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Abstract— Visualization of uncertainty or error in astrophysical data is seldom available in simulations of astronomical phenomena,
and yet almost all rendered attributes possess some degree of uncertainty due to observational error. Uncertainties associated with
spatial location typically vary significantly with scale and thus introduce further complexity in the interpretation of a given visualization.
This paper introduces effective techniques for visualizing uncertainty in large-scale virtual astrophysical environments. Building upon
our previous transparently scalable visualization architecture, we develop tools that enhance the perception and comprehension of
uncertainty across wide scale ranges. Our methods include a unified color-coding scheme for representing log-scale distances and
percentage errors, an ellipsoid model to represent positional uncertainty, an ellipsoid envelope model to expose trajectory uncertainty,
and a magic-glass design supporting the selection of ranges of log-scale distance and uncertainty parameters, as well as an overview
mode and a scalable WIM tool for exposing the magnitudes of spatial context and uncertainty.
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1 INTRODUCTION

Uncertainty and error are common and crucial entities in scientific
studies. As pointed out by Johnson [23, 24], if we look at leading
peer-reviewed science and engineering journals, we can see that the
majority of 2D graphs represent error or uncertainty in the experimen-
tal or simulated data. Since it is significant to show error and uncer-
tainty in 2D graphs, it should be equally significant to show error and
uncertainty in 3D visualizations as well. An assortment of uncertainty
visualization methods facilitating scientific studies in different areas
have been proposed in recent decades. Examples include the visu-
alization of uncertainty in flow data [6, 30] and volume data [9, 27],
positional uncertainty in molecular structure [42], uncertainty in ter-
rain modeling [10, 50], and also techniques for showing uncertainty in
archaeological reconstructions [46]. Being able to visualize the uncer-
tainty in a body of data can substantially improve our understanding
and interpretation of the data, and thereby facilitate better decision
making.

1.1 Motivation

The arguments regarding the importance of error visualization are even
more relevant to astrophysical data, because, for example, astrophysi-
cal measurements involve gigantic distances, so that the resultant un-
certainties could typically be very large as well. For spatial quantities
such as distance and velocity, characterized by standard measurements
of parallax, proper motion, and radial velocity, errors can become quite
significant. For instance, the Hipparcos and Tycho Catalogues [12]
show that RigilKent (Alpha Centaurus, one of the closest stars to Earth
in the triple star system in the constellation Centaurus) has a percent-
age error of ∼ 0.19%, while Betelgeuse (Alpha Orionis, the brightest
star in the constellation Orion) has a percentage error of ∼ 20.54%
in its distance measurement. Note that RigilKent and Betelgeuse are
around 4.40 and 447 light years (1016.6m and 1018.6m) from Earth,
respectively, and that the constraints of applying parallax to measure
distances inevitably make the locations of the most distant stars the
most uncertain.

While attention to the representation of uncertainty dominates the
scientific literature on astronomical measurements, support for error
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representations is lacking in a large fraction of 3D astronomical visu-
alization products. In visually spectacular animations depicting nebula
flythroughs or travel from the Earth through the Milky Way Galaxy
produced for planetariums and television programs, rarely does the
narration or the visual representation give any hint of the huge posi-
tional uncertainty that exists in the data used to produce the rendered
images. However, since, as noted in the example of Betelgeuse, the
percentage error in position can be exceedingly large, and the uncer-
tainty can significantly influence the plausibility of the visualization.
The demand for pleasing visuals typically overrides the question of
scientific accuracy. Our goal is to bring more attention to the impor-
tance of representing uncertainty, particularly in the presentation of
3D astronomical simulations.

1.2 Focus and Organization of This Paper

Visualizing uncertainty in astrophysical data is a unique problem. Un-
like other uncertainty visualization contexts, where the distribution of
data in space is generally homogeneous in nature, the distribution of
astrophysical data is sparse and inhomogeneous; the farther away an
object is, the harder it is to get accurate direct measurements, and the
more likely it is that intervening material will confound the data. Fur-
thermore, the scales of the data uncertainties, like astronomical dis-
tances themselves, span a huge range of scales. To address these vi-
sualization issues, we focus in this paper on improving our ability to
visualize data uncertainty in large-scale environments, typified by stel-
lar data [4, 12]. The major objectives in our design include:

1. Providing users with a set of well-defined visual cues and user
interface tools to efficiently identify and explore large-scale un-
certainty in astrophysical data.

