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Motivation for BiochipsMotivation for Biochipspp
• Clinical diagnostics, e.g., healthcare for 

premature infants, point-of-care diagnosis of 
diseases

• “Bio-smoke alarm”: environmental monitoring
• Massive parallel DNA analysis, automated 

drug discovery, protein crystallizationg y, p y

Shrink
CLINICAL DIAGNOSTIC

APPLICATION
Lab-on-a-chip for

CLINICAL DIAGNOSTICS

Microfluidic Lab-
on-a-Chip

20nl sample

Conventional Biochemical Analyzer

p

Higher throughput, minimal human intervention, 
smaller sample/reagent consumption, higher
sensitivity, increased productivity
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Conventional Biochemical Analyzer sensitivity, increased productivity



Motivation for BiochipsMotivation for Biochips

• Disease related mortality is the 
N 1 b ttl k f A lt

pp

No. 1 bottleneck for Aquaculture 
industry. 

• Biochip can be used for fish• Biochip can be used for fish 
disease testing.

L b Bi hiLaboratory Biochip
Sample
Processing

PCR
Response

1 hr 30 min

3 hr

5 min

1 hr 15 minResponse

Analysis

Total

30 min

5 hr

10 min

1 hr 30 min



Tubes to Chips: BioChipsTubes to Chips: BioChipsp pp p
• Driven by biomolecular analysis needs

T t t b l i

Agilent DNA analysis
Lab on a Chip (1997)
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Test tube analysis



Motivation for MicrofluidicsMotivation for Microfluidics

T t t b
Automation

Test tubes Integration
Miniaturization

Robotics Automation
Integration
Miniaturization

Microfluidics
Automation
Integration
Miniaturization
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Miniaturization



Typical Biological Lab FunctionsTypical Biological Lab Functionsyp gyp g

• Synthesis • Analysisy
A

B
C

A

B
A + B

B
A + B

B

Mixing Reaction Separation
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Mixing Reaction Separation



MicrofluidicsMicrofluidics
• Continuous-flow biochips: Permanently etched microchannels, 

micropumps and microvalves
• Digital microfluidic biochips: Manipulation of liquids as discrete droplets

(Duke University) 
2002

(University of Michigan) 
1998

Control 
electronics 
(shown) are 
suitable forsuitable for 
handheld or 

benchtop 
applications

Printed circuit board 
lab-on-a-chip –

inexpensive and 
readily manufacturable
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What is Digital Microfluidics?What is Digital Microfluidics?gg

• Discretizing the bottom electrode into multiple electrodes, we can 
achieve lateral droplet movementachieve lateral droplet movement

Droplet Transport (Side View)Note: oil is typically used to fill between the 
t d b tt l t t t ti
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top and bottom plates to prevent evaporation.



What is Digital Microfluidics?What is Digital Microfluidics?gg

Transport
25 cm/s flow rates, 
order of magnitude 

higher thanhigher than 
continuous-flow 

methods

F  id   t  d k d / h/ i fl idi
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For videos, go to www.ee.duke.edu/research/microfluidics



What is Digital Microfluidics?What is Digital Microfluidics?gg

Splitting/Merging
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AdvantagesAdvantagesgg
• No bulky liquid pumps are required

– Electrowetting uses microwatts of power
C b il b tt d– Can be easily battery powered

• Standard low-cost 
fabrication methods can be 
usedused

– Continuous-flow systems 
use expensive 
lithographic 
techniques to createtechniques to create 
channels

– Digital microfluidic chips 
are possible using solely 
PCBPCB processes

Droplet Transport on PCB (Isometric View)
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Advantages of Digital MicrofluidicsAdvantages of Digital Microfluidics

• Very accurate droplet volumes
– Droplet sizes in the 1 nanoliter to several 

microliter range; droplet dispensing volume 
ariation 1%

• Pump fluids through channels
• Must adapt assays to channel-

based format

Other Microfluidic TechnologiesDigital Microfluidics

variation ~1%
• Programmable, software-driven electronic 

control
– No moving parts, tubes, pumps or valves 

• More efficient use of samples and reagents

based format
• Complex or multiplexed assays 

become a plumber’s nightmare
• Off-chip pumps and valves mean 

large, expensive equipment and 
l li bilitMore efficient use of samples and reagents

