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A Transparently Scalable Visualization Architecture for Exploring the Universe

Abstract

Modern astronomical instruments produce enormous amounts of three-dimensional data describing the physi-

cal Universe. The currently available data sets range from the solar system to nearby stars and portions of the Milky

Way Galaxy, including the interstellar medium and some extrasolar planets, and extend out to include galaxies

billions of light years away. Because of its gigantic scale and the fact that it is dominated by empty space, modeling

and rendering the Universe is very different from modeling and rendering ordinary three-dimensional virtual worlds

at human scales. Our purpose is to introduce a comprehensive approach to an architecture solving this visualization

problem that encompasses the entire Universe while seeking to be as scale-neutral as possible. One key element is

the representation of model-rendering procedures using power scaled coordinates (PSC), along with various PSC-

based techniques that we have devised to generalize and optimize the conventional graphics framework to the scale

domains of astronomical visualization. Employing this architecture, we have developed an assortment of scale-

independent modeling and rendering methods for a large variety of astronomical models, and have demonstrated

scale-insensitive interactive visualizations of the physical Universe covering scales ranging from human scale to

the Earth, to the solar system, to the Milky Way Galaxy, and to the entire observable Universe.

Keywords

I.6.9.g Visualization techniques and methodologies, I.6.9.f Visualization systems and software, J.2.c Astron-

omy, I.3.7.g Virtual reality

1 INTRODUCTION

Rapid advances in astronomical measurement technology and supercomputer support of the-

oretical modeling have made extraordinary amounts of data available to the astronomy commu-

nity in recent decades. While accurate three-dimensional spatial data were once limited to the

solar system, we now have spatial data for vast numbers of nearby stars (see, e.g., the Bright

Star Catalogue [23] and the Hipparcos and Tycho Catalogues [18]). Significant progress has

been made on probing the structure of the interstellar medium, including molecular clouds [14]
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and other diffuse objects such as supernova remnants. Multispectral data have enabled the con-

struction of vastly improved models of our own Milky Way galaxy, while the refinement and

correction of redshift data have enabled the collection of enormous data sets of 3D galaxy po-

sitions (see, e.g., Tully [42] and the Sloan Digital Sky Survey [2, 41]). Even such difficult

systems as extrasolar planets [36] now have specific orbits available. These data sets give us

three-dimensional information for a wide variety of astronomical objects, and, altogether, they

provide the raw data for a three-dimensional virtual Universe that one can in principle explore

in detail through large-scale visualization techniques.

Research on large-scale visualization has traditionally focused on the processing and organi-

zation of data, and has targeted visualization solutions that maximize the amount of data one

can access. While these are indeed very challenging problem domains that push the limits of

graphics hardware and stimulate innovation in visualization techniques, the physical Universe

poses its own special challenges: We not only have to deal with a large amount of data, we also

have to deal with the gigantic spatial scale of the physical Universe. Thus, instead of focusing

on a particular kind of data, this paper deals with the unique aspects of large spatial scale in

visualizing the physical Universe, and introduces a scale-neutral visualization architecture as a

powerful tool for modeling, rendering, navigation, and exploration in this gigantic space.

This work was motivated by the concept of constructing an interactive implementation of the

framework suggested by the film, “Powers of Ten” [10], by Charles and Ray Eames. In order to

produce a virtual journey across the scales of the Universe, a selection of which are represented

in Table I, this film exploited the powers-of-ten idea suggested by the book Cosmic View: The

Universe in Forty Jumps by Kees Boeke [9]. The Eames film was itself annotated in a companion

book “Powers of Ten” [31], by Philip Morrison and Phyllis Morrison.
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TABLE I
BASE 10 LOGARITHMS OF SCALES OF TYPICAL OBJECTS IN THE PHYSICAL UNIVERSE IN UNITS OF METERS

Typical objects Powers of 10 (meters)
Observable Universe (Quasars, etc.) 27
Super-clusters 25
Clusters of galaxies 24
Size of Virgo cluster 23
Distance to Andromeda galaxy 22
Milky Way diameter 21
Distance to Orion arm 19
Distance to the nearest stars 17
Size of the solar system 13
Venus, Earth, and Mars 11
Earth-Moon distance 9
Earth diameter 7
San Francisco 4
Human scale 0
Micro-Organisms / Hair Thickness -4
Size of a red blood cell -5
DNA Structure -8
Carbon Nucleus -14
Quarks -16
Planck length -35

Our challenge is thus to adapt the realities of computer architecture and graphics systems to

the task of a continuously scalable visualization of the 3D Universe. This paper extends, expands

upon, and fills in the essential details outlined in our initial work [22] to achieve a more complete

and comprehensive framework, including the following principal contributions:

• A unified framework for modeling large spatial scale that permits us to effectively represent

and transform positions and vectors, and to render models at any arbitrary scale within the range

of physical objects in Table I.

• An assortment of scale-motivated techniques, including the PSC transformation, the depth

rescaling method, environment caching, and object disappearance criteria.

