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Figure 1: Left: a completed BUNNY puzzle; right: an image sequence (a-d) showing the building of BUNNY from bottom to top.

Abstract

This paper presents a computer-aided geometric design approach
to realize a new genre of 3D puzzle, namely the 3D Polyomino
puzzle. We base our puzzle pieces on the family of 2D shapes
known as polyominoes in recreational mathematics, and construct
the 3D puzzle model by covering its geometry with polyomino-
like shapes. We first apply quad-based surface parametrization to
the input solid, and tile the parametrized surface with polyominoes.
Then, we construct a nonintersecting offset surface inside the input
solid and shape the puzzle pieces to fit inside a thick shell volume.
Finally, we develop a family of associated techniques for precisely
constructing the geometry of individual puzzle pieces, including the
ring-based ordering scheme, the motion space analysis technique,
and the tab and blank construction method. The final completed
puzzle model is guaranteed to be not only buildable, but also inter-
locking and maintainable.

CR Categories: J.6 [Computer Applications]—Computer-aided
design; K.8 [Personal Computing]: Games
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1 Introduction

Computer-aided geometric design methods have been frequently
employed in games and recreational applications. One interesting
example is the papercraft toy modeling application presented by

Mitani and Suzuki [2004], who exploited an assortment of sophis-
ticated computer graphics modeling techniques to turn virtual com-
modity 3D models into tangible papercraft toys that can be touched
and manipulated. In this paper, we present an analogous idea that
transforms commodity 3D models into a new genre of physically
realizable 3D puzzle, the 3D Polyomino puzzle, together with the
essential family of computer modeling techniques required to con-
struct and generate the appropriate puzzle pieces.

While picture-based 2D jigsaw puzzles are familiar and often chal-
lenging in their own right, 3D jigsaw puzzles based on 3D shapes
can introduce interesting new challenges in the process of extend-
ing the puzzle geometry from 2D to 3D. However, if we survey
currently available 3D puzzles, we note that the commonly em-
ployed component shapes are much the same as their 2D jigsaw
puzzle counterparts. Our objective is to go beyond traditional jig-
saw puzzle shapes and to exploit computer-aided geometric design
techniques to generalize a particular family of 2D shapes, known
as polyominoes in recreational mathematics, and employ them as
the component shapes in 3D puzzles. A polyomino is a generaliza-
tion of a domino constructed by connecting n squares edge-to-edge
instead of the two squares of an ordinary domino. These shapes
have been known for a long time, though the nomenclature was
not coined until fairly recently by Golomb [1954; 1994] in a talk
at the Harvard Mathematical Club in 1953. Golomb himself did
pioneering research on this subject, followed by Gardner [1957],
who wrote several interesting articles in Scientific American, thus
popularizing the subject of polyominoes.

Starting with a designated set of polyominoes, we can tile 2D pla-
nar regions with polyominoes in the set; such a tiling is called
polyomino tiling. One well-known example is the popular video
game Tetris invented by the Russian Mathematician Pajitnov in
1985; it uses the five distinct shapes of tetromino (see Figure 2
(left)). Moreover, commercial products using polyominoes are also
available, see the pentomino-based tiling game in Figure 2 (right).
Recreational mathematicians have studied polyomino tiling for
decades, and have investigated a variety of polyomino tiling prob-
lems [Golomb 1994; Putter 1998]. Recently, Ostromoukhov [2007]
applied polyomino tiling to sampling and demonstrated various ap-
plications, including hierarchical importance sampling.



Figure 2: Left: Different types of polyomino; right: Commercial
product Quintillion R©, courtesy of Kadon Enterprises, Inc.

By employing a series of computer-aided geometric modeling
methods, this paper utilizes polyominoes to build a new genre of
3D puzzle model, the 3D Polyomino puzzle. We adapt Polyomino
shapes to provide tilings on parametrized surfaces:

• A valid polyomino tiling on a non-planar parametrized sur-
face domain is a segmentation of the parametrized space into
disjoint regions, where each disjoint region is flattenable and
continuously mappable to a certain polyomino shape in a cho-
sen polyomino tile set.

Polyomino tiling could be well-extended to parametrized domains,
such as the polycube surface, but could typically be distorted after
being mapped onto the actual geometry surface. Hence, after the
surface mapping, the distorted polyomino shapes may no longer
be perfect polyominoes. Though this phenomenon is unavoidable
given the nature of surface mapping, this, however, helps to intro-
duce variation to the puzzle piece geometry. Such a scenario paral-
lels that in conventional 2D jigsaw puzzles, where the shape of 2D
jigsaw puzzle pieces is usually different in the puzzle set so as to
avoid mis-placement of puzzle pieces.