2. Properly displaying the data elements on the visual frame.

3. Enhancing the understanding of the data while minimizing the
visual distraction caused by the uncertainty representations.

The paper is organized as follows: Section 2 reviews previous work
on uncertainty visualizations and recent advances in astronomical vi-
sualizations. Section 3 itemizes the unique characteristics of visualiz-
ing uncertainty in astrophysical environments. Section 4 describes the
unified color-coding scheme, then presents a collection of visual cues
to deal with four major kinds of uncertainty in astronomical data. Sec-
tion 5 then proposes our user interface tools: the magic glass design,
the log-sky visualization mode, and the enhanced scalable WIM. Fi-
nally, Section 6 details our system implementation and presents a user
study and a case study on the effectiveness of the proposed visualiza-
tion techniques, while Section 7 gives a summary and discusses future
directions.



Fig. 1. A unified color-coding scheme: using colors to encode and explore large-scale spatial uncertainty and percentage errors.

2 RELATED WORK

Uncertainty Visualization. Uncertainty visualization [24] was re-
cently noted by Johnson [23] to be one of the top visualization re-
search problems, and there is a significant body of work in the recent
visualization literature. Based on the guidelines proposed by Taylor
and Kuyatt [47] for evaluating data uncertainty, Lodha et al. [30, 31]
devised various methods for presenting uncertainty in different scenar-
ios: among these are visual cues such as pseudo color, displacement
and bump maps, displacement glyphs, and cross-hair glyphs for show-
ing geometric uncertainty, and another set of visual techniques such
as flow envelopes, twirling batons, and barbell glyphs for showing
uncertainty in fluid flow. In addition, Lodha et al. [32] also experi-
mented with the use of audio, e.g., the pitch of different musical instru-
ments, to encode data uncertainty. Also from the same research group,
Wittenbrink et al. [49] devised a new kind of vector glyph to present
both the direction and magnitude uncertainty in vector fields, while
Pang et al. [40] surveyed different uncertainty visualization methods,
and described a systematic classification for uncertainty visualization.
Djurcilov et al. [9] showed uncertainty in volume-renderings by using
pseudo color, by adding noise, and by altering textures.

Subsequent work by Rhodes et al. [43] showed uncertainty in iso-
surfaces by mapping the uncertainty to parameters such as hue, bright-
ness, or saturation. Grigoryan and Rheingans [15, 16] employed point-
based primitives to show surface uncertainty; by displacing individual
surface point along its normal by an amount proportional to a random
number multiplied with the local uncertainty value, a fuzzy surface
was created to reveal the surface uncertainty.

Texture is another valuable element for revealing data uncertainty.
Interrante [21] employed natural textures to show spatial uncertainty
by distorting the regularity in natural textures; Sanderson et al. [45]
explored the use of reaction diffusion to generate texture patterns with
variable shapes, sizes, and orientations based on the uncertainty in the
data domain; Botchen [6] subsequently developed and implemented a
texture-based algorithm on the GPU to interactively show uncertainty
in time-varying 2D flow fields.

Instead of showing the uncertainty by distorting the data or by em-
phasizing high uncertainty regions, Cedilnik and Rheingans [7] laid
out procedurally-generated annotations on the data domain, and rep-
resented the amount of uncertainty in different areas by distorting the
annotations. In the domain of information visualization, Olston and
Mackinlay [38] presented the concept of bounded uncertainty, and pro-
posed the use of ambiguation (similar to envelopes) to visually present
ambiguous regions in 2D graphs and charts, while Aigner et al. [2] pro-
posed the use of a new glyph, called PlanningLines, to show temporal
uncertainty. Other recent research work in uncertainty visualization
includes the work of Love et al. [33], who developed a system for vi-
sualizing a multivalued vector field so that uncertainty can be naturally
incorporated in the visualization, and the work of Kniss et al. [27], who
developed a comprehensive volume visualization approach that incor-
porates the fuzzy classification into the visualization cycle, allowing
the classification decision to be deferred to the rendering stage.