• Implementation of scale-independent modeling and rendering of various astronomical bodies,

e.g., stars, galaxies, etc., permitting us to properly render them across huge viewing scales.
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1.1 Related Work

Among the pioneering applications of computer graphics to the study of outer space as well

as basic science are Blinn’s set of animations: “Voyager Fly-by Animations” [5] (1977–87),

“COSMOS” [6] (1979–80), and “The Mechanical Universe” [7] (1983–86). These animations

simulate the Voyager 2 fly-by of Jupiter and the Pioneer 11 fly-by of Saturn, and employ view

positioning methods described by Blinn in [8]. Another influential astronomical simulation was

Whitehouse’s physical simulation of the head-on collision between the Comet Shoemaker-Levy

9 and Jupiter [48]. Stytz et al. [40], among others, built a comprehensive solar system modeler

with accurate planetary motions. Ostriker and Norman [35] at NCSA proposed a framework for

simulating cosmology, and reviewed the related requirements in high performance computing,

file management, and visualization systems. Commercially-oriented animations such as Cosmic

Voyage [33] were produced by the NCSA group for IMAX audiences. Genetti and Nadeau et

al. [19, 32] simulated a fly-through of a 3D model of the Orion Nebula using volume render-

ing [50]. This material was incorporated in both the Hayden Planetarium show “Passport to the

Universe” and the animation “Volume Visualization of the Orion Nebula [17].” Kahler et al. [27]

at NCSA used a supercomputer and AMR (adaptive mesh rendering) methods to simulate the

life-span of a star, while Turnage [43] presented a physical simulation of a supernova explo-

sion and its shock wave. Among other interesting contributions to the field are those of Hopf

et al. [25], who developed a PCA-based splatting technique for rendering dynamic point-based

data, Baranoski et al. [4], who proposed a rendering method for simulating the Aurora Borealis

(the Northern Lights), Jensen et al. [26], who devised a physically-based model to render the

night sky as seen from Earth, and Magnor et al. [30], who developed an interactive visualization

tool for rendering arbitrary dust distributions around a central illuminating star.
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1.2 Related Software

In the late 1980s, due to the limited computational power of hardware, astronomy simula-

tion software was generally restricted to 2D star chart programs or simple solar system model-

ers. With the rapid advances in gaming-motivated graphics acceleration, more software became

available to the general public such as Starry Night, Digital Universe, and Voyager. Although

some of these do provide a certain level of 3D navigation in the solar system and nearby stars,

the features tend to be focused on supporting 2D star charts for amateur stargazing. In recent

years, some popular open-source projects such as Celestia [28], Stellarium [11], and Open Uni-

verse [3] have been developed with higher-level VR capabilities. Under appropriate conditions,

one can detect noticeable discrete motion errors in nearby objects at large scales, indicating the

fact that the handling of spatial scales does not consistently avoid precision errors in large-scale

cosmological space. While a selection of problems can be handled using extended precision

arithmetic, which enables Celestia, for example, to support an exponential zoom feature to visit

nearby galaxies, our framework addresses additional important issues such as adapting to the fi-

nite precision of a given depth buffer, dealing with the compression of the depth buffer ranges to

unusable overlapping layers, and the selective exploitation of commodity hardware acceleration.

In the movie industry, Loren Carpenter developed the Star Renderer, which was then inte-

grated into Pixar’s commercial particle renderer called Starman and used in the IMAX film

“Cosmic Voyage [37].” Welling [46] of the Pittsburgh Supercomputing Center implemented his

own star rendering method, which was then used to create animations for astrophysical parti-

cle simulation data. Stuart Levy at NCSA developed the “partiview” visualization system [29],

which provides real-time navigation of astrophysical environments across interstellar / inter-

galactic scale, and is incorporated into various simulation projects at NCSA and the Hayden
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planetarium. Furthermore, Cox et al. at NCSA developed the Virtual Director software [13] as

a CAVETM tool for constructing navigation paths to be used for animation design.

1.3 Problems with Large Spatial Scale

Three-dimensional astronomical visualization systems that go beyond the basic task of dis-

playing the night sky as seen from Earth and reach out to cosmological distances suffer from a

wide spectrum of precision problems. Due to floating point precision limits, a variety of fea-

tures such as coordinate representation, matrix transformations, and depth buffering may have

unreliable behavior; thus, large-scale, three-dimensional visualization systems typically preserve

computational stability by limiting the navigation range. One simple solution is to create one

specific virtual environment for each specific visualization range, e.g., the solar system, inter-

stellar space, and intergalactic space. Such a system can then switch the virtual environment “by

hand” when the user makes a transition between these scales along a given 3D path.

Other implementations and animations ignore the physical scale, and artificially adjust the

spatial scale in the virtual space by making the astronomical bodies arbitrarily closer or bigger

so that everything becomes renderable at a convenient (but physically imprecise) scale. These

approaches are sufficient for conventional planetarium presentations and astronomy animations

that are based entirely on pre-rendered material. However, with the growing demand for real-

time interactive control and exact scientific accuracy in visualization applications, the need for

comprehensive approaches that handle all scales in a single context has become apparent.

1.4 Overview

The scalable visualization architecture that we have designed consists of three layers, as de-

picted in Figure 1. The bottom layer is the data representation layer, which employs the power
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scaled coordinates (PSC) to represent coordinates and vectors in an exponentially-scaled form

with a unit-sized base scale for each exponent. The middle layer provides four inter-related

techniques for rendering objects defined across extreme spatial scales. This layer is independent

of specific features of astronomy and deals with the abstraction of efficient scale-independent

rendering. On top of these techniques, we have the virtual astronomy layer responsible for

modeling and rendering different kinds of astronomical bodies.

Fig. 1. The Transparently Scalable Visualization Architecture.

