
Bilinear Lithography Hotspot Detection ∗

Hang Zhang , Fengyuan Zhu , Haocheng Li , Evangeline F. Y. Young , and Bei Yu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin N.T., Hong Kong
{hzhang,fyzhu,hcli,fyyoung,byu}@cse.cuhk.edu.hk

ABSTRACT
Advanced semiconductor process technologies are producing
various circuit layout patterns, and it is essential to detect
and eliminate problematic ones, which are called lithography
hotspots. These hotspots are formed due to light diffraction
and interference, which induces complex intrinsic structures
within the formation process. Though various machine learn-
ing based methods have been proposed for this problem, most
of them cannot capture the intrinsic structure among each
data. In this paper, we propose a novel feature extraction
by representing each data sample in matrix form. We argue
that this method can well preserve the intrinsic feature of each
sample, leading to better performance. We then further pro-
pose a bilinear lithography hotspot detector, which can tackle
data in matrix form directly to preserve the hidden structural
correlations in the lithography process. Experimental results
show that the proposed method outperforms state-of-the-art
ones with remarkably large margin in both false alarms and
runtime, with 98.16% detection accuracy.

1. INTRODUCTIONS
Today, we witness various design for manufacturing (DFM)

technologies to tackle problems caused by shrinking feature
device size. However, the existence of hotspots after DFM
process remains to be a problem, and the issue of hotspot
detection is important to ensure high manufacturability. Al-
though full-chip lithography simulation can achieve very sat-
isfactory performance, it is extremely computationally expen-
sive. Thus, it is imperative to derive a fast and accurate
hotspot detection method.

Besides full-chip lithography simulation, pattern matching
(PM) [1–4] and machine learning (ML) [5–10] based meth-
ods are playing an increasingly important role in DFM due
to their high performance in detecting hotspots. Particularly,
ML based methods show their superiority of detecting unseen
layout patterns, which are used more widely than PM based
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Figure 1: Phenomenon of light propagation, diffraction and
interference in lithography process.

methods. These ML methods are mainly guided by super-
vised learning algorithms, such as Support Vector Machine
(SVM) [8, 11], boosting classifier [9, 10, 12] and Deep Neural
Network (DNN) [13, 14]. However, the performance of these
methods is not satisfactory empirically.

One reason is that those endeavors have not fully utilized
the hidden information of circuit layout patterns. Conven-
tional PM and ML based hotspot detectors are designed for
layout pattern data in vector form. However, circuit layout
patterns are intrinsically in matrix form, which can be repre-
sented as layout images in nanometer level. When using tra-
ditional PM and ML methods to process the layout patterns,
we have to reshape data into vectors, resulting in destroying
the hidden structural information, such as light propagation
and interference between different layout features, and the
spatial relationship of nearby pixels within a circuit layout
image. Moreover, the dimensionality of each reshaped vec-
tor can be rather high and this may cause the problem of
over-fitting in ML when the number of available data sam-
ples is limited. Therefore, the following two challenges should
be well considered to develop more effective hotspot detection
approaches: 1) the preservation of intrinsic structures for each
layout pattern data in matrix form when training classifiers;
2) the over-fitting issue with limited number of high dimen-
sional data samples.

Several methods [15–17] have been proposed to perform di-
rect matrix classification and preserve the hidden structure
of each data. The over-fitting issue can also be handled for
these approaches with constrains on model parameters. The
paper [15] uses the sum of k rank-one orthogonal matrices to
model the classifier matrix, and the paper [16] assumes the
rank of classifier matrix to be k. Both methods describe the
correlation of the data in different ways, but they require the
rank k to be pre-specified. The paper [17] proposes a spec-
tral elastic net penalty into the model to determine the rank
automatically, which intends to capture the grouping effect
property of the data. However, it assigns same weights to all
singular values when using nuclear norm penalty, resulting
in the ignorance of important issue that hotspots are formed
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by the sum of light influence in the neighboring layout and
larger singular values should be shrunk less to preserve the
major influential components. Also, lithography process does
not have the grouping effects as stated in [17], because layout
polygons from different distances to one point may produce
various light intensities to that point due to light diffraction.
More importantly, the labeling process of layout patterns con-
sists of manually set parameters, which may introduce label
noises into the data sample. Therefore, it is important to
derive a new model to capture such hidden structural infor-
mation induced by the lithography process.