Astronomical Visualization. Among relevant recent astronomical
visualization work we note that of Ostriker and Norman [39], who pro-
posed a framework for simulating cosmology and reviewed the related
requirements in high performance computing environments, Nadeau
et al. [14, 37], who simulated a fly-through of a volumetric model of
the Orion Nebula [11], Kahler et al. [26], who used a supercomputer
and adaptive mesh rendering to simulate the life-span of a star, Jensen
et al. [22], who devised a physically-based model to render the night
sky as seen from Earth, Baranoski et al. [3], who proposed a rendering

method for simulating the Aurora Borealis (the Northern Lights), Hopf
et al. [20], who developed a PCA-based splatting technique for render-
ing point-based data in dynamic galaxy models, Magnor et al. [34, 35],
who developed an inverse volume rendering method for constructing
and rendering planetary nebulae and reflection nebulae, and Miller et
al. [36], who derived a visualization tool to reveal structures such as
filaments and voids in the Horologium-Reticulum supercluster.

In our own recent work, Hanson et al. [17, 19] proposed a visual-
ization framework for illustrating the context of time in cosmologi-
cal data, Li et al. [29] developed a scalable WIM (world-in-miniature)
user interface for facilitating the efficient exploration of large-scale as-
trophysical environments, and Fu et al. [13] proposed a transparently
scalable visualization architecture for modeling and rendering astro-
nomical models across large-scale astrophysical spaces. However, it
is worth noting that, except for primitive error bars constructed to show
positional uncertainty, see [13], comprehensive visual representations
of data uncertainty are basically absent from the bodies of astronomy
visualization work mentioned thus far.

3 UNIQUE CHARACTERISTICS: UNCERTAINTY IN ASTRO-
PHYSICAL ENVIRONMENTS

This section summarizes the unique characteristics of astronomical
data to illustrate how the visualization of uncertainty in astrophysi-
cal environments differs from other uncertainty visualization require-
ments. In particular,

• First, the astrophysical space being simulated spans a very large
spatial range, and yet is mostly empty; hence, users find it hard
to judge distances, sizes of objects, and also the spatial context
around objects in the 3D virtual simulations.

• Secondly, we have huge spatial ranges not only in the spatial
quantities like distance and size in the astronomical data, but also
in the uncertainty values. The absolute uncertainty of distances
to nearby stars can range from under a light year up to several
hundred light years; the vast majority of recorded stars are too
distant to apply parallax methods and thus have no reliable dis-
tance assignments at all. The percentage errors can be exceed-
ingly large compared to those typical of other scientific studies.

• Thirdly, because of the range of estimation methods and the in-
trinsic distances involved, some astronomical quantities can be
measured with very high precision while others cannot. When
locating stars, for example, we have to measure the distance to
stars and the direction to stars; directions to stars can be mea-
sured with extremely high precision, while the distance measure-
ment precision is typically much less accurate.

Fig. 2. The Equatorial coordinate system: RA and Dec (left) and the
trajectory of stars: radial velocity and proper motion (right).



Fig. 3. Representing star positional uncertainty using error bars; from left to right, colors are assigned to annotate: 1) the percentage error of the
distance uncertainty (for the most probable distance) to Earth, 2) the most probable distance, and 3) the absolute value of the distance uncertainty.

To demonstrate our proposed uncertainty visualization methods, we
apply them to the following star data sets:

• The Hipparcos and Tycho Catalogues [12, 41]. These provide
star position (parallax and Equatorial coordinates (RA,Dec) [8]),
proper motion, apparent magnitude, and color index of stars, as
well as the related errors in the measurements. Note that dec-
lination (Dec) is the angle measuring how far a given sky lo-
cation above or below the Celestial Equator, whereas the right
ascension (RA) is the angle between the Vernal Equinox and the
projection of the sky location on the Celestial plane, see Fig-
ure 2(left).

• The mean radial velocity catalog of galactic stars [4]. This pro-
vides radial velocities of stars (the radial component of star ve-
locity along the line of sight) and also the associated error.

• The catalog of constellation boundary data [1].