2 PSC REPRESENTATION AND TRANSFORMATION

2.1 Power Scaled Coordinates

In order to handle the demands of scenes with extreme spatial scales, we represent spatial

quantities such as coordinates and vectors using logarithmic scaling methods. We refer to our

data representation power scaled coordinates (PSC); we first began working with this method

in the Siggraph 2000 animation “Cosmic Clock [21]” and in our related earlier work [22] ad-

dressing the problems encountered. Power scaled coordinates are composed of a four-tuple,

(x, y, z, s) representing the 3D position (x, y, z) × k s

where k is any positive exponent base, usually chosen as 10. Based on this construction, the

PSC representation nicely decouples the directional term (x, y, z) and the exponential scale term

s from a given 3D coordinate so that we can effectively represent positions of objects at either

galactic or sub-atomic scales in a uniform fashion. Note that a power scaled coordinate is said
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to be normalized if its directional term is a unit vector. Furthermore, there is a strong duality

between PSC and homogeneous coordinates that led us to refer to it as “power homogeneous

coordinates” in our earlier work. Just as standard computer graphics practice reduces a homo-

geneous coordinate defined by the equivalence X = (x, y, z, w) ≡ (λx, λy, λz, λw) to a standard

(inhomogeneous) coordinate by choosing λ = 1/w, we use the equivalence

(x, y, z, s) ≡ ( λx , λy , λz , s − logk λ ) ≡ ( λx , λy , λz , 0 )

to reduce a PSC to a standard (inhomogeneous) coordinate by choosing λ = ks, so that making

s = 0 has a strong parallel to setting w = 1 in homogeneous coordinates.

The PSC representation is also similar in spirit to Ward’s RGBE pixel intensity format [45];

RGBE encodes high dynamic range images by using the exponential term E while PSC repre-

sents high dynamic range spatial data by using the exponential term s. We note also that hard-

ware shader programming can be exploited within a standard graphics system to express PSC’s

directly through the 4th coordinate component w, for example, as supplied by the OpenGL ver-

tex subroutine glVertex4. We will illustrate this approach step by step in subsequent sections.

2.2 The PSC Transformation

By using power scaled coordinates, we can represent spatial data in scale-independent form.

We now extend this idea down to the low-level coordinate transformation environment of the

graphics system so that we can support scale-independent processing of three-dimensional ver-

tices in the graphics pipeline. In the standard OpenGL graphics rendering pipeline, transfor-

mations are implemented by matrix multiplication; all matrices, coordinates, and vectors (both

input and internal) involved in the usual transformation process are phrased in terms of homoge-

neous 4-vectors. To exploit shader programming concepts, we implement the PSC transforma-
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tion method at the GPU level, typically in the vertex program, so that PSC replaces the standard

homogeneous coordinates as the vertex representation. In other words, we accept vertices in the

PSC-in and PSC-out format in the modelview transformation process.

In general, the standard modelview matrix is a 4-by-4 matrix, usually decomposable into two

parts: a 3-by-3 submatrix in the top-left corner, say A, and a 3-by-1 vector in the last column,

say ~T . Normally, the matrix A is responsible for scaling and rotation while the vector ~T is for

translation. The last row is usually (0, 0, 0, 1) before the application of the projection matrix

(frustum). Given a 3D world coordinate ~vworld, the modelview transformation can be written as:








A ~T

0 1









( ~vworld , 1 )t =
(

A (~vworld)t + ~T , 1
)t

.

Here,~vworld is first rotated and scaled by A, and then translated by ~T . If~vworld is expressed as a

power scaled coordinate, say ~vworld = (vx, vy, vz, vs), using an ordinary 3D vector for ~T could be

insufficient because~vworld could be arbitrarily large or small while ~T always has a fixed scale. We

adopt the notation that PSC’s are bold-face vectors, and extend the modelview matrix framework

for dynamic spatial transformations:

We attach an exponential term ts to the modelview matrix so that ~T becomes

a power scaled vector, say ~T = (tx, ty, tz, ts).

Therefore, we can re-write the modelview transformation expression above by using PSC’s; if

we express the result in three-dimensional vector form, we have

A















vx

vy

vz















kvs +















tx

ty

tz















kts

.
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It is worth noting that the multiplication between ~vworld and A is independent of the exponential

term vs and is just an ordinary matrix-vector multiplication; by normalizing the multiplication

result and re-adjusting vs, we will have a normalized PSC, say ~P = (px, py, pz, ps), for the left

hand side of the expression. Furthermore, to ensure stability under addition, we take

~P + ~T =















( pxk−δs + tx , pyk−δs + ty , pzk−δs + tz , ts ) if δs ≥ 0

( px + txkδs , py + tykδs , pz + tzkδs , ps ) otherwise ,

where δs = ts − ps (provided ~T has been normalized).

In fact, the ts term attached to the modelview matrix works in exactly the same way as the

exponential scaling factor in a “Powers-of-Ten” context. Adjusting ts can exponentially scale

the physical data space (world space) against the virtual camera space (eye space). The camera

setting is unaffected during the change. In our framework, by putting this scaling factor into the

context of the modelview matrix, we precisely formulate a mathematical model for the powers-

of-ten transformation in 3D. The camera always utilizes a fixed order-unity scale while the data

are scaled relative to the camera space. In addition, the reader may notice that we could in

principle adjoin three exponential terms to the scaling part of the matrix; however, because we

seldom have non-uniform scaling in astrophysical models, these scaling terms would be of little

utility; ts will suffice, and also serve to support computational efficiency in the shader program.

3 THE DEPTH RESCALING METHOD

3.1 The Depth Rescaling Model

To address possible precision problems in the projection transform, we introduce the depth

rescaling method for projecting objects across extreme scales. This method is again PSC-based.

The idea of depth rescaling is as follows: given an object far beyond the far plane, if we shrink
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all its vertices along their lines of sight towards the eye point, its effective size will decrease and

it will become viewable at the camera without explicitly extending the distance of the far plane.

Since all vertices are distorted in the same manner along their lines of sight, we will not notice

any difference at the camera location because the camera is fixed at the eye-space origin, where

all lines of sight intersect. We call this scaling technique the depth rescaling method, and the

underlying geometric model for distorting eye-space coordinates the depth rescaling model. In

addition to the near and far planes provided by the standard projection model, the depth rescaling

model introduces the near cutoff plane and the far cutoff plane as shown in Figure 2.

Fig. 2. The Depth Rescaling Model.