Objectives in constructing the puzzle models. To put this new
genre of 3D puzzle into practice, we compile the following objec-
tives on the construction of the puzzle model geometry:

• Shape – The exposed surface of each puzzle piece has to take
the shape of a certain polyomino in a given polyomino tile set
(deformed in the parametrized surface).

• Thickness – The constructed puzzle pieces have to be thick
enough to support neighboring puzzle pieces.

• Non-intersecting – Neighboring (thickened) puzzle pieces
should precisely touch each other without intersection.

• Buildable – The puzzle is buildable and can be assembled with
a bottom-up building order. We define a puzzle piece as build-
able if it can be inserted into the partially-completed puzzle
model from the outside without being blocked by other pieces
that have been inserted previously.

Contributions. The proposed puzzle modeling framework intro-
duces several novel elements that generalize beyond the explicit
recreational context:

• The 3D polyomino puzzle is a new idea introduced in this
paper, with various new concepts such as non-planar tiling on
parametrized surface, mapping ambiguity, etc.;

• The work cohesively exploits computer-aided geometric de-
sign methods to create a 3D puzzle model, introducing a num-
ber of original geometric construction ideas, including build-
ability of puzzle pieces, motion space analysis, and shape op-
timization.

• A physical realization of a typical puzzle model has been
built. This demonstrates and verifies the feasibility of the var-
ious proposed techniques.

Related work: Tangible toy models and artwork. After Mitani
and Suzuki [2004] created papercraft toy models using a strip-based
method to guide the cutting and unfolding of triangular meshes,
Shatz [2006] designed papercraft models by segmenting 3D meshes
into developable approximations, and Massarwi [2007] made pa-
percraft models using generalized cylinders as the developable sur-
faces. Other than papercraft models, Mori and Igarashi [2007] de-
veloped an interactive user interface system that allows users to ef-
ficiently design and create plush toys, while Weyrich et al. [2007]
developed a modeling system to create bas-reliefs from 3D models.

2 Polyomino Tiling on Puzzle Models
To build a 3D Polyomino puzzle, the first two steps are 1) param-
eterize the surface of an input solid, and 2) tile the parametrized
surface with polyominoes. This section details these two steps.

Surface parametrization and dual graph. Among the surface
parametrization methods [Eck et al. 1995; Tarini et al. 2004; Floater
and Hormann 2004; Clarenz et al. 2004; Boier-Martin et al. 2004;
Dong et al. 2006; Ray et al. 2006; Tong et al. 2006] available to con-
struct quad-based manifolds, we select those appropriate to our puz-
zle modeling objectives: To the extent that it is feasible, we require
the quad-based models to retain the square shape of the generated
quads with minimal stretching and shape distortion. In practice, we
typically employ surface parametrization results from [Tarini et al.
2004; Ray et al. 2006]. Next, we create a dual graph, say G, over
the surface, where each node in G corresponds to a quad region on
the parametrized surface (see Figure 3).

Figure 3: From left to right: the input model BUNNY, a surface
parametrization, and an example dual graph.

Avoiding mapping ambiguity. Now, we can perform polyomino
tiling on 3D models by decomposing G into N -node sub-graphs,
where N denotes the number of squares in the employed poly-
omino shape set. Since our tiling space is no longer planar, we
must avoid certain mapping ambiguities when mapping shapes on
the parametrized surface to the polyomino shapes in a given tile set.
Figure 4 demonstrates some example ambiguous cases — Case 1:
The three interconnected nodes labeled as A, B, and C on the green
tile prevent us from mapping the tile to any pentomino shape; Case
2: Similarly, the blue tile with a ring of five nodes also cannot be

Figure 4: Examples of mapping ambiguities.



flattened and mapped to any pentomino shape; Case 3: Flattening
the yellow tile will undesirably connect nodes D and E; though it
appears to be a P pentomino, the surface region is not continuously
mappable to any polyomino shape.

Node reachability. To facilitate a more efficient polyomino tiling
so that we can avoid partitioning G when generating each tile on the
parametrized surface; here we define the following node reachabil-
ity term, Rk(x), where x is a node in G:
{

R1(x) = the number of yi

Rk+1(x) = Rk(x) + αk
∑

i
Rk(yi) where yi’s are neighbors

of x, yi ∈ G, and k ≥ 1 .