– No liquid is wasted priming channels
• Extremely energy efficient

– Nanowatts of power per single step of 
actuation

D l t l h t d

low reliability
• Expensive, time consuming, up-

front investments required for most 
chip developments

• Designs are fixed in the • Development cycles are short, and assays 
can be implemented with software changes

• Compatible with live biologic and most other 
materials

g
development process

•Droplets moved in 
“ i t l h l ” d fi d“virtual channels” defined 
by electrodes
•Programmable 
electrodes directly control 
discrete droplet 
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operations



Applications of Digital Microfluidic Applications of Digital Microfluidic pp gpp g
BiochipsBiochips

• Drug discovery and • Environmental and other g y
biotechnology
– Proteomics

applications
– Micro-optics

– High-throughput screening
– Genomics

Medical diagnostics and

– Countering bioterrorism
– Air/water/agro food 

monitoring• Medical diagnostics and 
therapeutics
– Clinical chemistry

monitoring

y
– Immunoassays
– Nucleic acid tests
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Design Automation: Biochip SynthesisDesign Automation: Biochip Synthesis
• Full-custom bottom-up design  Top-down system-level design 

S1: Plasma, S2: Serum,
S3: Urine, S4: Saliva

Assay1: Glucose assay, 
Assay2: Lactate assay, 
Assay3: Pyruvate assay, 
A 4 Gl t tAssay4: Glutamate assay

S1, S2, S3 and S4 are 
assayed for Assay1, 

 Scheduling of operations

Assay2, Assay3 and 
Assay4.

 Scheduling of operations
 Binding to functional

resources
 Physical design
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Physical design



Physical Design: Module PlacementPhysical Design: Module Placement
• Placement determines the locations of each module on the 

microfluidic array in order to optimize some design metrics 
Hi h d i fi bilit d l l t 3 D• High dynamic reconfigurability: module placement  3-D 
packing  modified 2-D packing

Reduction from 
3_D placement 
to a modified   
2 D l t2-D placement 
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Unified Synthesis MethodologyUnified Synthesis Methodology
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Synthesis ResultsSynthesis Results

BioassayBioassay 
completion time 
T: 363 seconds

Biochip array: 
9x9 array
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Synthesis Results (Cont.)Synthesis Results (Cont.)
• Defect tolerance

BioassayBioassay 
completion time 
T: 385 seconds     
(6% increase)
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Droplet RoutingDroplet RoutingDroplet RoutingDroplet Routing
• A key physical design problem for digital microfluidic 

biochipsp
• Given the results from architectural-level synthesis and 

module placement:
– Determine droplet pathways using the available cells in the p p y g

microfluidic array; these routes are used to transport droplets 
between modules, or between modules and fluidic I/O ports (i.e., 
boundary on-chip reservoirs) 

• To find droplet routes with minimum lengths• To find droplet routes with minimum lengths
– Analogous to the minimization of the total wirelength in VLSI 

routing
• Need to satisfy critical constraintsNeed to satisfy critical constraints

– A set of fluidic constraints
– Timing constraints: (the delay for each droplet route does not 

exceed some maximum value, e.g., 10% of a time-slot used in 
h d li )
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scheduling)



Fluidic ConstraintsFluidic Constraints
• Assume two given droplets as Di

and Dj, and let Xi(t) and Yi(t)

Directly 
adjacent

Diagonallyand Dj, and let Xi(t) and Yi(t) 
denote the location of Di at time t

How to select the admissible locations at time t +1?

Diagonally 
adjacent

Rule #1: |Xi(t+1)  Xj(t+1)|  2 or |Yi(t+1)  Yj(t+1)|  2, i.e., their new
locations are not adjacent to each other.

Rule #2: |Xi(t+1)  Xj(t)|  2 or |Yi(t+1)  Yj(t)|  2, i.e., the activated
cell for Di cannot be adjacent to Dj.

Rule #3: |Xi(t)  Xj(t+1)|  2 or |Yi(t)  Yj(t+1)|  2.

Static fluidic constraintStatic fluidic constraint Dynamic fluidic constraintsDynamic fluidic constraints
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Experimental VerificationExperimental Verification

(a) Experimental verification of Rule #1: droplets begin on electrodes 1 and 4; (b) Electrodes 2 
and 3 are activated, and 1 and 4 deactivated; (c) Merged droplet.