To tackle the above problems, we propose a bilinear lithog-
raphy hotspot detection (BL-HSD) framework, taking the ad-
vantages of both hinge loss [18] and weighted nuclear norm
[19]. In lithography manufacturing, the wave-length of the
current lithography technique (usually 193nm) is much larger
than the feature size of the layout polygons (we use 28nm
and 32nm for evaluation). Therefore, light diffraction and
interference, as shown in Fig. 1, will occur under such condi-
tions and cause problematic layout patterns. Since hotspot
is formed by light passing through the polygon masks and
causing interference with each other, intuitively, there exist
structural correlations among the contributions of each lay-
out feature to hotspot formation, and we aim at developing
a learning model that can find out these correlations. Based
on the above issues of exsiting models and the mechanism of
lithography process, we adopt weighted nuclear norm penalty
into our model. In addition, as mentioned, the procedure of
labeling hotspot and non-hotspot is complicated, and there
may exist some noises on labels; thus, we use hinge loss for
its robustness and sparseness.

Another important issue for ML based hotspot detection
is the feature extraction procedure. Current approaches [4,9,
10,20] for hospot detection are all designed to extract vector-
form features, which cannot capture the hidden structural
correlations induced by the lithography process. Although
the paper [10] proposed an maximal circular mutual informa-
tion (MCMI) scheme for feature optimization with a specifi-
cally designed Naive Bayes classifier to capture such corre-
lations, it can only preserve the local correlations instead
of global correlations, because it assumes that the sampling
points on the same circle are dependent but different circles
are independent. To tackle this issue, we propose a sim-
ple matrix based concentric circle sampling (MCCS) method.
This method extracts features in matrix form, which can pre-
serve the hidden structural information among data and serve
for the bilinear machine learning model. More importantly,
with the simplicity of MCCS, through appropriate use of par-
allel programming techniques, we achieve high efficiency in
the feature extraction procedure, resulting in an acceleration
of the whole framework.

We also conduct extensive empirical experiments. Our pro-
posed BL-HSD framework can outperform current state-of-
the-art methods, and achieve satisfactory performance in ac-
curacy, false alarms and runtime. The key contributions of
our paper can be summarized as follows.

• A novel matrix based concentric circle sampling method
for feature extraction is proposed.

• A novel bilinear machine learning model is constructed
to solve hotspot detection problem, which is the first
such model.

• Efficient proximal algorithms are derived for model train-
ing.

• The excess risk bound of our proposed bilinear model
is theoretically analyzed.

• Only 18s is needed on average to perform the whole
detection process.

The rest of this paper is organized as follows. In Section
2 and 3, we describe the notations for our model, metrics
for evaluations, and problem formulations. In Section 4, we
derive the bilinear machine learning model and its numerical
solver. Section 6 presents the experimental results, followed
by a conclusion in Section 7.

2. PRELIMINARIES
We first define two terminologies to quantify the perfor-

mance of our proposed BL-HSD framework as follows.

Definition 1 (Accuracy). The rate of correctly predicted
hotspots among the set of actual hotspots.

Definition 2 (False Alarm). Non-hotspot that is incorrectly
predicted.

We then give notations for our optimization framework.
We present the scalar values with lower case letters (e.g., x);
vectors by bold lower case letters (e.g., x); and matrix by
bold upper case letters (e.g., X). For a matrix X ∈ Rp×q of
rank r where r ≤ min(p, q), its (i, j)-entity is represented as
Xi,j . tr(·) denotes the trace of a matrix, (a)+ = max(0, a)
and 〈A,B〉 =

∑
i,j Ai,j · Bi,j is the element-wise multipli-

cation for matrices . We further set ||X||F and ||X||∗ as the
Frobenius norm and nuclear norm of a matrix X, respectively,

where ||X||F =
√∑

i,j X
2
i,j and ||X||∗ =

∑n
i=1 σi (σi is the

ith singular value for matrix X). Weighted nuclear norm is
defined as ||X||W,∗ =

∑n
i wiσi, where W = [w1, w2, ..., wn]

and wi is a non-negative weight for σi. For a given norm || · ||
on Rn, the dual norm, denoted || · ||∗ is the function from Rn
to R with values ||y|| = sup

x
x>y, s.t. ||x|| ≤ 1. The dual

norm of the nuclear norm and the weighted nuclear norm are
denoted as ||X||∗∗ and ||X||∗W,∗.

3. LAYOUT FEATURE EXTRACTION
In this section, we will tackle the issue of layout feature

extraction, which plays an important role in keeping layout
pattern information. Only with well preserved pattern infor-
mation can machine learning model get a good performance.
Current feature extraction methods [4,9,10,20] encode layout
clips into feature vectors that contains geometrical informa-
tion, such as density, shape and polygon topology. However,
none of the existing methods takes the physical essentials,
such as light propagation, diffraction, and interference of the
lithography process into consideration, resulting in loss of
pattern information. Empirically, as shown in Fig. 1, prob-
lematic layout patterns are caused by light passing through
the photo masks, and these diffracted lights interfere with
each other. Therefore, it is imperative to derive a feature
extraction method that can efficiently capture the physical
phenomenon of light propagation and interference.