This projection model is motivated by the well-known fact that the depth buffer utilization

is strongly influenced by the ratio between near-far-plane distances. To circumvent this, we

segment the ordinary viewing frustum into three sub-regions and map them onto the depth buffer

individually. For the two outer regions, we map eye-space coordinates logarithmically to the

front and rear parts of the depth buffer. These two regions are called the near safety region

and the far safety region because they allow reliable depth buffering for objects too near or too
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far from the eye point to be handled by the near and far clipping planes without significant

loss of depth precision. On the other hand, we map the middle region, the linear cutoff region

comprising the principal domain of attention, to the middle part of the depth buffer either linearly

or using standard projection models. The positions of the near and far planes as well as the two

additional cutoff planes are intrinsically defined in logarithmic scale, that is, snear ≤ snear cutoff ≤

sfar cutoff ≤ sfar, and distances are mapped to the depth buffer according to the heuristic utilization

ratios: 0 ≤ nearRatio ≤ farRatio ≤ 1. Note that for cosmic-scale exploration, we may turn off

the near safety region so as to optimize the depth buffering and the shader computation; for

microscopic worlds, we might have to do it the other way around.

3.2 Mathematics Details of Depth Rescaling

The following mathematical procedures implement the depth rescaling process:

1) Z-Normalization The end result of the PSC modelview transformation is an eye-space

power scaled coordinate, ~veye. In order to know in which region ~veye is located, we normalize it

and compare its log distance from the eye-space origin to the log distances to each separating

plane given in the depth rescaling model. Since the distances to these separating planes are

measured along the eye-space z-axis, we do not apply the conventional PSC normalization:

instead, we normalize ~veye = (xeye, yeye, zeye, seye) to ~v′

eye = (x′eye, y′eye, z′eye, s′eye) so that



























z′

eye = ±1 if zeye 6= 0,

max( |x′

eye| , |y′

eye| ) = +1 if zeye = 0, and either xeye 6= 0 or yeye 6= 0,

s′

eye = −∞ (or −FLT MAX) if xeye = yeye = zeye = 0 .

We refer to this specialized type of normalization as z-normalization, where z′eye is always +1,

−1, or 0; thus, the z-distance of ~veye from the origin depends solely on s′eye. Although it seems

redundant to z-normalize PSC’s when zeye = 0 or zeye is in front of the near plane, it is necessary
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to guarantee proper homogeneous clipping by the graphics hardware.

2) Mapping to the Depth Buffer (zNDC) After obtaining s′eye by z-normalization, it is straight-

forward to map s′eye to a depth buffer value (or to the normalized device coordinates (NDC), say

zNDC ∈ [−1, 1]) based on the depth rescaling model depicted in Figure 2.

• If s′eye ∈ [snear cutoff, sfar cutoff], zNDC is found by linearly interpolating 10s′eye in [10snear cutoff , 10sfar cutoff].

• Otherwise, we linearly interpolate s′eye in the range [snear, snear cutoff] or [sfar cutoff, sfar] instead.

The mapping from s′eye to zNDC is continuous and strictly increasing even at boundaries between

sub-regions. Thus, we can preserve depth ordering of eye-space coordinates after mapping to

the depth buffer, ensuring correct visibility resolution.

3) Rescaling Eye-Space Coordinates Finally, we have to rescale ~v′

eye according to zNDC. The

method contains some subtleties: in order to reuse the settings in the user-supplied projection

matrix for clip-space coordinate output, we back-project zNDC to the eye space by inverse pro-

jection, and rescale ~v′

eye along its line of sight so that its z value matches the back-projected z. So

long as ~v′

eye is located inside the given depth-rescaling model, the rescaled eye-space coordinate

will always lie inside the user-defined viewing frustum. Therefore, we can precisely compute

clip-space coordinates based on the user-supplied projection matrix.

It is important that all eye-space coordinates have to go through the above operations so

that the entire eye space is scaled down in a uniform manner consistent with the given depth

rescaling model. We can thus preserve depth ordering and ensure proper homogeneous clipping

for polygons crossing the canonical viewing frustum. Furthermore, note also that the way we

rescale coordinates in orthographic projection is slightly different because the lines of sight are

all parallel in orthographic projection.
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(a) Depth Buffering Error with Bare Rendering (c) With Linear Cutoff Region (100 up to 1085 units)

(b) Depth Buffering Error Corrected (d) Without Linear Cutoff Region (100 up to 1085 units)

Fig. 3. Demonstration: Rendering scenes with very large spatial range. Notice the proper polygon clipping in (b),
(c), and (d). Note that the depth buffer view is a side view in (a) and (b), and a top view in (c) and (d).

3.3 Examples: Scenes with Large Spatial Range

Figure 3 demonstrates the application of the PSC transformation and the depth rescaling

method to the problem of rendering scenes with very large spatial ranges. Each sub-figure con-

tains two views; the screen view on the left shows the rendering result, while the depth buffer

view on the right plots the corresponding depth buffer in 3D. In the scene, the textures on the

polygons label their powers-of-ten distances from the world origin.

Figure 3(a) presents the bare rendering of the scene without any PSC support. We can see

from the depth buffer view that most polygons cluster near the far plane and depth buffering

anomalies appear in the screen view due to limited precision. With PSC support turned on,

Figure 3(b) shows the corrected view and the depth buffer is much better utilized. Figures 3(c)
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and (d) demonstrate the mapping in the depth rescaling model; though the two screen views

are the same, the way we utilized the depth buffer is different. The scene shown in these two

sub-figures ranges from 100 up to 1085 units in the world space.

4 PSC ACCELERATION TECHNIQUES

The physical Universe is a highly inhomogeneous large-scale environment filled mostly with

empty space. These properties can be exploited and incorporated into a family of specific accel-

eration techniques described in this section.

