques have been proposed in the literature [4, 6, 7, 9, 13, 17] (only
name a few). In particular, [4, 7] considered power constraint in their
work. The above work, however, mainly targets on the test schedul-
ing of logic cores (usually scanned), and one of the design aims is to
design an efficient test access mechanism (TAM) architecture to link
the test source/sink to the core under test. e-SRAM tests, however,
are usually conducted by BIST engines, without involving TAM de-
sign and optimization issues. Another major difference of e-SRAM
test from logic test is that the testing time for an e-SRAM is a fixed
constant with its size given, while the testing time for a logic core
usually varies with the assigned TAM width. Wang et al. [12] pro-
posed a simulated annealing (SA) algorithm for the test scheduling
of BISTed memory cores. Test power for each memory is assumed
to be constant during its entire test process and the computational
time is quite high when the number of memory cores is large.

The Impact of e-SRAM BIST Architecture: How the e-SRAM
BIST architectures are designed affects the test scheduling process.
For example, when many different e-SRAMs share the same BIST
engine to save silicon area, depending on the BIST scheme, they
may [8] or may not [11] be able to be tested in parallel. In this
paper, we consider the case that each e-SRAM is supplied with its
own BIST engine. It is important to note that, however, the proposed
approach can be generalized to the above BIST-sharing scenario by
adding additional constraints into the test scheduling process. In
addition, whether the BIST engine is ”soft” or ”hard” significantly
affects the test scheduling process. When it is ”soft”, i.e., the system
integrator is able to modify its architecture, the pause time for DRF
tests (i.e., TAB and TBC) can be changed easily. When it is hard-
wired, the pause time is a pre-determined fixed value. Without losing
generality, we consider both cases in this paper, as shown in the
following section.

3 Retention-Aware Test Scheduling

The retention-aware test scheduling problem invested in this section
can be stated as follows:

Problem Pdr f−opt : Given the test parameters for the BISTed e-
SRAMs, including

• the total number of e-SRAMs Nm;

• the maximum allowed test power Pmax;

• for each BISTed e-SRAM i, the test power consumption Pi, the
testing time TA i, TB i and TC i for block A, B and C;

• the minimum pause time for testing DRFs Tpause;

determine the test schedule of all e-SRAMs such that (i) the total
testing time is minimized; (ii) the pause time for testing DRFs sat-
isfies TAB ≥ Tpause and TBC ≥ Tpause; and (iii) the test power con-
sumption at any moment does not exceed Pmax.

In this section, we first consider the case that the BIST architectures
for e-SRAMs are ”soft” and hence TAB and TBC can vary as long as
they are greater than Tpause. Next, we consider the case that the BIST
architectures for e-SRAMs are ”hard” or the system integrator is not
willing to make any changes. In this case, TAB = TBC = Tpause holds
for all e-SRAMs.

3.1 Scheduling with Flexible DRF Pause Time

3.1.1 Packing-based Scheduling Strategy
The retention-aware test scheduling with flexible DRF pause time
problem can be modeled as a constrained rectangle packing prob-
lem. That is, we try to pack all the rectangles Ai, Bi and Ci
(i = 1 . . .Nm) into a rectangular region of height not exceeding Pmax

and of a minimized width such that for each BISTed e-SRAM i, the
separation between Ai and Bi and the separation between Bi and Ci
are at least Tpause. We first borrow a SA-based approach as described
in [16] to solve this problem.

To impose a ’minimum separation’ constraint between two blocks,
an edge of weight Tpause is inserted into the horizontal constraint
graph from Ai to Bi (from Bi to Ci respectively). The cost function
of a candidate solution S used in the annealing process is as follows:

cost(S) = area(S)+α×Penalty1(S)+β×Penalty2(S)

, where α and β are weights, area(S) is the area of S and is computed
as Pmax ×width(S), Penalty1(S) is the penalty for exceeding the
maximum allowed test power Pmax and Penalty2(S) is the penalty
for violating the minimum separation constraints. Penalty1(S) and
Penalty2(S) are computed as:

Penalty1(S) = (max{0,height(S)−Pmax})2

Penalty2(S) = ∑n
i=1(max{0,Tpause − (x(Bi)−x(Ai))})2+

∑n
i=1(max{0,Tpause − (x(Ci)−x(Bi))})2

, where x(R) of a rectangular block R is the x-coordinate of the lower
left corner of R. The simulated annealing engine provides a very
flexible framework to solve the constrained packing problem. How-
ever, it’s runtime is long for problem instances with a large num-
ber of blocks and constraints. Therefore, in order to make use of
this packing based approach effectively, some groupings between
the memories is done first as a pre-processing step. First of all, all
memories of the same type and of the same testing time (all A’s, all
B’s or all C’s) will be grouped together as one block and they are
grouped in such a way to form a square-shaped rectangle as much
as possible (packing for square-shaped rectangles are relatively eas-
ier). Then different types of memories belonging to the same testing
time may be grouped together if their total area does not exceed a
certain given threshold of the total area of the memory blocks. This
threshold can be used to control the tradeoff between the optimal-
ity of the solution and the runtime. The smaller the threshold, less
grouping will be done, the solution quality will be higher but the
runtime will be longer. In all the following experiments, a thresh-
old of 0.01 is used such that there will be at most 100 blocks in the
problem instance after grouping.



3.1.2 A Fast Scheduling Heuristic
The pre-processing step used in the above packing-based scheduling
strategy significantly reduces computational complexity, but it also
greatly restrict the available solution space and hence may lead to
excessive testing time. In this section, we present another heuristic
that is both efficient in terms of runtime and effective in terms of
testing time, based on the algorithm presented in [5]. In this heuris-
tic, each memory test block is treated as a scheduling unit, and its
data structure is as follows:

Data structure memory block

1. index; /* The memory index */
2. type; /* Memory block type, i.e., A, B or C*/
3. power; /* Testing power */
4. time; /* Testing time */
5. lowerLimit; /* The earliest possible schedule time */
6. begin; /* Schedule begin time */
7. end; /* Schedule end time */
8. isScheduled; /* Scheduled or not */

While the other variables are self-explanatory, the variable
lowerLimit is utilized to meet the DRF interval Tpause constraint
and is discussed in detail in the following algorithm.

The Algorithm DRF Flexible Schedule starts by initializing the
lowerLimit for every memory test block in MB. For the blocks
whose type is ’A’, lowerLimit is initialized to be zero; while for
the other memory blocks whose type is ’B’ or ’C’, they are initial-
ized to be ∞. As a result, in the very beginning of the test schedul-
ing process, only ’A’ type of memory test blocks can be scheduled.
Next, the current schedule begin time is initialized to zero, the cur-
rently available power constraint Pavl is initialized to Pmax and the
number of unscheduled memory blocks is initialized to the size of
MB (lines 2). As long as there exist unscheduled blocks, the algo-
rithm first tries to find the maximum memory test block that can be
scheduled at thisTime (line 5). If such mi exists, it will be sched-
uled by updating its begini , endi and isScheduledi (line 7). Line 8
updates Pavl and Nunscheduled after scheduling mi. If mi is of ’A’ or
’B’ type, we need to update the lowerLimit of the corresponding
’B’ or ’C’ block (line 9). If no such blocks can be found and at the
same time Pavl = Pmax, which means all the unscheduled blocks are
of type ’B’ or ’C’, and their lowerLimit all exceed thisTime. In this
time, we have to insert idle time into the test schedule and update
thisTime accordingly (lines 11-12). If no such blocks can be found
but Pavl < Pmax, which means the current available test power is not
enough, we will record this idle power Pidle (line 14), and branch
to finish some currently scheduling blocks to release more available
test power (lines 15-20). The algorithm then repeats the loop (lines
4-24) and ends only when all memory test blocks are scheduled.

3.2 Scheduling with Fixed DRF Pause Time

This section considers how to schedule e-SRAM tests with fixed
DRF pause time TAB = TBC = Tpause. Because of this fixed wait pe-
riod, whenever an ’A’ type of memory test block mA

i is scheduled,
the schedule of its corresponding mB

i and mC
i are determined. There-

fore, the three blocks cannot be treated as independent scheduling
units and it is fairly difficult to keep track of the power profile during
the scheduling process. As can be observed from Figure 3, the power
profile after scheduling only 3 e-SRAMs is already quite complex.