Note that α is a weight factor, typically chosen as 1

5
, and we recur-

sively compute R5 for nodes in G for our standard case that uses
pentominoes. Since polyomino tiling is done by sequentially re-
moving N -node subgraphs from G (see Procedure 1 for the detail),
during the running of the procedure, nodes with small R values in G
are mostly bordered by previously-selected polyominoes. Guided
by Rk(x), we can quickly identify nodes along narrow branches in
G in the selection of N -node sub-graphs. Therefore, we can reduce
the chance of partitioning G and hence accelerate the tiling process.

Generating a polyomino tiling pattern. Procedure 1 shows the
pseudo-code for tiling polyominoes on a parametrized surface.
Note that conventional polyomino tilers [Golomb 1994; Putter
1998] available in the public domain are mainly designed for tiling
bounded 2D planar regions, but not for manifolds of non-planar
topology, such as parametrized surfaces. In addition, it is also
worthwhile to note that the goal of this step is to generate a poly-
omino tiling pattern for making up the 3D puzzle, rather than solv-
ing a tiling problem as conventional polyomino tilers do.

Procedure 1 POLYOMINO GENERATION ( G )
polyomino list = ∅
reachability info = initialize node reachability ( G )
fail count = 0

/∗ N=5 for pentomino tiling ∗/
while num nodes in G ≥ N do

/∗ randomly pick a node among the nodes with very low reachability ∗/
n = get node ( reachability info )

/∗ schematically generate a candidate polyomino starting from node n ∗/
p = generate polyomino ( G , reachability info , N , n )

/∗ make sure p is a valid polyomino ∗/
if p 6= ∅ AND NOT ambiguity ( p ) AND NOT disconnected ( G , p ) then

update reachability info ( reachability info , G , p )
G = G - p
polyomino list = polyomino list ∪ p
fail count = 0

else
/∗ do backtracking ∗/
if fail count > MAX FAIL COUNT then

undo polyomino( G , polyomino list )
reachability info = initialize node reachability ( G )
fail count = 0

else
fail count = fail count + 1

end if
end if

end while
return polyomino list

Basically, this procedure takes G as input and sequentially gener-
ates polyominoes. The subroutine ambiguity() avoids ambiguous
polyominoes by checking whether the candidate polyomino p can
be flattened into a unique polyomino shape, whereas the subrou-
tine disconnected() prevents G from being partitioned by the can-
didate polyomino p. Furthermore, in case we cannot find a valid

polyomino after a number of runs in the while loop, backtracking
will be carried out to undo previously-selected polyominoes that are
neighbors of nodes in the current G. If the number of nodes is not a
multiple of N , we construct a single polyomino with the remaining
nodes. Note that since the problem of polyomino tiling is undecid-
able by nature, we employ backtracking in our tiling procedure (see
Chapter 4 of [Golomb 1994]).

3 Constructing the Puzzle Pieces
After the polyomino tiling, we can start constructing polyomino
puzzle pieces. To accomplish this task, we propose the following
five steps by exploiting various computer modeling techniques: 1)
constructing an offset surface beneath the model surface; 2) build-
ing the dependency graph; 3) constructing the ring-based bottom-up
building order for puzzle pieces; 4) modeling the geometry of the
puzzle pieces; and 5) generating tabs and blanks on puzzle pieces.

3.1 Constructing the offset surface

In constructing the offset surface for a shell volume to hold the
puzzle pieces, certain considerations have to be taken into account
regarding the puzzle modeling objectives. First, the shell volume
between the offset surface and model surface has to be sufficiently
thick to hold neighboring puzzle pieces against each other. Second,
the offset surface should not have self-intersections, so that the puz-
zle pieces carved from it are glitch-free. Finally, the offset surface
has to be smoothly parametrized to facilitate efficient computation
in subsequent puzzle-piece construction.

To address these issues, we base our procedure on the shell con-
struction algorithm by Peng et al. [2004], and employ the localized
Lp-averaged distance function to compute the distance from any
point x in a given 3D solid to the surface of the solid:

dp(x, M) =
[

1

N(x, M, R)

∑

y∈M,|y−x|≤R

|y − x|−p
]−1/p

,

where M is the set of grid points on the parametrized surface, R is
the radius of a local bounding sphere at x, N(x, M, R) counts the
number of grid points in the local bounding sphere (centered at x),
and p is chosen to be 10. By iteratively descending the parametrized
surface along the gradient of this distance field, we can properly
create a smooth and non-intersecting offset surface inside a given
3D model (see Figure 5). Furthermore, to speed up the performance
in locating points in a given local sphere, we pre-compute a K-d tree
structure to store points in M .