Recently, besides the hotspot detection problem, machine
learning methods have also been used in optical proximity
correction (OPC) works [21, 22] and show reasonably good
performance. The paper [21] proposes a concentric square
sampling (CSS) method to model OPC, but this method only
samples squares on layout clips, which ignores the information
of light propagation. The paper [22] addresses this issue by
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Figure 2: Examples of CCAS and MCCS feature. (a) Il-
lustration of concentric circle area sampling. (b) The feature
matrix of our proposed matrix based concentric circle sam-
pling.

introducing the concentric circle area sampling (CCAS) meth-
ods. Although CCAS considers light propagation and shows
its superiority in OPC regression work compared to CSS, it
still ignores the important information of light interference.
Inspired from the fact that OPC work involves a lithography
process similar to hotspot detection, the paper [10] proposes
an MCMI scheme to perform circle selection with reasonable
good result. However, this feature extraction method [10] can
only preserve light interference in a local manner, and ignores
important global information, and it also required expensive
time cost to perform the circle selection procedure. To tackle
the above issue, we propose a novel layout feature extraction
method, matrix based concentric circle sampling (MCCS), to
preserve the structural correlations and serve for the bilinear
machine learning model. In the following two sub-sections,
we first review the process of CCAS and then we present our
MCCS.

3.1 Concentric Circles with Area Sampling
CCAS [22] is proposed to train a Hierarchical Bayesian

Model (HBM) for OPC regression. It extracts sub-sampled
pixel values on concentric circles and forms a feature vector x.
The basic concept of CCAS is shown in Fig. 2(a), where the
clip sample is taken from the ICCAD benchmark suite [23].
Parameters of the CCAS feature extraction method consist of
the total size of the clip l (indicated in Fig. 2(a)), rin and rs.
Each circle of CCAS has 8 sampling points, and each point
stands for a circular sampling area (see Fig. 2(a)) with radius
rs (we would get the sum of the red area). rin is the the sam-
pling density controlling parameter, where we sample circles
up to radius rin in increments of 10 and further up to radius
l

2
using increments of 20. Under the conditions that the clip

size l = 1200nm, and rin = 60nm, the dimension of each fea-
ture vector x should be 265 (265 = 1+(6+27)×8). Although
CCAS can correctly preserve layout pattern information that
affects propagation of diffracted light from a mask pattern, it
is not able to preserve the most important information in the
lithography process, light interference, as CCAS destroys the
structural correlation by forming the feature in vector form.

3.2 Matrix based Concentric Circle Sampling
We then describe our proposed MCCS feature extraction

method. Intuitively, the light intensity induced by each sam-
pling point on a certain circle should have proportional in-
fluence to the hotspot formation. Therefore, we concatenate
sampling point values within one circle, putting them into
a vector forming one row of our feature matrix, as shown in

Fig. 2(b). The center point of a clip is the place where hotspot
forms, and statistically the layout feature at this point does
not contribute to the hotspot formation. Hence, we will ig-
nore the value of the center point in MCCS. From inner to
outer circles, values on one circle form one row of the fea-
ture matrix from bottom to top and one example is shown
in Fig. 2(a) and Fig. 2(b). We also denote the vector form
of MCCS feature as vector based concentric circle sampling
(VCCS), where each instance is represented as a vector in-
stead of a matrix. Besides the parameters in CCAS, l, rin, rs,
we add a new parameter np, which is the number of sampling
points on a circle. For some complicated layout designs, it
would be more accurate to use more sampling points to rep-
resent the layout patterns.

Under the conditions that l = 1200nm, rin = 60nm and
np = 16, the dimension of each feature matrix X is 33 × 16
(33 = 6+27). Each row of the feature matrix consists of sam-
pling point values on a circle, which affects the phenomenon
of light propagation, and each entry in the matrix is a contin-
uous number ranging from zero to the maximal value of the
sampling area (e.g, when rs = 2, the maximal value is 4π).
With the data in matrix form, our bilinear learning model
(described in Section 4) can capture the correlations among
these rows and columns, which affects the phenomenon of
light interference. Although MCCS is still an approximation
of the original layout pattern, we achieve satisfactory per-
formance by utilizing the information of hidden structural
correlations.

4. BILINEAR CLASSIFIER
In this section, we introduce our proposed bilinear classi-

fier to address hotspot detection problem. Then an efficient
Alternating Directional Method of Multipliers (ADMM) al-
gorithm will be proposed for model training.