Algorithm 1. DRF Flexible Schedule

INPUT: MB, Tpause, Pmax

OUTPUT: e-SRAM test schedule

1. Initialize lowerLimit for MB;
2. Initialize thisTime = 0; Pavl = Pmax; Nunscheduled = |MB|;
3. while (Nunscheduled! = 0) {
4. if (Pavl > 0) {
5. find mi with maximum test length subject to
. lowerLimiti ≤ thisTime and Pi < Pavl;
6. if (found) {
7. schedule mi;
8. Pavl− = Pi; Nunscheduled −−;
9. if (typei! = C) lowerlimiti+1 = endi +Tpause;
10. } else if (Pavl = Pmax) {
11. find mi with minimum lowerlimiti subject to
. isScheduledi = f alse;
12. thisTime = lowerlimiti;
13. } else {
14. Pidle = Pavl ; Pavl = 0; }
. } else {
15. Pavl+ = Pidle;
16. find mi with minimum endi subject to
. isScheduled = true and begini = thisTime;
17. thisTime = endi;
18. for(all m j with end j = thisTime) {
19. Pavl+ = power j;
20. Nunscheduled −−; }
. }}

Figure 2. Pseudocode for e-SRAM test schedul-
ing with flexible DRF pause time
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Figure 3. A scheduling example of 3 memory
cores with fixed DRF pause time.

To reduce the complexity of this problem, instead of dynamically
scheduling memory test blocks in between the DRF pause time TAB
and TBC, we propose to group multiple e-SRAM tests statically be-
fore scheduling them. The main idea is to try to fill up the DRF
pause time as much as possible during the initial grouping phase,
and then treat the entire group of e-SRAM tests as a single schedul-
ing unit. The pseudocode for this pre-processing procedure is shown
in Figure 5.
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Figure 4. An e-SRAM tests grouping example.

The procedure starts by initializing the set of ungrouped e-SRAMs
Mungrouped , and the index i of the current memory group mgi. Then
we sort the memory tests in nonincreasing order (line 2). Inside the
outer loop of the procedure, the first e-SRAM test (i.e., the memory
test in Mungrouped with the maximum test power) is put in mgi (line
4). When this is the last ungrouped e-SRAM, the procedure has al-
ready finished grouping and terminates (lines 5-7). Otherwise, we
try to group other e-SRAM tests with their ’A’ and ’B’ blocks em-
bedded in TAB 1 and TBC 1. To check the feasibility, we define terms
RangeA, RangeB, TAB occupied , and TBC occupied , which denotes the
range to fit the e-SRAM’s ’A’ block, the range to fit the e-SRAM’s
’B’ block, the already occupied DRF pause time TAB, and the already
occupied DRF pause time TBC, respectively. The physical meaning
of the above terms can be easily observed from Figure 4. Whenever
a e-SRAM test is grouped into mgi, these values are updated (lines
8-9, 22-23). When TAB occupied > Tpause or TBC occupied > Tpause, no
more e-SRAM tests can be grouped into mgi, and hence we proceed
to a new memory test group (lines 11-13). Otherwise, we first try
to find a compatible e-SRAM test with maximum P that is able to
fit in without conflicts (see Figure 4). If such memory test exists,
it is grouped (line 18). If the available test power allows and there
are some other exactly the same type of memories, they are grouped
with the same schedule (lines 19-21). The procedure halts when all
e-SRAM tests are grouped. Figure 4 shows an example grouping
process with four e-SRAM tests.

Each memory test group is treated as a single unit during the
scheduling process, which, again, can be modeled as a rectangle
(i.e., the dashed-rectangle as shown in Figure 4). A heuristic similar
to Algorithm 1 without constraints can then be used for e-SRAM
scheduling.

Algorithm 2. Group Tests

INPUT: M, Tpause, Pmax

OUTPUT: MG

1. initialize Mungrouped = M; i = 1;
2. sort Mungrouped such that P1 ≥ P2 ≥ ...≥ P|M|;
3. while Mungrouped �= φ {
4. mgi = {m1};
5. if (|Mungrouped | = 1) {
6. Mungrouped = Mungrouped\mgi;
7. break;
. }
8. TAB occupied = TB 1; TBC occupied = TC1 ;
9. determine RangeA and RangeB;
10. while (true) {
11. if (TAB occupied > Tpause || TBC occupied > Tpause) {
12. Mungrouped = Mungrouped\mgi;
13. i++; break;
14. } else {
15. Pavl = P1;
16. find compatible m j with maximum test power;
17. if (found) {
18. mgi = mgi ∪{m j};Pavl− = Pj;
19. while (Pavl > Pj && m j+1 = m j) {
20. mgi = mgi ∪{m j+1};
21. Pavl− = Pj; j++;
. }
22. update RangeA and RangeB;
23. update TAB occupied and TBC occupied ;
24. } else {
25. Mungrouped = Mungrouped\mgi;
26. i++; break; }
. }}}

Figure 5. Procedure for grouping e-SRAM tests.