Details on employing these data to compute a star’s position, trajec-
tory, etc., will be presented in Section 4.

4 VISUAL CUES FOR LARGE-SCALE UNCERTAINTY

4.1 The unified color-coding scheme

Since the astrophysical environments we typically need to simulate
are very large and very sparse, viewers have difficulty judging sizes
and distances, as well as the properties of spatial uncertainty. To
annotate the magnitude of spatial uncertainty in a visualization,
we employ a customized unified color-coding scheme as a central
design mechanism to annotate large-scale uncertainty by consistently
assigning colors to the visual cues.

Color as annotation. Figure 1 shows the chosen color map; in our
design, the color map can provide different kinds of annotation, speci-
fied by the user through the user interface controls. Color assignments
are associated with the visual cues to represent the following:

• Large-scale distance and length: Shown on top of the color map
in the figure is a base 10 logarithmic range: [1014,1020]m. This
range is typically chosen to match the spatial scale in the inter-
stellar environment, but is adjustable so that we can rescale to
include galaxies or other astronomical contexts at other spatial
scales. Note that this kind of annotation can be sub-categorized
as: 1) the distance of a visual cue to Earth, 2) the distance of
a visual cue to the camera (or viewing spacecraft), and 3) the
size/length of spatial uncertainty.

• Percentage errors: Shown on the bottom of the color map in the
figure is a linear range showing percentage errors.

Using Saturated Colors. The colors we employed in the color map
are all fully saturated colors in the CIE L*a*b color system [48]. The
advantages of this design include the following:

• When we apply these colors to shade the visual cues, the intrinsic
hue of the colors will stay the same, even though their brightness
may vary due to the shading. As a result, we need only very

simple visual processing to estimate distances, lengths, or per-
centage errors; users can look solely at the hue of a given color
and deduce an approximate distance or percentage error.

• Since all visual cues are colored consistently, we can visually
compare uncertainty among neighboring entities by examining
their color differences.

4.2 Positional Uncertainty

Astronomical objects in the sky are generally described by polar coor-
dinates defining the direction to the object from Earth; for instance,
we typically use Equatorial coordinates (RA,Dec) for stars [8], the
Galactic coordinates for objects within the Milky Way Galaxy, and
the Super-Galactic coordinates to describe extra-Galactic locations.

To place objects accurately in three dimensions, we must deter-
mine the distance to the objects by various methods such as the paral-
lax method or apparent magnitude for stars and redshift methods for
galaxies. The distance r(p,d p) to a star in the Hipparcos data set, as
well as the standard error dr(p,d p) of this distance, are determined by
the parallax p and its standard error d p. If we measure p in arcseconds
and choose the ideal normalization r = 1/p, then one arcsecond in p

gives a distance r of 1parsec = 3.086×1016meters. The standard but
rarely-used bivariate 2nd order expansion of the expectation of a ratio
about the means given in Rice [44] reduces to the following for the
case of parallax computation,

r(p,d p) =
1

p
+

d p2

p3
+O(d p4) (1)

dr(p,d p) =
d p

p2
+O(d p3) , (2)

where we take dr to be the square root of the variance of the dis-
tance r, and d p to be the square root of the variance of the parallax.
Since d p could be relatively large with respect to p in an astronomical
measurement, including the d p term in the expectation value of r can
significantly improve the computational accuracy.

Since we have uncertainty in the measurement of parallax as well
as in RA and Dec, the positional uncertainty of astronomical objects
(including stars, galaxies, etc.) can always be decomposed into two
components: a radial component along the line of sight (from Earth
to the object) and a spherical coordinate component perpendicular to
the line of sight on the Celestial sphere. To illustrate the positional
uncertainty, we propose two types of visual cues:

Error bars. Due to the fact that the uncertainty in distances is sev-
eral orders of magnitude larger than the uncertainty in RA/Dec, one
way to visualize the positional uncertainty is to ignore the errors in
RA/Dec and plot a line segment to show the uncertainty along the
line of sight from the Earth. Figure 3 represents the error bars ren-
dered with a camera at a distance of 1020m from Earth. Note that the
positional uncertainty is, in fact, a distribution centered at the object
position, and we thus draw the error bars with variable transparency;
the opacity fades from one in the middle and to zero at the endpoints.
Next, we use the unified color-coding scheme to shade the error bars,
as noted in the figure caption.