3.2 Building the dependency graph

Rather than having an arbitrary puzzle building order, we assume
a bottom-up building order in the game play because it is a natural
and reasonable way for building up a physical 3D puzzle. To con-
struct a bottom-up order, we first have to construct an auxiliary data
structure, the dependency graph.

Figure 5: Creating an offset surface: HOLES3 (left to right).



Figure 6: Dependency graphs constructed on four different 3D puzzle models.

The dependency graph is a directed graph describing the building-
order dependency (positional relationship) among the puzzle
pieces. Each puzzle piece is a node in the dependency graph and
a directed edge, say p → q, is added to the graph if puzzle piece
p is on top of puzzle piece q, i.e., q is assumed to be placed into
a partially-completed puzzle model before p. In practice, we com-
pute the averaged normal along each polyomino edge shared be-
tween neighboring polyominoes p and q on the actual geometry
surface, and check to see if this normal points horizontally within
a user-defined threshold, typically set to be 45 degrees upward or
downward in our implementation. Figure 6 shows example depen-
dency graphs constructed on four different puzzle models: BIMBA,
SQUIRREL, DUCK, and LAURANA (from left to right). Red arrows
indicate the constructed directed edges. In some rare cases, such as
a U -shaped polyomino on a vertical face (see the rightmost zoom-
in windows in Figure 6), we could have cycles in the dependency
graph. To get rid of cycles (which could break the subsequent puz-
zle building steps), we compute centroids of puzzle pieces in the
related cycle and remove any directed edge that goes from a lower
puzzle piece to a upper puzzle piece.

3.3 Ring-based bottom-up order

Given N puzzle pieces, we in general have N ! different orders for
building a puzzle model. This, however, is not true when consider-
ing a bottom-up building order: if we apply topological sort to the
dependency graph, we may end up having one building order only.
To devise a bottom-up and yet flexible building order, we devise the
following ring-based ordering scheme that partitions the N puzzle
pieces into K ordered and disjoint subsets, say S0, S1, ..., SK−1,
with the following properties:

• First, we should be able to insert puzzle pieces from the same
ring into a partially-completed puzzle model in any order. In
other words, puzzle pieces should not block the insertion of
any other puzzle piece in the same ring.

• Second, when we insert a puzzle piece in Si (i > 0), we as-
sume that all puzzle pieces in Li−1 may have already been
inserted into the partially-completed puzzle model, where
Li = ∪i

j=0Sj , and at the same time, none of the puzzle pieces
in Ui+1 have been inserted into the partially-completed puz-
zle model, where Ui = ∪K−1

j=i Sj . In other words, it means
that we should always be able to insert a puzzle piece in Si

into the partially-finished puzzle model in the presence of any
puzzle piece in Li−1, but not Ui+1.

In our implementation, we generate rings as follows:

1. First, we need to select puzzle piece(s) in S0. It can be a
single puzzle piece on the bottom of the puzzle model, or it
can be a set of bottom-most puzzle pieces as in LAURANA
(with an opening on the bottom, see the rightmost model in
Figure 6). However, puzzle pieces in S0 should not depend on
any other puzzle piece (including S0) so that we can guarantee
an arbitrary building order for puzzle pieces within S0.

2. Then, we can move on to the next ring and generate a candi-
date set for Si (i > 0), say Ŝi:
{ p : p 6∈ Li−1 and ∃q ∈ Li−1 s.t. p and q are neighbors } .

3. Next, to comply with the two ordering properties of rings, we
may have to take out some puzzle pieces from the candidate
set Ŝi by checking the dependency graph we previously con-
structed. In detail, given a puzzle piece, say p ∈ Ŝi,

If p → q (in dependency graph) and q 6∈ Li−1,

then we have to remove p from Ŝi. After this removal step, all
puzzle pieces left in Si are independent of each other (prop-
erty 1) and they may only depend on puzzle pieces in Li−1

(property 2). Furthermore, it is worth noting that since the
dependency graph we created previously is cycle-free, we can
always obtain a non-empty Si.

4. After that, we can then apply the motion space analysis tech-
nique (see the next subsections) to further construct the 3D
geometry of puzzle pieces in Si.

5. Finally, we go back to step 2 to construct Si+1 if Li does not
yet contain all puzzle pieces in the model.

Figure 7 shows an example ring construction sequence on LAU-
RANA; puzzle pieces in S0 to S5 are colored in red, green, blue,
cyan, magenta, and yellow, correspondingly, and we recycle the
colors for successive rings.