(a) Experimental verification of Rule #2: droplets begin on electrodes 2 and 4; (b) 
Electrodes 1 and 3 are activated, and 2 and 4 deactivated.
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Experimental Verification (Cont.)Experimental Verification (Cont.)

(a) Experimental verification of Rule #3: droplets begin on electrodes 4 and 7; (b) Electrodes 3 
and 6 are activated, and 4 and 7 deactivated; (c) Merged droplet.

• To demonstrate that adherence to Rule #1 is not sufficient to prevent merging. p g g
Both Rule #2 and Rule #3 must also be satisfied during droplet routing.

• These rules are not only used for rule checking,  but  they  can  also  provide 
guidelines to modify droplet motion (e.g., force some droplets to remain g y p ( g p
stationary in a time-slot) to avoid constraint violation if necessary 
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PinPin--Constrained BiochipsConstrained Biochipspp
Direct Addressing
• Each electrode connected to an independent pinEach electrode connected to an independent pin

• For large arrays (e.g., > 100 x 100 electrodes)
– Too many control pins  high fabrication cost

Wi i l t il bl– Wiring plan not available

PCB design: 250 um via hole, 500 um x 500 um electrode

Via HolesVia Holes
WiresWires

Nevertheless, we need high-throughput and low cost:
DNA sequencing (106 base pairs), Protein crystallization (103 candidate conditions)

Disposable marketability $1 per chip
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Disposable, marketability, $1 per chip                                                                             



PinPin--Constrained Biochip DesignConstrained Biochip Design
Cross-referencing

Orthogonally placed pins on top and bottom plates 

Advantage
k = n x m pins  n + m  pins for an n x m microfluidic array

Disadvantageg
Suffer from electrode interference
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Electrode InterferenceElectrode Interference
• Unintentional Electrode Actuation

Selected column and row pins may intersect at multiple electrodes

• Unintentional Droplet Manipulation

1  
2  
3  
4  
5

3
1

Unintentional Unintentional 
destination cellsdestination cells5  

6  
7   
8  
9 2

destination cellsdestination cells

destination cellsdestination cells

1  2  3  4  5  6  7  8  9  10

9
10

2
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Droplet Routing for Cross Droplet Routing for Cross p gp g
Referencing Chip Referencing Chip -- CrossRouterCrossRouter

• Input:
A W H 2D– A WxH 2D array

– K blockages
– Waste disposal location WR
– A netlist of N nets, either 2-pin or 3-pin
– Time limit T

• Output:
– A schedule of voltage assignment for 

each time stepp
• Objective:

– Route all droplets to their destinations
without violating constraints

– Minimize arrive time and # cell usedMinimize arrive time and  # cell used
• Constraints:

– Timing constraint
– Fluidic constraints

El t d t i t Time Limit: 20 units– Electrode constraint Time Limit: 20 units



Example of Droplet MovementExample of Droplet Movement



ConstraintsConstraints
1. Fluidic Constraint

– A minimum spacing of one cell to avoid unexpected mixingp g p g
2. Timing Constraint

– All droplets should be moved to sinks within time limit T
3. Electrode Constraint (major problem)

– No interference is caused while activating electrodes 
simultaneouslysimultaneously.

E l 1 E l 2Example 1 Example 2



CrossRouterCrossRouter

1. Net ordering: for net i and net j, route i first if:
– src(i) is in the bounding box of net j, or
– Manhattan_Distance (i) > Manhatten_Distance (j)

2 Maze routing: route each net while considering2. Maze routing: route each net while considering 
those already routed nets

– Modified Lee’s algorithm as basic frameworkg
– Handle constraints during this step to consider those 

already routed nets
3 Ri & R t id tif b ttl k i3. Rip-up & Re-route: identify bottleneck regions, 

rip off some already routed nets and re-route 
the failed netthe failed net



PropagationPropagationp gp g

sink
Heap:

sink

3
4 5

N t
Next wave 

N t h i t h
3

64 6

6
4

7
6

76 8

6

Next wave 
front
front Note:  push into heap 

only if no constraint is 
violated for  a 

movement

StallN #netuse Current path length

7
5

6
6

7

movement

Weight(P,t) = t + MD(P,sink) + Use(P) + Len(P,t)

N - #netuse Current path length
For  cell P=(x,y) at time t:

7
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Constraint CheckConstraint Check
1. Timing constraint

2. Fluidic constraint – avoid unexpected mixingu d c co st a t a o d u e pected g

3. Electrode constraint Any valid voltage assignment?

Some previously 
routed net

sink

Mix!

t > T

Mi !Mix!