4.1 Model
In lithography hotspot detection with MCCS feature ex-

traction, it is essential to efficiently handle feature matrices
while preserving the hidden topological structures of the lay-
out patterns. However, using traditional linear or non-linear
classification methods directly requires to reorganize matri-
ces into vectors, which may destroy the hidden structures.
To tackle this issue, we propose a bilinear classifier that can
process the data matrices directly with their hidden struc-
tures preserved. The procedure of labeling layout patterns
consists of multiple lithography processes, which may bring
noises into pattern labels. To tackle this issue, an intuitive
idea is to model the loss of each instance within a margin,
where loss means the training error. Therefore, we consider
the hinge loss for our model fitting due to its robustness and
sparseness, and the loss for each instance Xi is defined as
follows

hi(W, b) = {1− yi[tr(W>Xi) + b]}+, (1)

where W is the classifier matrix, b is the bias, Xi is the
feature matrix of the ith instance and yi is the label of the
ith instance (W ∈ Rp×q, Xi ∈ Rp×q).

When learning the classifier matrix, another important is-
sue is to take the structural correlation among each data ma-
trix into consideration. Clearly, methods like SVM [24] can-
not handle this issue though the hinge loss is also adopted,
as it can only handle data in vector form. The Bilinear SVM
proposed in [16] factorized a classifier matrix into two low
rank matrices, but it is needed to indicate the rank before



the optimization. Recently, machine learning models apply
nuclear norm for low-rank modeling and obtain reasonable
good result. The paper [17] considers the grouping effects of
features and treat each singular value of the classifier matrix
equally. However, because of light diffraction, layout features
from different places within a clip may impose different light
intensities to the clip center and thus the grouping effect con-
sidered in [17] may not be consistent with our lithography
process.

Another important issue is that, singular values correspond-
ing to the subspaces of the classifier matrix have clear physi-
cal meanings in certain applications. In our hotspot detection
problem, since the mask is exposed to parallel lights during
the lithography process, intuitively, layout feature from dif-
ferent places contributes inequally to the hotspot formation.
As a result, it would be better to treat each singular value
differently and shrink more the smaller singular values, which
contributes less to the hotspot formation. When learning the
classifier matrix, we apply weighted nuclear norm regulariza-
tion and assign different weights to different singular values
to keep the physical property.

The work [19] has discussed different weighting schemes
for the weighted nuclear norm, such as the weights in non-
ascending order, in arbitrary order and in non-descending or-
der. The non-ascending order can ensure the convexity of the
optimization problem empirically. However, it does not help
to preserve the physical property for this problem. Therefore,
for hotspot detection, we apply weights in the non-descending
order meaning that we will shrink less those larger singular
values of the classifier matrix in weighted nuclear norm min-
imization. Although weights in a non-descending order does
not guarantee the convexity of the objective function, we still
can get a fixed point solution in an analytical form, which
will be discussed later.

The optimization problem for our proposed bilinear clas-
sifier is defined as follows. It is specifically designed for this
hotspot detection problem and is different from all previous
bilinear classifiers to the best of our knowledge,

arg min
W,b

λ||W||W,∗ + C

n∑
i

{1− yi[tr(W>Xi) + b]}+. (2)

The first term in Eq. (2) represents a weighted nuclear norm
penalty, which considers the importances of different singular
values of W and is the key term to capture the inherent
structure of the lithography layout patterns. The second term
denotes the hinge loss.

4.2 Solver
Since the objective function in Eq. (2) contains both hinge

loss and weighted nuclear norm, traditional methods such
as the Nesterov method used in [25] is not applicable here.
However, observing the structure of our objective function, we
derive an efficient learning algorithm based on ADMM [26]
with the restart rule [27] for numerical optimization, which
can achieve relatively faster training speed compared to other
machine learning methods used in hotspot detection. The
optimization problem defined in Eq. (2) can be equivalently
written as follows,

arg min
W,b,S

λ||S||W,∗ + C

n∑
i

{1− yi[tr(W>Xi) + b]}+, (3)

s.t. S−W = 0,

In this way, the original optimization problem is split into

two sub-problems with respect to {W, b} and the auxiliary
variable S. Then we apply Augmented Lagrangian Multiplier
to develop an efficient ADMM method as follows:

L(W, b,S,Λ) =λ||S||W,∗ + C

n∑
i

{1− yi[tr(W>Xi) + b]}+

+ tr[Λ>(S−W)] +
ρ

2
||S−W||2F , (4)

where ρ > 0 is a coefficient parameter and Λ is a Lagrangian
multiplier matrix.

The algorithm flow of using ADMM to solve the problem
is summarized in Algorithm 1. Take W as an example, in
the kth iteration, variable obtained before the restart rule is
denoted as W(k) and variable obtained in the restart rule
is denoted as Ŵ(k). The key steps of Algorithm 1 are the
computations of S(k) and (W(k), b(k)), we will derive them in
the coming sections.

