Design of Microfluidics-Based Biochips

Evangeline F.Y. Young

Slides partly adopted from Krishnendu Chakrabarty of Duke University

Motivation for Biochips

- Clinical diagnostics, e.g., healthcare for premature infants, point-of-care diagnosis of diseases
- "Bio-smoke alarm": environmental monitoring
- Massive parallel DNA analysis, automated drug discovery, protein crystallization

CLINICAL DIAGNOSTIC APPLICATION

Conventional Biochemical Analyzer

Shrink

CLINICAL DIAGNOSTICS

Microfluidic Labon-a-Chip

Lab-on-a-chip for

20nl sample

Higher throughput, minimal human intervention, smaller sample/reagent consumption, higher sensitivity, increased productivity

Motivation for Biochips

- Disease related mortality is the No. 1 bottleneck for Aquaculture industry.
- Biochip can be used for fish disease testing.

	Laboratory	Biochip
Sample Processing	1 hr 30 min	5 min
PCR Response	3 hr	1 hr 15 min
Analysis	30 min	10 min
Total	5 hr	1 hr 30 min

Tubes to Chips: BioChips

Driven by biomolecular analysis needs

Agilent DNA analysis Lab on a Chip (1997)

Motivation for Microfluidics

✓ Miniaturization

Typical Biological Lab Functions

Microfluidics

- Continuous-flow biochips: Permanently etched microchannels, micropumps and microvalves
- Digital microfluidic biochips: Manipulation of liquids as discrete droplets

What is Digital Microfluidics?

 Discretizing the bottom electrode into multiple electrodes, we can achieve lateral droplet movement

Note: oil is typically used to fill between the top and bottom plates to prevent evaporation.

Droplet Transport (Side View)

What is Digital Microfluidics?

Transport

25 cm/s flow rates, order of magnitude higher than continuous-flow methods

For videos, go to www.ee.duke.edu/research/microfluidics

What is Digital Microfluidics?

Splitting/Merging

Advantages

- No bulky liquid pumps are required
 - Electrowetting uses microwatts of power
 - Can be easily battery powered

Droplet Transport on PCB (Isometric View)

- Standard low-cost fabrication methods can be used
 - Continuous-flow systems
 use expensive
 lithographic
 techniques to create
 channels
 - Digital microfluidic chips are possible using solely PCB processes

Advantages of Digital Microfluidics

Digital Microfluidics

- Very accurate droplet volumes
 - Droplet sizes in the 1 nanoliter to several microliter range; droplet dispensing volume variation ~1%
- Programmable, software-driven electronic control
 - No moving parts, tubes, pumps or valves
- More efficient use of samples and reagents
 - No liquid is wasted priming channels
- Extremely energy efficient
 - Nanowatts of power per single step of actuation
- Development cycles are short, and assays can be implemented with software changes
- Compatible with live biologic and most other materials

- •Droplets moved in "virtual channels" defined by electrodes
- Programmable electrodes directly control discrete droplet operations

Other Microfluidic Technologies

- Pump fluids through channels
- Must adapt assays to channelbased format
- Complex or multiplexed assays become a plumber's nightmare
- Off-chip pumps and valves mean large, expensive equipment and low reliability
- Expensive, time consuming, upfront investments required for most chip developments
- Designs are fixed in the development process

Applications of Digital Microfluidic Biochips

- Drug discovery and biotechnology
 - Proteomics
 - High-throughput screening
 - Genomics
- Medical diagnostics and therapeutics
 - Clinical chemistry
 - Immunoassays
 - Nucleic acid tests

- Environmental and other applications
 - Micro-optics
 - Countering bioterrorism
 - Air/water/agro food monitoring

Design Automation: Biochip Synthesis

Full-custom bottom-up design → Top-down system-level design

Physical Design: Module Placement

- Placement determines the locations of each module on the microfluidic array in order to optimize some design metrics
- High dynamic reconfigurability: module placement → 3-D packing → modified 2-D packing

Reduction from 3_D placement to a modified 2-D placement

Unified Synthesis Methodology

Input: Sequencing graph of bioassay

Digital microfluidic module library

Mixing components	Area	Time
2x2-array mixer	4 cells	10 s
2x3-array mixer	6 cells	6 s
2x4-array mixer	8 cells	3 s
1x4-array mixer	4 cells	5s
Detectors		
LED+Photodiode	1 cell	30 s

Design specifications

Maximum array area

Amax: 20x20 array

Maximum number of optical detectors: 4

Number of reservoirs: 3

Maximum bioassay completion time *Tmax*:

50 seconds

Unified Synthesis of Digital Microfluidic Biochip

Output:

Resource binding

Opo	eration	Resource
	01	2x3-array mixer
	02	Storage unit (1 cell)
	О3	2x4-array mixer
	04	Storage unit (1 cell)
	O5	1x4-array mixer
	O6	LED+Photodiode

Placement

Biochip design results:

Array area: 8x8 array

Bioassay completion time: 25 seconds

Synthesis Results

Synthesis Results (Cont.)