3.4 Modeling the puzzle pieces

After creating the offset surface, one straightforward way to con-
struct 3D models of puzzle pieces is by directly applying the one-
to-one mapping between the model surface and offset surface (re-
sulting from the shell construction) to carve puzzle pieces out of
the shell volume. However, we found in practice that puzzle pieces
created in this manner may not be buildable; here, we define the
buildability of puzzle pieces based on the ring property:

A puzzle piece, say p ∈ Si, is said to be buildable if we
can insert it into a partially-completed puzzle model in
the presence of all puzzle pieces in Li − {p}.

Note that we had to define buildability in this way so that we could
properly include the case of S0. Hence, if all puzzle pieces are
buildable, we can guarantee that all puzzle pieces of the same ring
do not block the insertion of one another and the puzzle build-
ing order can be bottom-up. Furthermore, to make each puzzle
piece buildable, we have to take further steps to optimize the puzzle
pieces’ geometry. To support such an optimization, we develop the
following modeling scheme to shape individual puzzle pieces:

Let Mj be the set of grid points on the parametrized sur-
face corresponding to the jth polyomino puzzle piece,
M̃j be the set of points in Mj along the boundary of the
polyomino shape, and Ej be the set of edge segments
that connect neighboring points in M̃j (see below).



Figure 7: Bottom-up building order: the twenty-seven rings constructed on the LAURANA puzzle.

Now, at each boundary point,
say pk ∈ M̃j , we can define
a unit vector, say v̂k, to ray-
trace from pk to obtain an inter-
section point on the offset sur-
face. Hence, we can interpolate
v̂k between point pairs in Ej ,
and create a ruled surface cor-
responding to edge segment to
carve puzzle pieces out of the shell volume. In addition, to ensure
that the carved 3D model to be glitch-free, we perform a ray-surface
intersection test in the optimization process, over sampled line seg-
ments on the ruled surface for each edge segment in Ej .

Buildability of puzzle pieces. The ruled surface modeling
method not only helps to define the way we carve puzzle pieces
out of the shell volume, it in fact also helps to formulate the mecha-
nism for computing the buildability of puzzle pieces. By definition,
if a given puzzle piece, say q ∈ Si, is buildable, then q can be the
last puzzle piece to be inserted into its place after all the other puz-
zle pieces in Li. At the same time, it also means that we can take it
out of the puzzle model without being obstructed by puzzle pieces
in Li. Thus, if a puzzle piece is buildable, we should be able to
determine at least one motion vector (a 3D translation vector), to
translate it out of its place in the presence of other puzzle pieces
in Li. Noticing the fact that a given puzzle piece could have nu-
merous possible motion vectors (or none), we can form a trajectory
space, namely the motion space, to include all these vectors for a
given puzzle piece; note that the motion space can be interpreted
as a spherical region on the unit sphere. Hence, a puzzle piece is
buildable if and only if it has a non-empty motion space.

With the ruled surface modeling
scheme, we can analytically compute
the motion space, and hence deter-
mine the buildability of each puzzle
piece. Supposed that an edge seg-
ment, say p1-p2 in the edge segment
set Ej along the polyomino boundary
of a given puzzle piece in Si (p1-p2)
is shared with some other puzzle pieces in Li), with associated end-
point vectors, v̂1 and v̂2, respectively. Since puzzle piece carving
at this edge segment is done by the ruled surface swept between v̂1

and v̂2, we can define the end-point normals on the ruled surface to
be ~n1 = (p1 − p2) × v̂1 and ~n2 = (p1 − p2) × v̂2, along the two
straight lines from p1 and p2, respectively; also, we define n̂1 and
n̂2 to be the normalized vectors of ~n1 and ~n2, respectively. Note
that these normals are defined to point outward from the related
ruled surface on the puzzle piece.

Case 1: If n̂1 = n̂2, the ruled surface extended from p1-p2 is sim-
ply a 3D plane. Hence, when taking the related puzzle piece out
of its place (in the presence of the corresponding puzzle piece on
the other side of p1-p2), the carving plane acts like a flat wall that

keeps us from moving the puzzle piece towards the n̂1 side. Geo-
metrically, if Ω is the motion space of the puzzle piece,

∀ ~v ∈ Ω, n̂1 · ~v ≤ 0 .