4.2.1 Weighted Nuclear Norm Minimization
Following the work [19], we discuss the weighted nuclear

norm minimization. Without loss of generality, the general
weighted nuclear norm minimization problem can be written
as follows:

min
X

1

2
||Y −X||2F + λ||X||W,∗. (5)

where X and Y are matrices, W is the weight vector.
The analytical solution for weights in non-descending order

[19] is

X̂ = UDW,λ(Σ)V>, (6)

where Y = UΣV> is the Singular Value Decomposition
(SVD) of Y, and DW,λ is the generalized soft-thresholding
operator with weight vector W and DW,λ(Σ) is a diagonal
matrix with

DW,λ(Σ)ii = max(Σii − λwi, 0). (7)

4.2.2 Optimization for Auxiliary Variable
We first derive the optimization method for solving the

auxiliary variable S. The first subproblem for solving S in
Eq. (4) can be equivalently written as follows

arg min
S

λ||S||W,∗ + tr(Λ̂(k)>S) +
ρ

2
||W(k) − S||2F . (8)

Then we can get S(k) in the kth iteration by solving the prob-
lem in Eq. (8). We can get a equation with structure similar
to Eq. (5) by simple equation transformation, which is shown
as follows. The optimizatiopn problem Eq. 8 is equivalent to

arg min
S

λ||S||W,∗ +
ρ

2
||(W(k) − S− Λ(k)

ρ
)||2F , (9)

which can be further transformed into

arg min
S

λ||ρS||W,∗ +
1

2
||(ρW(k) −Λ(k))− ρS||2F . (10)

Thus, we can get the fixed point solution of Eq. (10) by ap-
plying Eq. (6), which is

S(k) = UDW,λ(ρW(k) −Λ(k))V>, (11)

where UΣV> = ρW(k) −Λ(k).



4.2.3 Optimization for Classifier Matrix and Bias
We first derive the subproblem for solving (W(k), b(k)) as

follows.

arg min
W,b

C

n∑
i

{1− yi[tr(W>Xi) + b]}+

+ tr[Λ>(S−W)] +
ρ

2
||S−W||2F , (12)

Following the derivation in the work [17], the optimal values

of (W(k), b(k)) are:

W∗ =
1

ρ
(

N∑
i=1

α∗i yiXi + Λ + ρS) (13)

b∗ =
1

|I∗|
∑
i∈I∗
{yi − tr[(W∗)>Xi]},

where I∗ = {i : 0 < α∗i < C}, and α∗ ∈ Rn is the solution of
the following box constraint quadratic programming problem.

arg min
α

1

2
α>Kα− q>α, (14)

s.t 0 ≤ α ≤ C1n,
n∑
i=1

αiyi = 0.

Here K ∈ Rn×n and q ∈ Rn are coefficient matrix and coef-
ficient vector for variable α; specifically,

Kij = yiyj
tr(X>i Xj)

ρ
,

qi = 1− tr[(Λ + ρS)>Xi]

ρ
.

Several methods can be used to solve the optimization
problem in Eq. (14), such as the sequential minimization op-
timization algorithm [28, 29]. With the derivation of above

problems and optimization algorithms, we can update (W(k), b(k))
.

4.2.4 Summary
We have presented the key steps for solving the problem

in Eq. (4), where the classifier parameters (W, b) and the
auxiliary variable S are solved in an iterative manner. In
addition, we also need to update the Lagrangian parameter
Λ. Here we update Λ in a single gradient step as follows.

Λ = Λ̂(k) − ρ(W(k) − S(k)). (15)

Then we summarize the whole flow in Algorithm 1, where
ADMM [26] with the restart rule [27] is applied here.

5. THEORETICAL JUSTIFICATIONS
Now we analyze the excess risk of the proposed bilinear

classifier theoretically. Excess risk means the difference be-
tween the empirical risk (see Definition 3) and the expected
risk (see Definition 4). In our theoretical analysis, we assume
that each entry of a feature matrix follows unit Gaussian dis-
tribution.

The proposed optimization problem as defined in Eq. 2 can
be reformulated as follows

arg min
W,b

n∑
i=1

h(W, b,Xi, yi),

s.t. ||W||W,∗ ≤ B,
(16)

Algorithm 1 ADMM for problem in Eq. (4)

1: Initialize S(−1) = Ŝ(0) ∈ Rp×q, Λ(−1) = Λ̂ ∈ Rp×q, ρ >
0, t(1) = 1, η ∈ (0, 1).

2: for k = 0, 1, 2, 3... do
3: (W(k), b(k)) = arg min

W,b
C
∑n
i {1 − yi[tr(W

>Xi) +

b]}+ + tr[Λ̂(k)>(Ŝ(k) −W)] +
ρ

2
||Ŝ(k) −W||2F

4: S(k) = arg min
S
λ||S||W,∗+tr(Λ̂(k)>S)+

ρ

2
||W(k)−S||2F

5: Λ(k) = Λ̂(k) − ρ(W(k) − S(k))

6: c(k) = ρ−1||Λ(k) − Λ̂(k)||2F + ρ||S(k) − Ŝ(k)||2F
7: if c(k) < ηc(k−1) then

8: t(k+1) =
1 +

√
1 + 4t(k)2

2

9: Ŝ(k+1) = S(k) +
t(k)−1

t(k+1)
(S(k) − S(k)−1)