4.1 The Environment Caching Criterion

Our first technique applies when we travel within a limited region (e.g., the solar system)

that contains detailed information, but is so far from other visible models that those models

(e.g., stars and galaxies) are effectively stationary background for motions within the region.

Similar to the imposter method [38], when these background models are too far away from our

navigation region for camera motion to affect their renderings, we can cache their renderings in

the form of image-based objects or on a panoramic background surface, and thus avoid rendering

these objects every frame. The navigation region is called the safety region and the criterion for

a pre-rendered background is called the environment caching criterion.

Figure 4(a) depicts the geometric model for environment caching. Given θpixel, the maximum

angular size of a pixel on screen, and 2θplx, the maximum parallax angle, we can express the

criterion in the form of the following rule:

If 2θplx < kθpixel for some non-negative k, objects that are 10L units away will not move

more than k pixel units on the screen if the safety region of the camera has radius 10S units.
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c) VP-Tree Pruning

a) The Environment Caching Criterion: S + δ(k) < L

b) The Object Disappearance Criterion: R + δ(k) < L

Fig. 4. The acceleration criteria. Since 10 L
>> 10 S and 10 L

>> 10 R, drawings are not to scale.

Using simple geometry, we have

2 sin−1(10S−L) < kθpixel

S − L < log10(sin(kθpixel/2)) , where we define δ(k) as log10(sin(kθpixel/2)).

For a screen size of 1024 × 1024 and a field-of-view of π/3, δ(1) ≈ 3. 29, so we can cache

objects with distances from the safety region greater than 1016.29m with 1-pixel fidelity when

moving in the solar system. Due to the large empty spaces between different local navigation re-

gions, such as solar systems, star clusters, and galaxies, we can exploit this criterion to accelerate

rendering during local navigation for a number of different environments in the Universe.
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4.2 The Object Disappearance Criterion

Our second method deals with the case where far-away objects are too small to be observable

on the screen. If we compare Figures 4(a) and (b), we can see that the two criteria are actually

duals of each other. If we interchange the location of objects and camera, θplx (and 10S) and θobject

(and 10R) are swapped, and we can obtain the equation for the object disappearance criterion

shown in the figure. The precise form of the rule is the following:

If 2θobject < kθpixel for some non-negative k, objects whose radius is 10R units will not

occupy more than a disk k pixel units in radius on the screen if they are 10L units away

from the camera.

When applying this criterion, it is important to note that it is not necessarily correct to ignore

the rendering of all small objects; bright objects of subpixel extent, rendered against a very dark

background, may deposit a visible amount of energy into a pixel. For this situation, we switch

to star rendering mode to handle small bright objects, rendering them based on their apparent

brightness. These two criteria do not conflict with the PSC transformation method and the depth

rescaling method; instead, the two transformation methods enable large-scale rendering while

the two acceleration criteria optimize the performance of the large-scale rendering.

4.3 Hierarchy Rendering using Vantage Point Tree

The idea of using spherical region classification to accelerate large-scale rendering can be

further extended by applying the Vantage-Point tree (VP-tree) [12, 49] for modeling and ren-

dering point-based data such as stars and galaxies. The VP-tree is a data partitioning structure

constructed so that each non-leaf node contains a partitioning sphere with a center in PSC and a

radius encoded by a logarithmic scale. Individual stars are normally stored at leaf nodes while
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partitioning spheres cluster stars in a hierarchical structure. By building VP-trees for stars and

galaxies, we achieve the following advantages:

• First, we can transparently apply the object disappearance criterion to render star clusters

instead of just stars. During the tree traversal, if a star cluster is too small to be viewable, we can

render the whole cluster as if it is a single star. Note that, for efficiency, we will pre-store star

rendering information at internal nodes.

• Secondly, the hierarchical structure facilitates data pruning. As shown in Figure 4(c), if a

certain partitioning sphere is out of the camera view, we can quickly identify the associated star

cluster and skip any attempt to render the stars in the cluster.

• Finally, efficient spatial search is straightforward, e.g., we can find the stars near to the current

viewpoint. An efficient N-nearest neighbor search algorithm for the VP-tree is given in [12,49].

5 VIRTUAL ASTRONOMY: SCALE-INDEPENDENT MODELING AND RENDERING

The top level of our scalable visualization architecture is the virtual astronomy layer responsi-

ble for modeling and rendering different astronomical bodies. In this section, we present render-

ing techniques for stars and galaxies. Specific examples are based on the Hipparcos and Tycho

Catalogues [18] from ESA and the Tully Galaxy Catalog [42].

5.1 Modeling and Rendering Stars

The following steps implement 3D modeling and rendering for stars:

1) Star Positioning The distance to stars is measured by the angular displacement given the

two-AU observational baseline, where AU is the “Astronomical Unit,” the mean Earth-Sun dis-

tance. The angular displacement is usually a very small angle, called the parallax, and is in-

versely proportional to distance. Astronomers traditionally employ a parallax-motivated dis-
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tance unit called the parsec, defined to that

distance (parsecs) = 1/parallax (arc-seconds) .

Note that error in parallax measurement is important; the error term should be taken into account

when calculating distances in the above equation (see Appendix A.1). The equatorial coordinate

system [20, 44] locates directions to stars and thus positions them in space. Figure 5 illustrates

the positional uncertainty of star locations in two different scales, showing increased parallax-

based errors at larger scales.

Fig. 5. Visualizing positional uncertainties: Red bars denote the error, which increases for stars further away from
Earth due to the nature of parallax measurements.