4 Experimental Results

To show the benefits of the proposed retention-aware test scheduling
techniques, we constructed four test cases as follows:

1. 500 instances of 64*256 and 500 instances of 512*8 e-
SRAMs, in total 1000 e-SRAMs and about 10Mb;

2. 10 instances of 16k*32 and 5 instances of 64k*16 e-SRAMs,
in total 15 e-SRAMs and about 10Mb;

3. 37 mixed types of e-SRAMs, in total 418 e-SRAMs and about
5Mb;

4. a combination of the above, in total 1433 e-SRAMs and about
25Mb.

The detailed configurations for the test cases are shown in Table
1, in which N, P, TA, TB, and TC denote the number of each type of
e-SRAMs, the test power consumption, the testing time for block A,
B, and C, respectively. Note, we assume all e-SRAMs are tested in
100MHz when we acquire P from our memory compiler. Although
different e-SRAMs may be tested in distinct frequencies in practice,
this would not affect the effectiveness of our approach.

Tables 2-5 compare the total e-SRAM testing time using different
test scheduling schemes with the variation of the DRF pause time
Tpause and the given power constraint Pmax. Treg, Tpacking, Tf lex, and



e-SRAM N P (µW ) TA (cc) TB (cc) TC (cc)

Test case 1 64×256 500 5914 16896 1408 806
512×8 500 1475 135168 11264 5734

Test case 2 16k×32 10 12894 4325376 360448 180326
64k×16 5 46224 17301504 1441792 720998

Test case 3 32k×16 1 23904 8650752 720896 360550
8k×32 2 7666 2162688 180224 90214
8k×8 3 6930 2162688 180224 90214

4k×16 3 4374 1081344 90112 45158
... ... ... ... ... ...

128×66 1 3215 33792 2816 1510
16×8 10 545 4224 352 278
8×8 8 503 2112 176 190

Table 1. e-SRAM configurations of the experi-
mental test cases.

Tf ixed represents the testing time using the regular ”single-rectangle”
test power model, the testing time using packing-based algorithm
shown in Section 3.1.1 when Tpause can be varied, the testing time
using the fast heuristic shown in Section 3.1.2 when Tpause can be
varied, and the testing time using the grouping-based strategy shown
in Section 3.2, respectively. They are all in unit clock cycles. Since
we assume the e-SRAMs are tested in 100MHz, Tpause varies from
500µs to 100ms in our experiments. ∆Tf lex and ∆Tf ixed are calcu-

lated as ∆Tf lex = Tf lex−Treg

Treg
×100% and ∆Tf ixed = Tf ixed−Treg

Treg
×100%,

which shows the benefit of the proposed ”retention-aware” test
scheduling algorithms for variable and fixed DRF pause time, re-
spectively.

From these tables, we can observe Tf lex (with computational time
within a second) is better than Tpacking (with computational time in
minutes) in all cases. This is mainly because, to reduce runtime, the
packing-based scheduling strategy group many e-SRAM tests first.
This limits the solution space for Problem Pdr f−opt , which, however,
can be explored in the fast heuristic presented in 3.1.2.

It can be also seen from Tables 1-4 that the total e-SRAM testing
time is reduced in most cases with the proposed ”retention-aware”
test scheduling techniques, for both cases with flexible DRF pause
time and cases with fixed DRF pause time. The reduction is es-
pecially significant when Tpause is large. This is expected because
more e-SRAMs can fit in the DRF pause time during the scheduling
process in such cases. While these times with idle test power con-
sumption are wasted in traditional single-rectangle model. We can
also observe that the savings in testing time is usually larger when
Pmax is smaller. This is also expected because the ”retention-aware”
test power model is not very effective when the power constraint
is relaxed. For example, the total test power consumption of all e-
SRAMs in test case 3 is less than 800mW . When Pmax = 500mW ,
similar to using single-rectangle test power model, the retention-
aware scheduling approach also wastes lots of idle power in the final
schedule. Therefore, the savings is not very large.