10: Λ̂(k+1) = Λ(k) +
t(k)−1

t(k+1)
(Λ(k) −Λ(k)−1)

11: else
12: t(k+1) = 1
13: Ŝ(k+1) = S(k−1)

14: Λ̂(k+1) = Λ(k−1)

15: c(k) = η−1c(k−1)

16: end if
17: end for

where B is a constant value, and h(W, b,Xi, yi) = {1 −
yi[tr(W

>Xi)+ b]}+ is the hinge loss function. The loss func-
tion can be easily rewritten as follows with respect to W
given the relation between W and b as in Eq. 13

ĥ(W,Xi, yi) = {1− yi[tr(W>(X̂i))]}+ c. (17)

The loss function is L-Lipschitz continuous with c as a con-
stant, and X̂i = Xi − 1

n

∑n
j=1 Xj , where the second term is

the empirical expectation of each data and the value of each
entry should tend to be zero when n is large, thus by remov-
ing empirical expectation of each data, we do not need to
consider the bias b.

Before defining and proposing the excess risk bound, we
first derive the dual norm of our weighted nuclear norm in
Lemma 1, which will be used to derive inequalities later. To
the best of our knowledge, this is the first time that the dual
norm of the weighted nuclear norm is analyzed.

Lemma 1. The dual norm of the weighted nuclear norm
||W||W,∗ is

||W||∗W,∗ = max
i

1

wi
Σii (18)

where W = UΣV> through SVD.
Proof. Following the definition of dual norm, we need to

prove the following equation:

sup
||Q||∗W,∗≤1

〈Q,A〉 = sup
||Q||∗W,∗≤1

tr(Q>A) = ||A||W,∗. (19)

To prove this, let A = UΣV> through the SVD, with Σ
containing d singular values. Then, we can simply set Q with
Q = UZV> through SVD, where Z is diagonal matrix with
Zii = wi, and the constrain that||Q||∗W,∗ ≤ 1 can be naturally
satisfied. In this case, we have

〈Q,A〉 = 〈UZV>,UΣV>〉
= tr(ZΣ)

= ||A||W,∗.
(20)



In this way, we have sup
||Q||∗W,∗≤1

〈Q,A〉 ≥ ||A||W,∗. Now, we

further show the other direction of the inequality. Let ui and
vi be the ith column vector respectively, we have

sup
||Q||∗W,∗≤1

〈Q,A〉 = sup
||Q||∗W,∗≤1

tr(Q>UΣV>)

= sup
||Q||∗W,∗≤1

d∑
i=1

wiΣii
1

wi
uiQv>i

≤ sup
||Q||∗W,∗≤1

d∑
i=1

wiΣii||Q||∗W,∗

= ||A||W,∗

(21)

Combining both Eq. 20 and Eq. 21, we have proved Eq. 19.
Then following the definition of dual norm, we finish the proof
of Lemma 1. �

We further provide the definition of empirical and expected
risks with respect to our loss function following [30].

Definition 3. The standard form of empirical risk without
bias term for loss function ĥ(W,Xi, yi) can be formulated as

R̂(W) =
1

n

n∑
i=1

ĥ(W,Xi, yi). (22)

Definition 4. The standard form of expected risk without
bias term for loss function ĥ(W,Xi, yi) can be formulated as

R(W) = E(Xi,yi)∼µĥ(W,Xi, yi), (23)

with E as the expectation operator, and µ as the probability
distribution that each pair of {Xi, yi} is sampled.

Here, we set Wo as the optimal solution with respect to
the expected risk with

Wo = arg min
W

R(W), s.t. ||W||W,∗ ≤ B, (24)

and Ŵ as the optimal solution with respect to the empirical
risk with

Ŵ = arg min
W

R̂(W), s.t. ||W||W,∗ ≤ B. (25)

Then we can provide the upper bound of the excess risk of
our method in the following theorem.

Theorem 1: With probability at least 1− δ, the excess risk
of our method, for each data Xi ∈ Rd1×d2 , is bounded as

R(Ŵ)−R(Wo) ≤ 2BL√
n

max
i

(
1

wi
)

· (
√
d1 +

√
d2) +

√
ln(1/δ)

2n
.

(26)

Proof. Following the proof in the paper [30], we can first

reformulate the excess risk with respect to Wo and Ŵ as
follows

R(Ŵ)−R(Wo) = [R(Ŵ)− R̂(Ŵ)]

+ [R̂(Ŵ)− R̂(Wo)] + [R̂(Wo)−R(Wo)]
(27)

Here, the second term is negative naturally. Following the Ho-
effding’s inequality, the third one can be bounded as

√
ln(1/δ)/2n,

with probability 1− δ/2.