Ellipsoid models. The second representation we have is an el-
lipsoid model that emphasizes the fact that the positional uncertainty
should be a volume that includes the RA/Dec component. However,
the uncertainty in RA/Dec is exceedingly small compared to the dis-
tance uncertainty; to visualize all these uncertainty terms simultane-
ously, we have to artificially scale up the RA/Dec uncertainty, typically
by 106. The resultant uncertainty range can be illustrated as an ellip-
soid volume, see Figure 4. Note that in shading the ellipsoid model,
we employ cos−1(V̂ · N̂) to attenuate the surface transparency using

shader programming, where N̂ is the normal at a surface point, and V̂
is the view direction from the surface point to the viewer. With this
shading approach, we can better convey the shape of position uncer-
tainty by emphasizing the silhouette.

Fig. 4. Presenting positional uncertainty using ellipsoid models; color-
ing by percentage error (left) and by absolute error (right). Note: the
chosen star is Betelgeuse: percentage error of ∼ 20.54% in its distance
measurement and ∼ 447 light years (1018.6m) from Earth.

4.3 Trajectory Uncertainty

Another common spatial quantity in astronomical observations is the
trajectory or velocity (typically available for nearby stars). Like posi-
tion, the velocity of astronomical objects also has two components [8]:
a radial component, known as the radial velocity, along the line of
sight and a component on the Celestial sphere, known as the proper
motion. As depicted in Figure 2(right), we can combine proper mo-
tion and radial velocity and determine the three-dimensional velocity
of any object, known as the space velocity. Note also from the fig-
ure that the proper motion has two perpendicular components: pmRA

and pmDEC along the RA and Dec directions, respectively. Hence, to
show the positional uncertainty of the object at any moment along the
trajectory path, we can employ ellipsoid models as before.

Fig. 5. Left: An example model showing trajectory uncertainty of a Hur-
ricane. Right: The trajectory uncertainty of a star in 50,000 years;
note: the color reveals the percentage error and the trajectory data
of this star are 1) Radial component: (2.87± 0.41)× 1011m/yr, 2) RA:
(−4.34±0.57)×10−8rad/yr, and 3) Dec: (−1.23±0.40)×10−8rad/yr.

To design the visual cues showing the trajectory uncertainty of as-
tronomical objects, we borrow from the field of meteorology a method
used to show the trajectory uncertainty of hurricane in 2D, as shown
in Figure 5. Our 3D representation for trajectory uncertainty is shown
on the right hand side; we use a cone model to depict the overall tra-
jectory uncertainty (given the time span for the trajectory) and employ
an array of equally-spaced ellipsoid models to show the positional un-
certainty at each time step.

4.4 Magnitude and Color Uncertainty

In astronomical measurements, the brightness of astronomical objects
in the night sky is quantitatively defined by the magnitude scale, where
this scale is applied not only to stars, but also to nebulae and galaxies.
In a preliminary experiment, we attempted to visualize the magnitude
uncertainty by animating the star sizes and by adding halos around
stars; however, due to fact that the magnitude uncertainty was too
small to be effectively perceivable using this method, we reverted to
showing the uncertainty for a picked star through an auxiliary chart
displayed on the user interface, as shown in Figure 6 (left) and also
in Section 5. Here, we show the min-max range and also the median
of the visual magnitude currently observed at the virtual viewpoint.
Note that the Hipparcos and Tycho Catalogues [12] present the mag-
nitude uncertainty as a range of visual magnitude values (as observed
from Earth) together with a median term; by first converting these to
absolute magnitude, we can determine the range of visual magnitude
observed at any viewpoint by the following equation:

m − M = 5log10 r − 5 + A , (3)

where M is the absolute magnitude, m is the observed magnitude, A
represents the amount of light attenuation from reddening caused by
the interstellar medium, and r is the distance in parsecs to the astro-
nomical object (the distance at which magnitude m is measured). Note
that the uncertainty in visual magnitude could change interactively as
the viewpoint changes.