In a few cases, the proposed method leads to a slightly longer test-
ing time (e.g., when DRF pause time is fixed, Pmax = 200mW and
Tpause ≥ 5M in test case 2). This is due to the fact that test case 2 has
only 15 large e-SRAMs, and when Tpause ≥ 5M several e-SRAMs
can be grouped into one scheduling unit1. As shown in Figure 3, the
grouping happens in the horizonal direction and the testing time of
the group becomes larger than the testing time of each individual e-
SRAM. By using the single-rectangle power model, however, these
e-SRAMs may be able to be scheduled in the vertical direction and

1when Tpause < 5M, e-SRAMs in test case 2 cannot be grouped and the
scheduling process is exactly the same as the single-rectangle power model.

hence reduced testing time can be achieved. Nevertheless, this situ-
ation rarely happens when the number of e-SRAMs is large and/or
the sizes of e-SRAMs are small. There are also other few cases that
Treg < Tf lex and we attribute them to the fact that the fast heuristic
explores only part of the solution space.

5 Conclusion

We proposed retention-aware test scheduling techniques in this pa-
per for testing e-SRAMs when DRFs are considered, for both cases
where the DRF pause time is fixed and cases where it can be var-
ied. Experimental results show that the proposed approach can sig-
nificantly reduce e-SRAM testing time, especially when the power
constraint is tight and/or the DRF pause time is large. As stressed in
[2], the DRF pause time can be as large as up to hundreds of ms, the
proposed approach is able to greatly reduce the e-SRAM test cost.
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Test Case 1
Pmax = 60mW Pmax = 100mW

Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 9114548 3151270 2868234 -68.53 5778228 -36.60 5695792 2340260 1735692 -69.53 3546348 -37.74
100k 15400602 3201270 2918836 -81.05 7006878 -54.50 9609738 2390260 1759736 -81.69 4335278 -54.89
500k 65800602 3960890 3536614 -94.63 7691198 -88.31 40809738 3149890 2539852 -93.78 4624434 -88.67
1M 128800602 4960890 4536614 -96.48 9130290 -92.91 79809738 4149890 3539852 -95.56 6114316 -92.34
5M 632800602 12960900 12536614 -98.02 15018214 -97.63 391809738 12149900 11539750 -97.05 15018214 -96.17
10M 1262800602 22960900 22536614 -98.22 30019430 -97.62 781809738 22149900 21539750 -97.24 30019430 -96.16

Pmax = 200mW Pmax = 500mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 2795314 1954380 869660 -68.89 1773174 -36.57 1099882 1545460 406546 -63.04 710872 -35.37
100k 4695314 1645460 962636 -79.50 2270858 -51.64 1885936 1645460 506546 -73.14 959346 -49.13
500k 19895314 2445460 1762636 -91.14 3066764 -84.59 8285936 2445460 1306342 -84.23 1557670 -81.20
1M 38895314 3445460 2762534 -92.90 3098342 -92.03 16285936 3445460 2306342 -85.84 3098342 -80.98
5M 190895314 11445500 10762534 -94.36 15018214 -92.13 80285936 11445500 10306342 -87.16 15018214 -81.29
10M 380895314 21445500 20762534 -94.55 30019430 -92.12 160285936 21445500 20306342 -87.33 30019430 -81.27

Table 2. Testing time comparison for test case 1
Test Case 2

Pmax = 60mW Pmax = 100mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 97821470 112821000 97321470 -0.51 97821470 0 58692882 70288300 55689624 -5.12 58692882 0
100k 98321470 112821000 97321470 -1.02 98321470 0 58992882 70288300 55689624 -5.60 58992882 0
500k 102321470 112821000 97321470 -4.89 102321470 0 61392882 70288300 55829074 -9.06 61392882 0
1M 107321470 112821000 97321470 -9.32 107321470 0 64392882 70288300 56689420 -11.96 64392882 0
5M 148661500 116379000 99437478 -33.11 160838270 8.19 103259032 73846500 64067302 -37.95 96502962 -6.54
10M 222187620 122007000 108670310 -51.09 232465150 4.63 143259032 83079000 74067302 -48.30 139479090 -2.64