Case 2: If n̂1 6= n̂2, the normals along the sweeping lines on the
ruled surface can be computed by spherical linear interpolation be-
tween n̂1 and n̂2: n̂(t) = slerp(n̂1, n̂2, t) where t ∈ [0, 1]. Hence,
rather than having one single normal as in case 1, we now have a
family of normals on the ruled surface to bound the motion space:

∀ ~v ∈ Ω, n̂(t) · ~v ≤ 0 .

Furthermore, by expanding the slerp formulae (since n̂(t) is a great
circle arc), we can prove that

n̂1 · ~v ≤ 0 ∧ n̂2 · ~v ≤ 0 ⇒ n̂(t) · ~v ≤ 0 .

Hence, we can simplify the motion space constraint in case 2 as
(again in the presence of the corresponding puzzle piece on the
other side of p1-p2):

∀ ~v ∈ Ω, n̂1 · ~v ≤ 0 and n̂2 · ~v ≤ 0 .

Summarizing the above cases, we can see that each edge segment is
actually associated with a certain spherical region on the unit sphere
that bounds the puzzle piece’s motion space. Geometrically, case 1
yields a hemisphere that is opposite to n̂1, while case 2 yields a
spherical wedge opposite to both n̂1 and n̂2. Hence, given Ωk as
the spherical region for the kth edge segment in Ej , we can deter-
mine the motion space Ω of a given puzzle piece, say q ∈ Si, by
computing the intersection of all Ωk’s that belong to edge segments
shared between q and all other puzzle pieces in Li. In other words,
if a puzzle piece is buildable, its Ω should be a non-empty region
(typically, a convex spherical polygon) on a unit sphere (domain of
the motion space).

Optimizing the shape of puzzle pieces. While optimizing puz-
zle pieces to be buildable, we have to enforce the following three
constraints on the shape of puzzle pieces:

• Intersection constraint – Ensuring that the extended ruled sur-
face from each edge segment can properly intersect the offset
surface.

• Integrity constraint – Ensuring that the extended ruled sur-
faces from two different edge segments do not intersect.

• Smoothness constraint – Enforcing the smoothness of neigh-
boring ruled surfaces along the boundary of puzzle pieces.

In the current implementation, we apply simulated annealing as the
optimization kernel and employ the mapping resulting from the
shell construction algorithm as our initial condition. We have the
following operators to iteratively alter the direction of the v̂k’s so
as to adjust the extended ruled surfaces:

• Push operator – Given a non-buildable puzzle piece, say q ∈
Li, this operator first predicts a potential motion vector, m̂, by
taking the spherical average [Buss and Fillmore 2001] over all



Figure 8: Tabs and blanks on puzzle pieces: horizontal and vertical tabs and blanks (left) and close-up views of some physical puzzle pieces.

end-point vectors, v̂k’s, along a puzzle piece’s boundary. For
each edge segment pk-pk+1 in Ej , and their related motion
space Ωk (obtained by normal n̂k at pk) and Ωk+1 (obtained
by normal n̂k+1 at pk+1), if Ωk ∩ Ωk+1 does not contain m̂,
this operator jitters vk+1 so as to push Ωk ∩Ωk+1 towards m̂
over the spherical domain of the motion space. Note that we
only need to consider edge segments that are shared between
puzzle piece q and other puzzle pieces in Li.

• Smooth operator – This operator applies Gaussian filtering to
smooth the v̂k’s in between corners of puzzle pieces.

We define the guidance function (per puzzle piece) by considering
each edge segment around the puzzle piece boundary:

W =
∑

k

f
(

( m̂ · n̂k ) · ||pk − pk+1||
)

,

where f(x) = (min(x, 0))2. Hence, if m̂ ∈ Ωk, the contribution
of the corresponding edge segment will be zero. In the optimization
process, our goal is to iteratively minimize W (to zero) for each
puzzle piece in the same ring. Note also that if a candidate operation
results in v̂k that violates the intersection or integrity constraint, the
candidate operation has to be ignored.

3.5 Constructing tabs and blanks

After modeling the geometry of individual puzzle pieces, our last
step is to construct tabs and blanks on puzzle pieces so that we can
connect neighboring puzzle pieces. Consider two neighboring puz-
zle pieces, say p ∈ Si and q ∈ Sj , where without loss of generality,
we assume i < j. Hence, p could be in its place while q is being
inserted into the puzzle model. Therefore, the tab and blank to be
constructed between p and q should not block the insertion of q. As
a result, we can look solely at the motion space of q (but not that
of p) when constructing the related tabs and blanks between p and
q. In practice, we devise two kinds of tabs and blanks: a horizontal
pair of tab and blank and a vertical pair of tab and blank, corre-
sponding to an insertion direction that is perpendicular or tangential
to the puzzle-piece surface, respectively, see Figure 8.