Fig. 6. Two on-screen plots of the user interface depicting the visual
magnitude uncertainty (left) and B-V color uncertainty (right).

We also found that the uncertainty in color is somewhat too small
to be effectively perceivable using rendering methods; therefore we
also plot the uncertainty range for BT and VT as screen plots shown
in Figure 6. Note that we use the Tycho photometry (available in the
Hipparcos and Tycho Catalogue [12]) to represent colors: BT is for the
blue visible range, while VT is for the yellow-green range; this system
is closely related to Johnson UBV Photometric system [25].

5 USER INTERFACE TOOLS

We developed the following three major user-interface tools to support
our objective of facilitating the examination and exploration of visual
cues in large-scale astrophysical environments.

5.1 The Magic Glasses

The design of what we call “magic glasses” was motivated by the
magic lens technique [5, 28]. This interface allows users to interac-
tively move a 2D lens over the screen to expose additional information
hidden in the rendered images. In our framework, when a magic glass
is put on the screen, detailed visual cues can be revealed/culled accord-
ingly, while text labels within the glass are removed to reduce clutter-
ing. We equip the magic glass interface with the following additional
selection capability relevant to large-scale uncertainty visualization:

• Percentage error selection – Users can select a percentage error
range and attach it to a magic glass; visual cues not matching this
constraint do not appear in the magic glass.

• Log-scale distance selection – Users can also impose a log-scale
distance constraint and select visual cues based on a log-scale
distance range measured from the Earth and/or from the camera
(viewpoint). Using the second type of constraint, we can equip
our 2D magic glasses with proximity selection capabilities.

• Multiple magic glasses – Finally, users can deploy multiple
magic glasses simultaneously. Depending on the user’s choice,
we can apply unions or intersections of constraints from multi-
ple magic glasses and impose the combined constraints to select
visual cues in the overlapping region.



Fig. 7. Top row: A wide panoramic view centered on the Constellation Orion. Here we expose the data uncertainty using the magic glasses; Left:
Positional uncertainty in constellation lines of Pyxis; Middle: Trajectory uncertainty in Taurus; Right: Positional Uncertainty. Bottom row: Moving
the magic glass from left to right, exposing the properties of stars that are relatively close to us (within 1018.6m), while providing appropriate visual
cues to characterize positional uncertainty. Color is also used to annotate the absolute size of the uncertainty.

Figure 7(top) demonstrates the use of multiple magic glasses to ex-
pose various kinds of data uncertainty in a wide panoramic view, while
Figure 7(bottom) illustrates the action of moving a magic glass that se-
lects visual cues close to the viewpoint; note the range displayed next
to the label “CB Log(m)”, where “CB” refers to camera-based log-
scale distance selection. Also, note that on-screen annotations such
as the text labels of the constellations’ major stars are removed in the
magic glasses.

5.2 The Log-Sky Visualization Mode

Next, we define the log-sky visualization mode that provides an
overview visualization by uniformly compressing the data space in a
logarithmic manner. Mathematically, given a power-scaled coordinate
(PSC for short), say p = (x,y,z,s) (note that PSC’s are defined in our
previous work [13], where p represents the three-dimensional position
(x,y,z) · 10s), the log-sky visualization mode transforms p using the
following mapping:

(x,y,z,s) 7→ (x,y,z) · f (s) where f (s) =
s−a

b−a
.

Here [a,b] defines the logarithmic range that the user chooses to map
the data space; for example, if a and b are set to be 14 and 20, respec-
tively, then we map the physical range [1014,1020]m logarithmically
to the radial distance [0,1] (measured from the sphere center) inside
the unit sphere; note: the directional components (RA/Dec) are kept
unchanged. The advantage of this mapping is that we can efficiently
utilize the space inside a unit sphere according to the typical physi-
cal range that the data covers. Note that in our original log-sky de-
sign [29] for assisting virtual exploration, f (s) is basically fixed to be

s; hence, our interstellar space, which ranges [1014,1020]m, will only
cover a thin shell volume near the boundary of the unit sphere. Since
this work focuses on uncertainty visualization, maximizing the space

utilization can effectively improve the presentation. Figure 9 demon-
strates two typical visualizations showing the positional uncertainty
of stars as well as positional uncertainty in constellation lines plotted
in 3D. Note that we allow visual cues to be drawn outside the magic
glass, while removing potentially cluttering text labels.

