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Dual Poisson-Disk Tiling: An Efficient Method for
Distributing Features on Arbitrary Surfaces

Surface modeling applications: Distributing different kinds of features on HOLES3.

Abstract

This paper introduces a novel surface-modeling method to stochastically distribute features on

arbitrary topological surfaces. The generated distribution of features follows the Poisson disk distribution,

so we can have a minimum separation guarantee between features and avoid feature overlap. With the

proposed method, we not only can interactively adjust and edit features with the help of the proposed

Poisson disk map, but can also efficiently re-distribute features on object surfaces.

The underlying mechanism is our dual tiling scheme, known as the Dual Poisson-Disk Tiling. First,

we compute the dual of a given surface parameterization, and tile the dual surface by our specially-

designed dual tiles; during the pre-processing, the Poisson disk distribution has been pre-generated on

these tiles. By dual tiling, we can nicely avoid the problem of corner heterogeneity when tiling arbitrary

parameterized surfaces, and can also reduce the tile set complexity. Furthermore, the dual tiling scheme

is non-periodic, and we can also maintain a manageable tile set. To demonstrate the applicability of

this technique, we explore a number of surface-modeling applications: pattern and shape distribution,

bump-mapping, illustrative rendering, mold simulation, the modeling of separable features in texture

and BTF, and the distribution of geometric textures in shell space.

Index Terms

I.3.7 Three-Dimensional Graphics and Realism, I.3.5 Computational Geometry and Object Model-

ing, I.3.8 Applications
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I. INTRODUCTION

Surface modeling is a significant element in computer graphics. It helps to increase the surface

complexity on 3D objects, and hence improve the visual realism in the rendering. Since most

3D objects we employed nowadays are still surface-based, surface modeling is yet a highly

significant issue to address at present.

In principle, surface modeling can be categorized into the following three major approaches:

texture mapping approach, geometry approach, and shell mapping approach. The texture mapping

approach, pioneered by Catmull [4], defines a mapping between a 2D rectangular image and

a 3D target model, and maps surface data, such as colors [4], normals [2], the bidirectional

texture functions (BTF) [10], [53], [62], the irradiance field in shell texture function [5], the

BSSRDF in sub-surface light transport [22], [52], and even volumetric features such as fur [24],

[34], onto the related model surface. Unlike texture mapping, the geometry approach [17], [1],

[28], [63] truly constructs geometric details on model surfaces, and thus can avoid problems

such as the non-uniformity in surface map, texture aliasing, and texture filtering; however, due

to the complexity of the introduced geometric details, the amount of geometry primitives to be

processed by the graphics hardware could be excessively large. The shell mapping approach [45],

[47], [16], [46] bridges the gap between the above two approaches by attaching a shell volume

on the model surface. By using this shell volume as a volumetric space for mapping, we can

precisely map geometric models onto the object surface as if we perform texture mapping in

a continuous volumetric fashion. Hence, we can attain higher flexibility and efficiency in the

surface modeling process, and employ both discrete and continuous surface data originated from

the texture mapping and geometry approaches at the same time.

A. Motivation

This paper explores the use of Wang tiling [55], [56] and the Poisson disk distribution to enrich

the surface modeling capability provided by the above three approaches. We introduce the Dual

Poisson-Disk tiling scheme to stochastically distribute features on surfaces of 3D models. The

generated distribution pattern follows the Poisson disk distribution and our method can work on

parameterized surfaces of arbitrary topology. To demonstrate the applicability of our method,

we explore several different surface modeling applications, covering the three surface modeling

approaches mentioned above; related rendering results are presented in Section V.
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Since we focus on tiling parameterized surfaces of arbitrary topology, the tiling mechanism is

quite different as compared to tiling on planar domain. The vertex (tile corner) incidence on the

surface parameterization grid is no longer a constant, i.e., 4; rather, the incidence could be 3, 5,

or even 6. To overcome this tile corner heterogeneity problem, if we simply exhaust all possible

corner, edge, and interior tile decompositions, e.g., by extending the tiling scheme in [31], we

could end up creating an enormous tile set that is too complicated for management. On the other

hand, if we just employ conventional Wang tiling [48], [8] or the template Poisson disk tiling

methods [30], which promises a very small tile set, we could not properly handle the surface

topology and maintain distribution correctness across tile boundaries.

B. Contributions

This paper presents a novel tiling method, called the Dual Poisson-Disk Tiling, to handle

surfaces of arbitrary topology. Here we list the major contributions of this paper:

1) The major contribution of this paper is the Dual Poisson-Disk Tiling scheme; this dual

tiling idea makes tile-based Poisson disk distribution applicable to parameterized surfaces

of arbitrary topology. Its advantages include: 1) The proposed dual tiling scheme can nicely

avoid the tile corner heterogeneity problem and allows us to properly tile parameterized

surfaces of arbitrary topology; 2) The size of the tile set is relatively small and manageable;

3) It allows us to efficiently layout tiles on parameterized surfaces non-periodically.

2) Secondly, we propose a rendering mechanism called the Poisson disk map; it enables

interactive feature editing through the support of GPU fragment programming.