Pmax = 200mW Pmax = 500mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 39128588 46187700 36865798 -5.78 39128588 0 19564294 24610900 20005068 2.25 19564294 0
100k 39328588 46237700 36965798 -6.01 39328588 0 19664294 24710900 20005068 1.73 19664294 0
500k 40928588 46637700 37765798 -7.73 40928588 0 20464294 25510900 20464294 0 20464294 0
1M 42928588 47137700 38765798 -9.70 42928588 0 21464294 26510900 21464294 0 21464294 0
5M 58928588 51812400 46765798 -20.64 64335308 9.18 29464294 34510900 29464294 0 32167654 9.18
10M 78928588 61812400 56765798 -28.08 92986060 17.81 39464294 44510900 39464294 0 46493030 17.81

Table 3. Testing time comparison for test case 2
Test Case 3

Pmax = 60mW Pmax = 100mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 9832198 10257360 9832198 0 9832198 0 9832198 9832200 9872412 0.41 9832198 0

100k 9932198 10168740 9932198 0 9932198 0 9932198 10610640 9932198 0 9932198 0
500k 19845932 10732200 10732198 -45.92 10732198 -45.92 11946457 11654380 10732198 -10.16 10732198 -10.16
1M 32374618 12392580 11732198 -63.76 12277186 -62.08 19835346 12344320 11732198 -40.85 11732198 -40.85
5M 134827711 23252400 19732198 -85.36 23650983 -82.46 82783700 21061200 19732198 -76.16 23650983 -71.43

10M 264827711 32190600 29732198 -88.77 38655739 -85.40 162783700 32850000 29732198 -81.74 38655739 -76.25
Pmax = 200mW Pmax = 500mW

Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 9832198 10340040 10002636 1.73 9832198 0 9832198 10121620 10002636 1.73 9832198 0

100k 9932198 10168740 10012422 0.81 9932198 0 9932198 10132160 10012422 0.81 9932198 0
500k 10732198 11002540 10732198 0 10732198 0 10732198 11002540 10732198 0 10732198 0
1M 11732198 11744900 11732198 0 11732198 0 11732198 11833860 11732198 0 11732198 0
5M 42463843 19732200 19732198 -53.53 23650983 -44.30 20076869 19732200 19732198 -1.72 23650983 17.80

10M 82463843 30002600 29732198 -63.95 38655739 -53.12 40076869 29732200 29732198 -25.81 38655739 -3.55

Table 4. Testing time comparison for test case 3
Test Case 4

Pmax = 60mW Pmax = 100mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 107653668 129819000 107103668 -0.51 107653668 0 63659032 79170800 58392882 -8.27 63659032 0
100k 112463987 130037000 107153668 -4.72 108253668 -3.74 67345682 78933800 58394209 -13.29 64059032 -4.88
500k 176764981 129961000 107553668 -39.15 113053668 -36.04 107396086 80139300 58355585 -45.66 67259032 -37.37
1M 258026656 130542000 108053668 -58.12 119053668 -53.86 156979271 80120800 58864114 -62.50 71718391 -54.31
5M 909248192 130842000 109890674 -87.91 185165072 -79.64 560096335 89052600 64067302 -88.56 103260488 -81.56
10M 1725540774 137209000 116239718 -93.26 236508457 -86.29 1060515913 90178300 74067302 -93.02 141904895 -86.62

Pmax = 200mW Pmax = 500mW
Tpause Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%) Treg (cc) Tpacking (cc) Tf lex (cc) ∆Tf lex (%) Tf ixed (cc) ∆Tf ixed (%)
50k 39128588 49206700 37847244 -3.27 39128588 0 19564294 27494700 19564294 0 19564294 0
100k 39328588 50167900 37847244 -3.77 39328588 0 19664294 27594700 19664294 0 19664294 0
500k 53371616 50444000 37986694 -28.83 40928588 -23.31 21483404 28394700 20685190 -3.72 20464294 -4.74
1M 78037504 51967900 38765798 -50.32 42928588 -44.99 31559844 29394700 21464294 -31.99 21464294 -31.99
5M 276225151 57333200 46765798 -83.07 64603720 -76.61 111159194 37394700 29464294 -73.49 32303628 -70.94
10M 525644342 67333200 56765798 -89.20 94603105 -82.00 219778181 47394700 39464294 -82.04 47301790 -78.48

Table 5. Testing time comparison for test case 4