2) Visual/Apparent Magnitude If we consider actual diameters of stars, only a few stars (e.g.,

Betelgeuse (Alpha Orionis)) have sizes observable from Earth even with the world’s most pow-

erful telescopes. However, since starlight comes to us from a very dark background, we can

classify stars based on their visual brightness as well as their spectra. Astronomers estimate

distance based on a star’s brightness using the magnitude equation,

M − m = 5 − 5 log10 d ,
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where M is the absolute magnitude, m is the apparent magnitude, and d (in parsecs) is the

distance to the star from the viewer. With m and d measured from Earth, we can pre-compute

M for each star so that, during the navigation, we can compute log10 d on-the-fly and determine

m for each star accordingly. Furthermore, to compute m for star clusters in the VP-tree, we can

sum up the star luminosity in the cluster (see Appendix A.2). Note that M is not additive.

3) Star Profiles from Photographs To work out star sizes from m, we developed the following

photograph-based method:

1. Register photographs to star locations by minimizing L2 error at point correspondences.

2. Extract star sub-images from photographs by matching the star profile.

3. Construct a lookup table for visualizing sizes of stars as a function of apparent magnitude m.

Fig. 6. Left: Extracting star sub-images from photographs. Right: Using measured magnitude (brightness) and
spectrum (B-V color index) from multiple image sources to construct a lookup table.

Step 1 may require human intervention to locate some initial point correspondences, while the

other two steps are fully automatic. Figure 6 illustrates the extraction process.

4) Star Rendering Finally, stars are rendered in 3D as textured billboards using the PSC trans-

formation and the depth rescaling method. To apply colors to stars, we exploit the B-V color

index [34] obtained from the star data set. Note that stars have different colors because of dif-
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Fig. 7. Comparing photographs (left) and our renderings (right): Orion and the Big Dipper. Note that we do not
simulate zodiacal light and counter-glow, and the Hipparcos and Tycho Catalogues do not include all the stars
visible in the actual photographs (AAO/ROE, photographs courtesy David Malin).

ferent physical composition and surface temperature. Figure 7 compares our renderings with

actual photographs — notice the sizes and colors of the stars being rendered.

5.2 Modeling and Rendering Galaxies

Unlike stars, which are spheres and typically point-like, galaxies have a variety of observed

extended shapes, i.e., spiral, lenticular, elliptical and irregular. Based on the information given
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in the Galaxy Catalog [42], we employ a level-of-detail approach for galaxy rendering. The

following representations are used in decreasing order of log distance from the viewer:

1) Galaxies as stars Parallax is of no use in determining distances on the galactic scale. To

determine distances to galaxies, we instead apply the Hubble relation between distance and

the velocity of recession, as determined from the spectral redshift (see Appendix A.3). By

convention, we use the supergalactic coordinate system (see Appendix A.4) to locate directions

to galaxies and, if a galaxy is point-like (subpixel size) in the observation region, we render them

as starlike objects in space.

2) Galaxies as Textured Polygons The available galaxy catalog documents the morphological

types of galaxies (see Appendix A.5). Sample photographs of galaxies belonging to each type

have been selected and used as generic texture maps to simulate the appearance of morphological

types for which we have no suitable direct image (see Appendix A.6).

3) Galaxies in 3D Currently, a statistical particle model based on the Goddard Milky Way

Model [16] is used to represent the structure of the Milky Way Galaxy, for which only nearby

stars can be assigned accurate 3D positions. Similar models are in principle applicable to other

galaxies for which detailed geometric information is available.

6 IMPLEMENTATION AND RESULTS

6.1 System Implementation

Our generic scalable visualization architecture is built as a module-based system, which in-

cludes the PSC module, modules for modeling and rendering, the navigation module, and the

interface module. The major advantage of the design is that we can deliver a flexible develop-
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TABLE II
AVERAGE FRAME RATES FOR THE PSC LIBRARY API RENDERED WITH/WITHOUT SHADERS (IN FRAMES

PER SECOND)

GeForce4 440 Go (Mobile) Disable Shader (CPU) Enable Shader (GPU)
Notebook (1.66GHz CPU) Don’t Care Fastest Nicest Don’t Care Fastest Nicest
Perspective cutoff 653.42 647.89 552.13 243.67 273.98 264.37

nocutoff 744.72 744.53 641.25 267.88 299.05 282.18
Orthographic cutoff 552.56 555.81 494.06 224.49 246.11 237.57

nocutoff 614.15 621.56 537.21 235.92 260.24 250.81

GeForce 6800 Ultra Disable Shader (CPU) Enable Shader (GPU)
Desktop (3.2GHz CPU) Don’t Care Fastest Nicest Don’t Care Fastest Nicest

Perspective cutoff 1052.07 1057.40 930.83 1140.10 1149.95 1106.21
nocutoff 1123.20 1126.50 1086.52 1140.86 1152.15 1108.52

Orthographic cutoff 907.59 916.27 823.67 1107.70 1117.50 1072.02
nocutoff 988.65 995.40 885.45 1122.67 1129.72 1088.57

ment platform for implementing different applications and animations; we can pick up individ-

ual modules for specific applications and enhance the system functionality by adding in more

modules. Several visualization applications have been developed and a twenty-minute long ped-

agogical animation entitled “Solar Journey” has been produced based on this modular system.

The PSC Module This module offers a library API that realizes the PSC transformation method

and the depth rescaling method. Two versions were developed: a direct software implementation

and a GPU-based implementation using OpenGL shaders.

Table II summarizes the rendering performance on different platforms. An animation se-

quence showing textured polygons from 10−30 to 1030 (see Figure 3) is rendered, and the average

frame rate is recorded for each case. Like the OpenGL command glHint, we have three levels

of PSC computations, don’t care, fastest, and nicest, to trade off accuracy and efficiency.