5.3 The Scalable WIM

In the course of data exploration in a large-scale astrophysical sim-
ulation, users typically have difficulty maintaining context aware-
ness while focusing on the data exploration. The Scalable World-in-
Miniature (WIM) [29] is a powerful tool that provides users with a
large-scale 3D scalable map to represent and convey the spatial con-
text and to reduce the constraints of limited screen space. In this paper,
we add visual cues and representations of uncertainty to the context of
the Scalable WIM; these additional features can enhance the effective-
ness of visualizing uncertainty in large-scale spaces:

• First, the Scalable WIM enables the user to examine the data un-
certainty models that he/she can see on the main screen from a
third-person perspective. Note that users can stay engaged in the
immersive environment shown in the main window while explor-
ing the local context in the Scalable WIM, as noted in Figure 10.

• Secondly, the Scalable WIM provides an icon-rendered view, in-
stead of a realistically-rendered view, so that the uncertainty cues
can always be more clearly seen with much less visual cluttering.

6 IMPLEMENTATION AND RESULTS

In our system design, the proposed uncertainty visualization tech-
niques are implemented as a module in the transparently scalable vi-
sualization architecture [13]. To avoid concerns with scene transfor-
mation accuracy and depth buffering limits, thus supporting modeling



and rendering of the 3D uncertainty models properly across huge spa-
tial ranges, we represent and render all models using the PSC module
architecture. In addition, to render the silhouette shading effects for
the ellipsoid and cone models, we developed a shader program written
in GLSL for computing the local surface transparency.

Case Study: The Distance Editing Tool. In our collaborative work
with an astronomer, we have implemented a software system, known
as the Distance Editing Tool [18] (DET for short), to assist her in ex-
amining metric features of materials in the local galactic neighborhood
of the Sun. This system compares the distances to stars resulting from
parallax measurements and photometric measurements (see the Ap-
pendix), and provides assistance in the construction and verification
of geometric models for spectrally absorbing and emitting gas clouds
lying between the Earth and nearby stars. To further enhance the ca-
pability of this application software, we have added modules support-
ing the uncertainty visualization techniques proposed in this paper and
incorporated the visual cues and user-interface tools into the DET sys-
tem; see Figure 11 for selected screenshots.

In addition, it is worth noting that since we deal with photometric
distances in DET, we have positional (distance) uncertainty not just
from parallax measurement, but also from the luminosity and spec-
tral type classification, and B-V measurements. In the DET, we han-
dle both of these uncertainty problems by requiring some agreement
between the photometric and parallax distance. This allows us to re-
duce the uncertainties in the intervening ISM substantially because
dust clouds can disturb the photometric distances, as could a misclas-
sification of a star. As reported by our astronomy collaborator, requir-
ing that photometric and parallax distances match within a designated
uncertainty helped cull out misclassified spectral data.

User Study. We conducted an exploratory user study to collect
feedback from users concerning their perceptions of uncertainty visu-
alization in our system, as well as the design of the visual cues and
user interface tools. Ten subjects participated in the study, three with
prior experience in virtual astronomy systems; five of them are stu-
dents from the graphics group and the others do not have graphics and
visualization background. Six of them are males whereas the other
four are females; their ages range from 23 to 28 and all of them have
a normal vision and none are color blind. In doing the test, the subject
worked on a single PC in an isolated room, and before that, we briefly
explained the whole procedure and introduced some basic astronomy
knowledge that was related; the whole test took around 30 minutes.

The first task was to examine the positional uncertainty of three
stars (with distinct positional uncertainties) by checking the color on
the corresponding visual cues. These data quantify the efficiency of
the unified color coding scheme. In the second task, the participants
were asked to locate a star among the stars with largest (based on user
perception) percentage errors in positional uncertainty. Here, the ten
participants are divided into two groups. One group used the range
selection tool provided by the magic glass to filter out unwanted vi-
sual cues during the exploration, while the other group could use only
color to do the selection. This measurement determines the relative
efficiency of the range selection tool.