Different from the paper [30], our derivation of Eq. (30)
and Eq. (31) follows the L-Lipschitz continuous property of
the loss function and Lemma 1. For the first term, it is shown
in [30] that

R(Ŵ)− R̂(Ŵ) ≤ sup
||W||W,∗≤B

[R(W)− R̂(W)]. (28)

Further using the McDiarmid’s inequality, we can obtain the
Rademacher complexity with probability 1− δ, with

R =
2

n
E sup
||W||W,∗≤B

n∑
i=1

σiĥ(W,Xi, yi), (29)

where σi ∈ {−1, 1} represents the Rademacher variables. Let

M̂ =
∑n
i=1 σiX̂i, and following that our loss function is

L-Lipschitz continuous, we can obtain the upper bound of
R(Ŵ)− R̂(Ŵ) as follows

R(Ŵ)− R̂(Ŵ) ≤ R

≤ 2L

n
E sup
||W||W,∗≤B

n∑
i=1

σitr(WX̂i)

=
2L

n
E sup
||W||W,∗≤B

tr(WM̂).

(30)

Further applying the Hölder’s inequality and Lemma 1, we
have

R(Ŵ)− R̂(Ŵ) ≤ 2L

n
E sup
||W||W,∗≤B

||M̂||W,∗||W||∗W,∗

≤ 2LB

n
E||M̂||∗W,∗.

(31)

Since M̂ is the sum of random variables, it should tend to
be normal distributed with the Central Limit Theorem, with

variance equal to maxi(
1

wi
)
√
n. Thus, following [30], with

the Gordan’s theorem, we have

E||M̂||∗W,∗ ≤ max
i

(
1

wi
)
√
n(
√
d1 +

√
d2). (32)

Combining all the above together, we can obtain the upper
bound of the excess risk with probability at least 1 − δ as
follows

R(Ŵ)−R(Wo) ≤ 2BL√
n

max
i

(
1

wi
)

· (
√
d1 +

√
d2) +

√
ln(1/δ)

2n
.

(33)

�

6. EXPERIMENTAL RESULTS
We implement our MCCS feature extraction method in the

programming language Python, whose speed is further accel-
erated by Cython. In addition, we utilize the advantages of
matrix calculation of Matlab, and implement our proposed
bilinear classifier in Matlab. We executed the program on a
machine with Quad Intel Xeon E7-4830 v2 CPUs and 1TB
memory. Experiments are conducted on 5 industrial circuit
layout designs, which consists of one 32nm and four 28nm
circuit layouts. These circuit designs are released by [23], the
details of which can be found in the paper [10]. In the exper-
iments, all the coefficient parameters are selected via cross
validation. The weight vector of weighted nuclear norm is set



Table 1: Comparisons with three classical methods

VCCS-SVM VCCS-Adaboost DBF-Adaboost [9] Ours

M-CPU(s) Accuracy FA# M-CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) M-CPU(s) Accuracy FA#

Case 1 1.09 100.00% 0 1.37 99.55% 1 7.00 100% 0 2.09 0.20 100.00% 0

Case 2 1.81 94.78% 4 5.44 96.78% 0 351.00 98.60% 0 10.70 0.33 99.40% 0

Case 3 3.26 95.52% 94 4.73 97.62% 4 297.00 97.20% 0 20.56 2.34 97.78% 2

Case 4 1.74 80.23% 31 9.45 84.10% 0 170.00 87.01% 1 8.09 0.38 96.05% 0

Case 5 1.30 95.12% 0 2.27 97.56% 0 69.00 92.86% 0 5.84 0.49 97.56% 0

avg. 1.84 93.13% 25.8 4.65 95.12% 1.00 178.80 95.13% 0.20 9.45 0.75 98.16% 0.40

ratio 2.46 - - 6.21 - - 18.92 - - 1.0 1.0 - -

Table 2: Comparisons with three state-of-the-art hotspot detectors [4, 10,20]

TCAD’14 [4] TCAD’15 [20] ICCAD’16 [10] Ours

CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) Accuracy FA#

Case 1 11 100.00% 1714 38 94.69% 1493 10 100.00% 788 4 100.00% 783

Case 2 287 99.80% 4058 234 98.20% 11834 103 99.40% 544 17 99.40% 700

Case 3 417 93.80% 9486 778 91.88% 13850 110 97.51% 2052 49 97.78% 2166

Case 4 102 91.00% 1120 356 85.94% 3664 69 97.74% 3341 14 96.05% 2132

Case 5 49 87.80% 199 20 92.86% 1205 41 95.12% 94 9 97.56% 52

avg. 173.2 94.48% 3315.4 285.2 92.71% 6409.2 66.6 97.95% 1363.8 18.4 98.16% 1166.6

ratio 9.40 - 2.84 15.50 - 5.49 3.62 - 1.17 1.0 - 1.0

as wi = 2i−1. For each test case, a set of training data are
used to construct our bilinear classifier, while another set of
data are used to evaluate the performance of the classifier.
Since the feature extraction for each clip is a separate pro-
cedure, we use multi-core processing techniques to accelerate
the feature extraction step.