In detail, we model tabs and
blanks by applying extrusion be-
tween two trapezium shapes with
slightly different sizes, see the in-
set on the right. In addition, we
also apply motion space analy-
sis to compute the motion space
of tabs and blanks by consider-
ing the contact planes (on the tabs
and blanks) between the connect-
ing puzzle pieces, so that we can
guarantee a proper insertion of q
by ensuring that the motion space
intersection between that of q and
that of the tab/blank is non-empty. Furthermore, it is worthwhile to
note that for puzzle pieces facing upward (such as the last puzzle
piece on the top), we need not arrange tabs and blanks on them.

When we model the geometry of tabs and blanks, we also apply
the motion space analysis to compute the motion space of tabs
and blanks (and model their geometry), so that we can guarantee
a proper insertion of q by ensuring that the motion space intersec-
tion between that of q and that of the tab/blank is non-empty. Fur-
thermore, it is also worthwhile to note that for puzzle pieces facing
upward (such as the last puzzle piece on the top), we need not ar-
range tabs and blanks on them.

4 Implementation, Results and Discussion

Polyomino tiling. When using Procedure 1 to generate a poly-
omino tiling, we observe that the procedure could generate an un-
balanced population of pentomino shapes, with some shapes ap-
pearing more often than the others. To address this issue and make
the overall tiling appearance more natural, we use a histogram ap-
proach in practice to balance the population. Our method main-
tains a histogram of tiled polyomino shapes in runtime and discards
shapes of high frequency at the end of the generate polyomino()
subroutine.

Table 1 shows the performance of Procedure 1 in tiling pentominoes
on three different 3D models. The experiment was carried out on a
Pentium-4 PC with 3GHz CPU and 512MB memory.

Table 1: Timing result on polyomino generation.
LAURANA HOLES3 SQUIRREL BUNNY DUCK BIMBA

Number of tiles 48 80 159 258 263 325

Time (sec.) 0.012 0.031 0.146 0.224 0.228 0.290

Puzzle model construction. We employed our puzzle model-
ing methods to create six different 3D puzzle models: BUNNY,
LAURANA, HOLES3, SQUIRREL, DUCK, and BIMBA. The first
three are polycube-mapped models from [Tarini et al. 2004],
whereas BIMBA is derived from the periodic global parametriza-
tion method [Ray et al. 2006]. In addition, we also construct sur-
face parametrizations for two models, SQUIRREL and DUCK, using
a simple polycube editing tool we developed. Figure 9 depicts the
process of building 3D polyomino puzzles for these models, with
one model per column. The 1st to 3rd rows in the figure corre-
spond to polyomino tiling, offset surface, and ring-based building
order, respectively. Note that polyomino tiling (1st row) is shown
using five coloring while ring ordering (3rd row) is shown using the
color coding scheme described in Figure 7. Furthermore, using the
ring-based bottom-up scheme to formulate the buildability of puz-
zle pieces, we find that all the constructed puzzle pieces in the six
puzzle models shown can be iteratively optimized to be buildable.

Rapid prototyping. The last stage in puzzle modeling is rapid
prototyping. We employed the rapid prototyping method known as
selective laser sintering (SLS) (with 0.15mm granularity), to con-
struct individual puzzle pieces of the BUNNY puzzle model. Fig-
ure 1 shows the completed BUNNY puzzle model, together with an
image sequence showing the building of the puzzle from bottom to



Figure 9: Procedures in the construction of 3D polyomino puzzles from BUNNY, LAURANA, HOLES3, SQUIRREL, DUCK, and BIMBA,
(from left to right): polyomino tiling with five colorings (1st row), offset surface (2nd row), and ring-based bottom-up building order.

Figure 10: Puzzle models based on semiregular patterns (left to right): fish-shaped, teapot-shaped, and pattern-based puzzle pieces.

top. In addition, the right hand side of Figure 8 shows some close-
up views of individual puzzle pieces and demonstrates how they are
connected.

Note: Since rapid prototyping is both costly and lengthy, the com-
pleted BUNNY model shown in Figure 1 is a prototype version with-
out tabs and blanks; the completed puzzle model of BUNNY was
created using all the other methods including the tiling procedure,
the offset surface, the ring-based building order, and the shape op-
timization, as well as the motion space analysis to ensure the build-
ability of individual puzzle pieces, so that we can demonstrate a
bottom-up building sequence as shown in Figure 1. Hence, we ad-
ditionally created some of the puzzle pieces with tabs and blanks as
demonstrated in Figure 8.