Fig. 8. Left: Performance of the two groups in locating positional uncer-
tainty with/without range selection tool. Right: User’s perception of the
magnitude of astronomical uncertainty.

In the first task, the success rate of determining the percentage er-
ror (within ±5%) of the positional uncertainty (radial component) was
around 96.7%. This result shows that most users can efficiently em-
ploy the color coding to determine the amount of uncertainty. The
users generally agreed that this was a quick and comfortable way to get
an initial feeling for the amount of uncertainty; however, some users
complained that they had a difficult time perceiving the details using
this method and suggested using higher contrast colors for neighbor-
ing ranges in the color map. In the second task, we found that the first
group (using the range selection tool) performed 64% faster than the
second group (see the graph plotted on the left of Figure 8), although
both groups typically succeeded in the task of locating the target star.
All participants in the first group believed that the range selection tool
was very important and necessary. We observed that this group of par-
ticipants generally could use this tool to quickly filter out unwanted
visual cues while focusing on the search for the large uncertainty. In
addition, we also asked the subjects about their perceptions of the
magnitude of the astronomical data, once at the beginning and once
at the end. As shown on the right of Figure 8, more subjects realize
the significance of considering the data uncertainty, particularly in the
context of astronomical visualization, after the experiment.

7 CONCLUSION

In conclusion, we have developed an assortment of uncertainty visu-
alization techniques designed to meet the unique challenges of large-
scale, sparse data typical of astronomical visualization environments.
Error measures are essential components of scientifically valid astro-
nomical visualization interfaces and are characterized by wide ranges
of scale seldom encountered in other contexts. Our tools, including
error encoding, custom-designed error-ellipsoids, interactive “magic-
glass” methods, and a scalable world-in-miniature environment are
combined with power-scaled coordinates to expose astronomical error
information to the user in an efficient and effective interactive manner.

Future Work We have thus far focused mainly on data such as
3D star locations from catalogs built using parallax measurements, al-
though we have also touched on the use of photometric distance es-
timates. Many other large bodies of data can be incorporated into
this context, including distances to nearby galaxies computed from
Cepheid variable stars, distances derived from calibrated supernovae
that can be used as “standard candles” in intermediate galaxies, and
distances for cosmologically distant galaxies derived from redshifts.
Detailed study of the error models for data such as these will result in
still further unique classes of error models whose unified interactive
display will support new scientific visualization capabilities.
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Appendix: Computing Photometric Distances

While parallax measurement is the standard method for determin-
ing the distance to nearby stars, alternatives are available. One such
method employs stellar photometry data, and is based on the relation-
ship between stellar distance and the difference between the measured
visual magnitude and the estimated absolute magnitude, as given in
Equation 3. In this approach, we first determine the absolute mag-
nitude of a star by using a well-established table in [8], “Calibration
of MK spectral types.” This table maps the observed spectral type,
spectral class, and spectral number of a star to the expected absolute
magnitude value. Using an astronomer’s rule of thumb, we set the red-
dening term A to be 3.1×E(B−V ), where 3.1 is a general constant
representing a wide range of the interstellar medium. We can then in-
vert Equation 3 to compute the distance to a star. Note: E(B−V ) is
the color excess, i.e., the difference between the measured B−V color
index and the intrinsic B−V color index given in the cited table for
the absolute magnitude in [8].



Fig. 9. The log-sky visualization mode; Left: positional uncertainty (error bars) of stars; Right: positional uncertainty of constellation lines plotted in
3D; Middle: two zoomed views.

Fig. 10. Using the Scalable WIM to explore and examine data uncertainty from a third-person viewpoint; Left: main window showing a trajectory
uncertainty; Middle and Right: the Scalable WIM, as a popup window, exposes the spatial context around the uncertainty model.

Fig. 11. Uncertainty visualization in the DET: Ellipsoid models show positional uncertainty and magic glasses expose uncertainty. The DET
supports two modes: 1) Planar mode (left) (the ground plane is a rectangular space corresponding to RA/Dec coordinates) and 2) Sphere mode
(right) (projected onto the Celestial sphere). Note: we can hide the text labels inside the magic glasses to avoid information cluttering (right).