Droplet Routing

- A key physical design problem for digital microfluidic biochips
- Given the results from architectural-level synthesis and module placement:
 - Determine droplet pathways using the available cells in the microfluidic array; these routes are used to transport droplets between modules, or between modules and fluidic I/O ports (i.e., boundary on-chip reservoirs)
- To find droplet routes with minimum lengths
 - Analogous to the minimization of the total wirelength in VLSI routing
- Need to satisfy critical constraints
 - A set of fluidic constraints
 - Timing constraints: (the delay for each droplet route does not exceed some maximum value, e.g., 10% of a time-slot used in scheduling)

Fluidic Constraints

Assume two given droplets as D_i and D_j, and let X_i(t) and Y_i(t) denote the location of D_i at time t

Directly adjacent

How to select the admissible locations at time t + 1?

Rule #1: $|X_j(t+1) - X_j(t+1)| \ge 2$ or $|Y_j(t+1) - Y_j(t+1)| \ge 2$, i.e., their new locations are not adjacent to each other.

Rule #2: $|X_j(t+1) - X_j(t)| \ge 2$ or $|Y_j(t+1) - Y_j(t)| \ge 2$, i.e., the activated cell for D_i cannot be adjacent to D_i .

Rule #3: $|X_i(t) - X_i(t+1)| \ge 2$ or $|Y_i(t) - Y_i(t+1)| \ge 2$.

Static fluidic constraint

Dynamic fluidic constraints

Experimental Verification

(a) Experimental verification of Rule #1: droplets begin on electrodes 1 and 4; (b) Electrodes 2 and 3 are activated, and 1 and 4 deactivated; (c) Merged droplet.

(a) Experimental verification of Rule #2: droplets begin on electrodes 2 and 4; (b) Electrodes 1 and 3 are activated, and 2 and 4 deactivated.

Experimental Verification (Cont.)

- (a) Experimental verification of Rule #3: droplets begin on electrodes 4 and 7; (b) Electrodes 3 and 6 are activated, and 4 and 7 deactivated; (c) Merged droplet.
- To demonstrate that adherence to Rule #1 is not sufficient to prevent merging. Both Rule #2 and Rule #3 must also be satisfied during droplet routing.
- These rules are not only used for rule checking, but they can also provide guidelines to modify droplet motion (e.g., force some droplets to remain stationary in a time-slot) to avoid constraint violation if necessary

Pin-Constrained Biochips

Direct Addressing

- Each electrode connected to an independent pin
- For large arrays (e.g., > 100 x 100 electrodes)
 - Too many control pins ⇒ high fabrication cost
 - Wiring plan not available

PCB design: 250 um via hole, 500 um x 500 um electrode

Nevertheless, we need high-throughput and low cost:

DNA sequencing (10⁶ base pairs), Protein crystallization (10³ candidate conditions)

Disposable, marketability, \$1 per chip

Pin-Constrained Biochip Design

Cross-referencing

Orthogonally placed pins on top and bottom plates

Advantage

 $k = n \times m \text{ pins } \rightarrow n + m \text{ pins for an } n \times m \text{ microfluidic array}$

Disadvantage

Suffer from electrode interference

Electrode Interference

Unintentional Electrode Actuation

Selected column and row pins may intersect at multiple electrodes

Unintentional Droplet Manipulation

Droplet Routing for CrossReferencing Chip - CrossRouter

- Input:
 - A WxH 2D array
 - K blockages
 - Waste disposal location WR
 - A netlist of N nets, either 2-pin or 3-pin
 - Time limit T
- Output:
 - A schedule of voltage assignment for each time step
- Objective:
 - Route all droplets to their destinations without violating constraints
 - Minimize arrive time and # cell used
- Constraints:
 - Timing constraint
 - Fluidic constraints
 - Electrode constraint

Example of Droplet Movement

- i droplet i
- blockage
- Activated cell
- Low voltage
- High voltage

Constraints

- 1. Fluidic Constraint
 - A minimum spacing of one cell to avoid unexpected mixing
- 2. Timing Constraint
 - All droplets should be moved to sinks within time limit T
- 3. Electrode Constraint (major problem)
 - No interference is caused while activating electrodes simultaneously.