6.1 Performance Comparison with Classical Clas-
sifiers

In the first experiment, we compare our proposed BL-HSD
framework with other classical hotspot detection frameworks.
SVM [11] and Adaboost [11] classifiers are widely used in
many applications, which also demonstrate their superiority
in hotspot detection [8, 9]. Thus in this experiment, we in-
vestigate the performance of our BL-HSD with two classical
classifiers and one recent work: 1) VCCS feature + SVM clas-
sifier (denoted as VCCS-SVM); 2) VCCS feature + Adaboost
classifier (denoted as VCCS-Adaboost); 3) Density based fea-
ture + Adaboost classifier (denoted as DBF-Adaboost) [9].
Note that during the testing layout scanning in the detector
of [9], only the core area of each clip will be verified. In order
to have a fair comparison, our BL-HSD framework also scans
the core area.

A detailed comparison of our BL-HSD and other classical
classifiers are shown in Table 1. For each method in the
Table 1, Columns “M-CPU(s)”, “CPU(s)”, “Accuracy”
and “FA#” list the runtime of the model in seconds (sum
of training and testing time of the model), the runtime of
the overall flow in seconds (including the feature extraction
time, and model training and testing time), the accuracy of
the method, and the number of false alarms. We can see
from Table 1 that our BL-HSD method outperforms all the
other three classical methods in terms of accuracy, false alarm
number and runtime performance. Particularly, comparing
with both VCCS-SVM and VCCS-adaboost, our framework
can achieve at least 2× speed-up in model CPU performance
and can increase detection accuracy from 95.12% to 98.16%.
In addition, our method also outperforms the recent hotspot
detector [9], where our approach achieves 19× speed-up in
the overall CPU performance and improves the accuracy by

3.03%. Meanwhile, for all five test cases, only 2 false alarms
are reported in our framework.

Our framework achieves extremely fast speed in model run-
time (only model training and testing time, denoted as M-
CPU(s)) compared to other classical methods, which may be
related to the proposed bilinear classifier, where the model
complexity is reduced by incorporating weighted nuclear norm
penalty.

6.2 Performance Comparison with state-of-the-
art methods

In the second experiment, we further compare our frame-
work with three state-of-the-art hotspot detection frameworks
[4, 10, 20]. The details of comparisons are listed in Table 2,
and for each detector, columns “CPU(s)”, “Accuracy” and
“FA#” are the same as those in Table 1. In this experiment,
we first decompose the layout designs of each test case of the
ICCAD-2012 benchmark suite [23] into a set of independent
clips, whose size is the same as the core area in the training
layout. We then scan all grids and verify their labels in our
BL-HSD hotspot detector.

It can be observed from Table 2 that our method outper-
forms all other state-of-the-art methods in terms of runtime,
accuracy and the number of false alarms on average. Our
method achieves around 9× better running time performance
comparing to [4], 15× comparing to [20], and 4× comparing
to [10]. The superiority of the runtime performance is re-
lated to the simplicity of both the MCCS feature which only
samples several points from the layout, and bilinear classi-
fier which achieves faster convergence speed by discovering
structural correlations and reducing model complexity. Be-
sides, our method improves the accuracy by 3.68%, 5.45%
and 0.21% on average compared with [4], [20] and [10]. We
also achieve around 3× and 5× reduction in false alarms com-
pared with [4] and [20] respectively. Although the work [10]
performs feature optimization in the hotspot detection frame-
work, it only put local correlation in the layout patterns into
consideration; hence, we still on average reduce around 200
false alarms compared to [10]. Our method considers the
global correlations of different points and circles during fea-



ture extraction and classifier construction, which allows us
to capture the hidden structural information in lithography
process. It can be observed that our method is more efficient
compared to other state-of-the-art methods.

7. CONCLUSION
In this paper, we propose a novel BL-HSD hotspot detec-

tion framework, which incorporates a novel MCCS feature
extraction method and an efficient bilinear machine learning
model. With MCCS feature, the hidden structural informa-
tion of the circuit layout patterns is well preserved. With bi-
linear machine learning model, the hidden information that
comes from light propagation and interference can be effi-
ciently and accurately captured. In addition, we proved the
excess risk bound of the bilinear model theoretically. More
importantly, our framework outperform state-of-the-art meth-
ods in all evaluation terms on average. With accurate cap-
ture of lithography process phenomenon, our method can be
widely used not only in the hotspot detection problem, but
also in other research problem in DFM which involves lithog-
raphy process, such as OPC, SRAF insertion and EPE value
prediction.
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