Constraint Check by GraphConstraint Check by Graphy py p
d1

10

9
8 R8 C2

d2

7
6

5
4

3
SAME 
Ed !

R4 C7

1 2 3 4 5 6 7 8 9 10

3
2

1

Scenario 1: d1 routed,

Edge!

R8 C2Scenario 1: d1 routed, 
checking a movement of d2 

Scenario 2: d1 & d2 routed,

R8 C2

R4 C7Scenario 2: d1 & d2 routed, 
checking a movement of d3

NO alid assignment for these mo ements!

R5 C4Interference!
NO valid assignment for these movements!



Efficient (Concurrent) DropletEfficient (Concurrent) DropletEfficient (Concurrent) Droplet Efficient (Concurrent) Droplet 
ManipulationManipulation
• Goal: Improve droplet manipulation concurrency on• Goal: Improve droplet manipulation concurrency on 

cross-referencing-based biochips. 

9 steps needed if 9 steps needed if 
moving one droplet moving one droplet 
at a time (too slow)at a time (too slow)
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Efficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet Manipulation
• Observation

Droplet manipulations whose destination cells belongs to the same– Droplet manipulations whose destination cells belongs to the same 
column/row can be carried out without electrode interferences.

destination cellsdestination cells

94
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destination cellsdestination cells



Efficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet Manipulation
• Methodology

Group droplet manipulations according to their destination cells– Group droplet manipulations according to their  destination cells
– All manipulations in a group can be executed simultaneously  

The goal is to find an optimal grouping plan which 
results in the minimum number of groups. 
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Efficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet ManipulationEfficient Droplet Manipulation
• Problem formulation

Destination cells  Nodes
Destination cells in one column/row  a clique 
Grouping   Clique partitioning
Optimal grouping  Minimal clique-partitioning (NP-Complete)
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An ExampleAn Example

• Significant reduction of manipulation time
from 35 seconds (moving one droplet at a time) to 15 seconds !
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from 35 seconds (moving one droplet at a time) to 15 seconds !



ReconfigurabilityReconfigurabilityg yg y
• Common microfluidic operations

– Different modules with different performance levels (e.g., several 
mixers for mixing)

– Reconfiguration by changing the control voltages of the 
corresponding electrodes
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Reconfiguration and Graceful DegradationReconfiguration and Graceful Degradation
• Reconfigure the faulty module

– Avoid defects (faulty cells)
• Reconfiguration: bypass faulty cells

N ll f l f d ll– No spare cells; use fault-free unused cells
• Defect tolerance in design procedure (increase in design complexity)

– Incorporate physical redundancy in the array
• Spare cells replace defective cells (local reconfiguration• Spare cells replace defective cells (local reconfiguration, 

application-independent)
•
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DefectDefect--Oriented Experiment Oriented Experiment 
• Understand the impact of certain defects on droplet flow, e.g., for 

short-circuit between two electrodes
• Experimental Setupp p

– To evaluate the effect of an electrode short on microfluidic behavior
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DefectDefect--Oriented Experiment (Cont.)Oriented Experiment (Cont.)
• Results and Analysis

– Experimental results and analysis for the first step. 
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DefectDefect--Oriented Experiment (Cont.)Oriented Experiment (Cont.)
• Experimental results and analysis for the second step. 
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ConclusionsConclusions
• Digital microfluidics offers a viable platform for biochips for clinical 

diagnostics and biomolecular recognition
• Design automation challenges

– Automated synthesis: scheduling, resource binding, module placement; droplet 
routing; testing and reconfiguration

• Bridge between different research communities: bioMEMS, microfluidics, 
electronics CAD and chip design  biochemistryelectronics CAD and chip design, biochemistry

• Growing interest in the electronics CAD community
– Special session on biochips at CODES+ISSS’2005 (appears in CFP now)
– Special issue on biochips in IEEE Transactions on CAD (Feb 2006)
– Workshop on biochips at DATE’06
– Tutorial on biochips at DATE’07, VDAT 2007, embedded tutorial at VLSI Design 

2005
Special Issue of IEEE Design & Test  Jan/Feb’07– Special Issue of IEEE Design & Test, Jan/Feb 07
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Homework
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