Example 1

Example 2

CrossRouter

- **1. Net ordering**: for net *i* and net *j*, route *i* first if:
 - src(i) is in the bounding box of net j, or
 - Manhattan_Distance (i) > Manhatten_Distance (j)
- 2. Maze routing: route each net while considering those already routed nets
 - Modified Lee's algorithm as basic framework
 - Handle constraints during this step to consider those already routed nets
- 3. Rip-up & Re-route: identify bottleneck regions, rip off some already routed nets and re-route the failed net

Propagation

8

Note: push into heap only if no constraint is violated for a movement

N - #netuStall For cell P=(x,y) at time t:

Current path length

Weight(P,t) = t + MD(P,sink) + Use(P) + Len(P,t)

Constraint Check

- 1. Timing constraint
- 2. Fluidic constraint avoid unexpected mixing
- 3. Electrode constraint

Any valid voltage assignment?

Constraint Check by Graph

Efficient (Concurrent) Droplet Manipulation

 Goal: Improve droplet manipulation concurrency on cross-referencing-based biochips.

9 steps needed if moving one droplet at a time (too slow)

Efficient Droplet Manipulation

Observation

 Droplet manipulations whose destination cells belongs to the same column/row can be carried out without electrode interferences.

destination cells

Efficient Droplet Manipulation

Methodology

- Group droplet manipulations according to their destination cells
- All manipulations in a group can be executed simultaneously

The goal is to find an optimal grouping plan which results in the minimum number of groups.

Efficient Droplet Manipulation

Problem formulation

Destination cells → Nodes

Destination cells in one column/row → a clique

Grouping → Clique partitioning

Optimal grouping → Minimal clique-partitioning (NP-Complete)

An Example

• Significant reduction of manipulation time from 35 seconds (moving one droplet at a time) to 15 seconds!

Reconfigurability

- Common microfluidic operations
 - Different modules with different performance levels (e.g., several mixers for mixing)
 - Reconfiguration by changing the control voltages of the corresponding electrodes

Reconfiguration and Graceful Degradation

- Reconfigure the faulty module
 - Avoid defects (faulty cells)
- Reconfiguration: bypass faulty cells
 - No spare cells; use fault-free unused cells
 - Defect tolerance in design procedure (increase in design complexity)
 - Incorporate physical redundancy in the array
 - Spare cells replace defective cells (local reconfiguration, application-independent)

Defect-Oriented Experiment

- Understand the impact of certain defects on droplet flow, e.g., for short-circuit between two electrodes
- Experimental Setup
 - To evaluate the effect of an electrode short on microfluidic behavior

Defect-Oriented Experiment (Cont.)

- Results and Analysis
 - Experimental results and analysis for the first step.

Defect-Oriented Experiment (Cont.)

Experimental results and analysis for the second step.

Conclusions

- Digital microfluidics offers a viable platform for biochips for clinical diagnostics and biomolecular recognition
- Design automation challenges
 - Automated synthesis: scheduling, resource binding, module placement; droplet routing; testing and reconfiguration
- Bridge between different research communities: bioMEMS, microfluidics, electronics CAD and chip design, biochemistry
- Growing interest in the electronics CAD community
 - Special session on biochips at CODES+ISSS'2005 (appears in CFP now)
 - Special issue on biochips in *IEEE Transactions on CAD* (Feb 2006)
 - Workshop on biochips at DATE'06
 - Tutorial on biochips at DATE'07, VDAT 2007, embedded tutorial at VLSI Design 2005
 - Special Issue of IEEE Design & Test, Jan/Feb'07

Homework

Droplet Routing for Microfluidic Biochip

Consider a 5×5 cross referencing microfluidic biochip:

Suppose now you have 4 droplets to route:

D1: from (0,0) to (4,0)

D2: from (4,0) to (4,4)

D3: from (4,4) to (0,4)

D4: from ((0,4) to (0,0)

Show how you can move all the droplets from their sources to their destinations by applying high/low/don't care voltages to the columns and rows. Illustrate your route properly by showing at each time step t=0...,T the following, where T is the length of time your route takes:

- (1) Positions of the droplets at time t (before you apply the voltages as described in (2)).
- (2) Voltages applied at each row and column.
- (3) The activated cells.

What is the total time T taken?