From the table, we can see that using perspective projection is faster than using orthographic

projection; using shaders on a relatively slow mobile GPU may not improve the rendering per-

formance, while ignoring the linear cutoff region can understandably improve the performance.

Modules for Modeling and Rendering In terms of efficiency and scalability, we maintain
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individual modules for each type of astronomical object, e.g., galaxies [42], the Milky Way

Galaxy [16], stars [18, 36], the solar system [39], satellites [24], etc. Each module contains a

data loader and a PSC-based renderer for proper rendering of objects across huge viewing scales.

The Navigation Module This module provides effective exploration in spaces with large scale-

range requirements:

• Travel: Use PSC-supported camera paths or constrained navigation manifolds [47].

• Wayfinding: Exploit navigation cues such as powercubes for depicting spatial scale and cus-

tomized depiction of neighboring stars/objects using scalable maps.

• Animation scripting.

The Interface Module This module connects rendering tasks, navigation, and the application.

It not only optimizes the rendering and navigation performance, but also provides a development

basis for implementing different applications and animations on top of the system architecture.

6.2 Visualization Results – A Powers-of-ten Journey

Figures 8(a)-(l) depict a powers-of-ten journey across the physical Universe from the Earth to

extra-galactic scales. To reveal the depth buffer utilization, we apply the same presentation style

as in Figure 3 and plot the depth buffer of the screen view on the right. Note that for efficiency

in large-scale rendering, we turn off the near safety region in the depth rescaling process.

The journey begins with a view of the Earth and the International Space Station (labeled in

red with a yellow comet trail) in the morning over North America. Satellite positions are tracked

using a real-time-based computer clock. Moving outward from the Earth, we find a ring of

geostationary operational environmental satellites (GOES) about 3. 58 × 107m above the Earth.

We can clearly see from the depth buffer view that satellites and Earth are rendered into the linear
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(a) The International Space Station (ISS) over the Earth (107m) (b) Satellites [24] (∼ 1000) surrounding the Earth (108m)

(c) The solar system [39] (inner planets) (1012m) (d) The solar system (outer planets) (1013m)

(e) A multi-planet solar system (HD95128) (1017m) (f) Pleiades (visualizing space velocity of stars) (1018m)

Fig. 8. A Powers-of-Ten Journey – a scale-independent visualization of the three-dimensional physical Universe.

cutoff region while stars are rendered into the far safety region. Moving still further from the

Earth, we pass through the inner and outer planets of the solar system — stars remain in the far

safety region because they are still too far away to matter. After reaching the interstellar level, as

shown in sub-figure (e), the stars enter the linear cutoff region and we arrive at the multi-planet

solar system of star HD95128, with two extrasolar planets. Farther along our path, we visit the
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(g) Extrasolar planets [18, 36] (1018m) (h) Spiral arm of the Milky Way Galaxy [16] (1021m)

(i) The Milky Way and Large Magellanic Cloud (1022m) (j) The Local group: Milky Way and Andromeda (1023m)

(k) The Virgo cluster (1024m) (l) The Galaxy catalog [42] (1025m)
Fig. 8 (cont.).

Pleiades in the constellation Taurus and show an interesting visualization of the stellar space

velocities (shown as comet trails). Stars in the Pleiades cluster are seen to be moving together

with very similar velocities. Note that in making this visualization, we combine the star proper

motion in the Hipparcos and Tycho Catalogues [18] with an additional radial velocity catalog so

as to obtain full 3D space velocity.

We then travel past the interstellar scale and reach the Milky Way Galaxy scale. The Milky
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Way Galaxy is no longer a background image in the sky, but is re-expressed as a three-dimensional

body renderable in the linear cutoff region. Going further outward brings us to the Local Group,

which includes the Milky Way Galaxy and the Andromeda Galaxy. The powercube visualization

method provided by the navigation module establishes the spatial scale around the Milky Way

Galaxy (see sub-figure (j)). Finally, we pass through the Local Group and the Virgo Cluster, and

begin to access the largest scale data set, the Galaxy Catalog [42]. Every point shown in the

rendering is a galaxy containing millions or billions of stars. The PSC transformation method

facilitates exploration and rendering, while the depth rescaling method enables an efficient and

proper depth buffer utilization; thus we never have to worry about depth anomalies so long as

we identify appropriate far-away objects and place them in the far safety region. The scalable ar-

chitecture thus makes a continuous exploration of the Universe feasible without regard to scale.

6.3 Development Results – Application and Animation

In addition to journeying through the cosmos, we can employ our system architecture to

produce an assortment of visualization applications for visualizing a detailed interstellar envi-

ronment, for aligning photographs or 3D models in the night sky, as well as for data-driven gas

cloud construction. A number of these tools have been put into practice by astronomers and are

in the process of being distributed to the astronomy community. The system architecture is also

valuable for creating animations for pedagogical presentations of astronomy concepts, e.g., the

system was used to produce the “Solar Journey” planetarium-style animation, which explores

the properties of interstellar objects surrounding our solar system and exposes the features of the

interstellar space through which our Sun travels.
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7 CONCLUSION AND FUTURE WORK

This work presents a comprehensive visualization architecture for exploring the physical Uni-

verse regardless of its component scales. By exploiting the power scaled coordinate representa-

tion, we can efficiently manipulate spatial data at huge or sub-atomic scales in a uniform fashion.

Motivated by the exponential zoom idea in the “Powers of Ten” film, the PSC transformation

method precisely incorporates the exponential scaling factor into the context of the modelview

matrix for large-scale exploration. The depth rescaling method then compensates for extreme

projection ranges so that we can fully control potential anomalies in the depth buffering. The

two acceleration criteria and the VP-tree structure further optimize the rendering performance

for gigantic environments with huge scale differences. Based on these techniques, the virtual

astronomy layer can support scale-independent modeling and rendering so that we can safely

implement star rendering, galaxy rendering, and various rendering strategies for different as-

tronomical bodies. The module-based system provides us with the flexibility to extend the

system to additional data domains. Some modules have been exported to SGI for their digi-

tal planetarium projects. Several scientific visualization applications have been developed, and

an educational animation has been produced utilizing the system architecture.