Semiregular and Escher-like puzzle models. Besides poly-
ominoes, we also experimented with extending this work using
semiregular patterns [Kaplan 2007; Kaplan and Salesin 2000] as
the component shapes to construct the puzzle pieces. Among the
17 symmetric groups [Alexander 1975], we were able to employ
the groups p4, p4m, and p4g on quad meshes and the groups p6
and p6m on triangle meshes because they are symmetric and adapt-
able to the topology of the arbitrary meshes, as demonstrated by
Kaplan [2007]. Figure 10 shows three constructed puzzle models:
fish-shaped puzzle pieces on HOLES3 (p6), teapot-shaped puzzle
pieces on DUCK (p4), and pattern-based puzzle pieces on BUNNY
(p6m) with close-up views of some individual puzzle pieces.

User experience. We conducted a prototype experiment with ten
users participating in a game employing eight connectable puzzle
pieces. We recorded the time taken for each user to join subsequent
puzzle pieces, and summarize their performance in Table 2. Due
to the three-dimensional nature of the puzzle pieces, most of them
found this task rather challenging.

Table 2: Time (in seconds) to join subsequent puzzle pieces.
piece 2nd 3rd 4th 5th 6th 7th 8th
min 18.0 55.2 147.1 153.9 169.0 204.4 215.3
max 208.9 438.0 458.8 1109.7 1139.1 1220.9 1293.5
mean 86.2 203.0 274.1 404.7 453.9 491.9 524.3

Discussion on building order. Early in this work, we attempted
to devise a highly flexible building order with the following defini-
tion for buildability:

A puzzle piece is buildable if we can insert it as the last
puzzle piece in completing a puzzle model.

Hence, we could in principle have arbitrary building orders. How-
ever, to technically ensure a buildable puzzle model against this def-
inition, any puzzle piece could potentially be the last puzzle piece,
and we found this condition to be excessively restrictive. We exper-
imented with this buildability definition by applying the simulated
annealing method to optimize the shape of all puzzle pieces (in-
stead of considering puzzle pieces ring by ring as in Section 3.3),
but found that it is always not possible to ensure every puzzle piece
to be buildable, in particular those surrounding concave regions.



We were led instead to require a bottom-up building order, which is
a natural building order for models resting on a table, and can suf-
fice to guarantee puzzle piece buildability while allowing a certain
degree of building order flexibility.

Limitations.
• Surface parametrization: Since our method relies on an

input parametrization, we require the quads in the given
parametrization to be square-alike so that we can maintain the
polyomino appearance for the puzzle pieces.

• Offset surface: Our method may not be able to handle 3D
models with thin and highly curved parts because the con-
structed puzzle pieces may not have sufficient thickness, and
the resulting shell may not be one-to-one for such regions. We
must ensure a non-degenerated offset surface before proceed-
ing to construct the puzzle pieces.

• Polyomino tiling: Furthermore, when constructing polyomino
tilings with relatively larger numbers of squares (say > 5), it
is sometimes not possible to avoid all three mapping ambigu-
ities while attempting to generate a valid polyomino tiling on
the parametrized surface, in particular for models with dense
numbers of singularities. Since polyomino tiling is undecid-
able by nature [Golomb 1954], the tiling procedure may never
finish in these extreme cases.

5 Summary
In summary, we present in this paper a computer-aided geomet-
ric design approach for constructing a new genre of 3D puzzle
model, the 3D Polyomino puzzle, and realize the design via a se-
ries of computer modeling methods, including quad-based surface
parametrization for dual graph generation and polyomino tiling, the
shell construction algorithm for creating an offset surface, the de-
pendency graph and the ring-based ordering method for devising a
bottom-up building order, the ruled surface modeling scheme for
shaping the geometry of individual puzzle pieces, the motion space
analysis technique for optimizing the buildability of puzzle pieces,
and the tab and blank construction method to connect puzzle pieces.
With these proposed techniques, we can create 3D puzzle models
that are not only tangible, but are also buildable and playable. Fi-
nally, we employed rapid-prototyping to construct a physical puzzle
model for the BUNNY puzzle as a concrete demonstration.

Future work. Our approach constructs puzzle models by decom-
posing model surfaces into polyomino-like shapes. Essentially,
there are other possible decomposition approaches: surface-based
or volume-based, as well as different forms of puzzle models. We
hope that this work can stimulate further research on such topics.
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