We envision future efforts that replace the virtual astronomy layer with some layers supporting

visualization applications based on physical data from the Planck-length scale up to nuclear,

molecular, and human scales as well as astronomical scales. On the other hand, it is interesting

to observe that the powers-of-ten phenomenon is not limited to space; we also have extreme

scale ranges in time, mass, density, energy, as well as other physical quantities. Visualization

methods exploring these quantities and implementing additional scalable architectures would be

of further interest for science and education.
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APPENDICES

A. 1 Distance to Stars Given plx and 4plx as the parallax and its error term, we need higher-order approximations to compute

the distances:

Distance to stars ≈ 1
2

[ 1/(plx + 4plx) + 1/(plx −4plx) ] = 1/plx ·
"

1 −
„

4plx
plx

«2
#

−1

≈ 1/plx + (4plx)2/plx3 .

Note that this kind of precautionary operation can be easily overlooked, but for accurate visualization, we have to be very careful

when computing measured quantities with significant errors.

1 astronomical unit (A.U.) = 1. 495979 × 1011 m

1 light-year (ly) = 9. 460528 × 1015 m

1 parsec = 3. 085678 × 1016 m

A. 2 Star Magnitudes and Luminosity

• Luminosity – total energy a star gives off per second

• Apparent magnitude m – brightness of a star as it appears to us

• Absolute magnitude M – equals m if a star is 10 parsecs away

The astronomer’s rule of thumb is that a difference of 5 magnitudes corresponds to a factor of 100 in brightness. The smaller

the magnitude the brighter a star is. Thus, we can define

relative luminosity, L = ( 5
√

100)−M ,

so that we can sum L for star clusters. Note that for efficiency, astronomers often approximate 5
√

100 by 2. 5 in the calculation.
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Furthermore, we can adjust rendering exposure by linearly scaling L.

A. 3 The Hubble Relation

V (velocity of recession) = H × d (distance to galaxy)

where H is the constant of proportionality, known as the Hubble constant. A recent result from the Hubble Space Telescope Key

Project [1] in 2001 gives the Hubble constant as 72 ± 8 km/s/Mpc (with an uncertainty of ∼10%).

A. 4 Coordinate Conversion There are three main coordinate systems involved in the modeling of the Universe (see Figure 9):

Fig. 9. The Equatorial Coordinate system (left) and the Galactic Coordinate system (right).

1) The Equatorial (or Celestial) Coordinate system: This is based on the Earth’s rotation around its poles and the Vernal

Equinox direction. We can define Right Ascension (RA) and Declination (DEC) to specify directions in the sky. We refer

readers to [20] for conversions between the Equatorial and the Galactic Coordinate systems.

2) The Galactic Coordinate system: This is based on the Milky Way plane and the direction to the Milky Way center. We

can define Galactic Longitude (l) and Galactic Latitude (b) to specify directions in the sky. Note that we use general rectangular

conversion methods to map RA/DEC and l/b to rectangular coordinates at a distance d from Earth:
8

>

>

>

>

>

<

>

>

>

>

>

:

x = d cos(longitude) cos(latitude)

y = d sin(longitude) cos(latitude)

z = d sin(latitude) .

3) The Supergalactic Coordinate system: The transformation matrix (a rotation) from supergalactic coordinates to galactic

coordinates is:
0

B

B

B

B

B

@

−0. 735742574804 −0. 074553778365 0. 673145302109

0. 677261296414 −0. 080991471307 0. 731271165817

0. 000000000000 0. 993922590400 0. 110081262225

1

C

C

C

C

C

A

.
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Further discussion of this coordinate system can be found in [15].

A. 5 Hubble’s classification Edwin Hubble first proposed the following “tuning fork” diagram (see Figure 10) to classify

galaxies in 1936. A coarser scheme is to flatten this tuning fork and create a morphological number ranging from −5 (Elliptical)

to +10 (Irregular).

Fig. 10. Elliptical → Lenticular → Spiral → Irregular.

A. 6 Positioning Galaxies To position a galaxy’s axial plane, we employ the following quantities provided by the galaxy data:

• (sgx, sgy, sgz) – Cartesian position in supergalactic coordinates

• hpa – hold position angle

• bovera (b/a) – ratio between minor and major axes

• adiam – metric diameter (galaxy diameter along the major axis)

Astronomers define the major and minor axes of galaxies to represent the principal and co-principal axes, respectively, in the

viewing plane (see Figure 11). Then, with coordinates (sgx, sgy, sgz), we can set up the initial position of these axes so that the

major axis is parallel to the SGX/SGY-plane, while the minor axis is perpendicular to both the major axis and the direction to

the galaxy. Next, we define hpa to rotate the two axes counter-clockwise about the direction to the galaxy. Thus, we can align

the galaxy axes (and galaxy photographs) from the Earth’s perspective.

Fig. 11. Positioning axial planes of galaxies.
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To estimate realistic axial planes, astronomers attempt to predict the plane orientation using the following assumption (denote

a and b as lengths of the major and minor axes, respectively): based on symmetry, galaxies are assumed to be circular in shape,

so b is lengthened along the line of sight and the lengths of both axes becomes equal. However, since galaxies are so far away

from us, it is not possible to reliably determine the tilting direction experimentally. In other words, the galaxy plane may be

tilted by +θ or −θ, where θ = cos−1(b/a); In practice, we have to pick the sign at random.
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