3) Lastly, our distribution method brings in a wide range of applications, especially in the

area of surface modeling, see Section V for the demonstration.

C. Related work

The distribution pattern we employed in our surface modeling applications is the Poisson disk

distribution. Due to its blue noise properties [60], [61], [9], it is generally accepted as one of the

best distribution pattern for sampling, and is widely used in computer graphics: anti-aliasing [12],

[9], [40], ray tracing [41], and primitive distribution in illustrative rendering [11].

In general, the Poisson disk distribution is a uniform distribution of points, where all point-

to-point distances are no less than a certain limit. In other words, if we put a circular disk of
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radius equal to half of this limit at each distributed point, we can guarantee no overlapping disks.

Based on this property, if we use the Poisson disk distribution as a mean to distribute features

on surfaces, we can effectively avoid feature overlap.

Generating the Poisson disk distribution Traditionally, the generation of the Poisson disk

distribution is based on the dart throwing algorithm [9]. Points are successively placed in a

finite area at random, and a point is accepted only if the point-to-point distance limit is not

violated. Since this algorithm requires numerous amount of checking, it is computationally

very expensive. To address this issue, some faster algorithms [12], [40], [41], [26] have been

proposed for speedup, and in particular, McCool and Fiume [39] developed an improved version

of dart throwing by gradually reducing the distance limit. Lloyd’s relaxation method [36] is

further employed to optimize the point distribution by jittering the generated points towards

their corresponding Voronoi centroids. At present, research in speeding up the dart throwing

algorithm is still very active; Jones [23] applied Voronoi diagram; Dunbar and Humphreys [14]

applied the idea of scalloped sectors, to represent available regions for dart throwing; White [59]

improved the traditional dart-throwing algorithm by using quadtree subdivision on the sampling

domain.

The Wang tile approach Stam [50] was the first in applying Wang tiles [55], [56] to computer

graphics; by synthesizing matchable texture patterns on Wang tiles, textures can be arranged on

two-dimensional manifolds in a non-periodic manner. Furthering this idea, Hiller et al. [21]

invented a new approach to generate the Poisson disk distribution using tiling. Rather than

generating one point at a time, they employed Wang tiles as point set containers with the

Poisson disk distribution pre-synthesized on tiles; thus, we can match color-coded edges between

Wang tiles, and quickly generate a tile-based Poisson disk distribution on a 2D domain. Cohen

et al. [48], [8] furthered this approach and presented a stochastic tiling algorithm so that we

can efficiently generate the Poisson disk distribution. Recently, Kopf et al. [27] proposed the

recursive Wang tile method so that we can control distribution density at different spatial scales. In

addition to two-dimensional domain [50], [21], [48], [8], [57], Wang tiles have been generalized

to handle spaces such as the three-dimensional domain using Wang cubes [49], [37], [33], [38]

and arbitrary topological surface using signed Wang tiles [19], [35]. Other than Wang tiling,

Ostromoukhov et al. [43] applied Penrose tiling to distribute points for importance sampling.
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In addition, Ostromoukhov [42] proposed using polyomino subdivision to generate distributions

with blue-noise properties.

The Poisson disk tiles Lagae and Dutré [29] developed a procedural approach for efficiently

evaluating the Poisson disk distribution. The proposed Poisson disk tiles is a variation of Wang

tiles, where the square tile region is divided into three disjoint parts: corner tiles, edge tiles, and

interior tiles. These three kinds of tiles are pre-generated sequentially conforming to the Poisson

disk distribution, and they are finally re-assembled together to tile a given 2D domain by color

matching. Since corner and edge regions are introduced in this tiling scheme, we can improve

the distribution quality, particularly around corner regions.

In addition to Poisson disk tiles, Lagae and Dutré [30] invented another interesting tiling

scheme, called the Template Poisson disk tiles. It is a toroidal version of Wang tiles with one

single edge color in the entire tile set, so that we can create a single tileable frame (with margin

border only) and synthesize additional tiles by using the same frame as the boundary condition.

Recently, Lagae and Dutré [31] proposed an alternative tile-based method to generate the

Poisson disk distribution; it is a corner-based tiling scheme with color-coded corners. Hence,

we can further improve the distribution quality around corner regions, see [32] for a detailed

analysis and comparison of various methods that generate the Poisson disk distribution in 2D.

Moreover, Lagae and Dutré [33] also explored their tile-based schemes in three-dimensional

space and proposed the generation of Poisson sphere distributions by tiling Wang cubes.

Wang tiles on arbitrary surfaces Fu and Leung [19], [35] generalized the conventional Wang

tiling method using signed Wang tiles, and made texture tiling applicable to arbitrary topological

surfaces. However, since this tiling scheme does not take corner heterogeneity into account, this

scheme cannot be used to generate the Poisson disk distribution on arbitrary surfaces.

Fig. 1. Overview of our surface modeling method.
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D. Overview

Figure 1 outlines our surface modeling method. It involves four main tasks in total, and takes

a parameterized surface as its input. Any surface parameterization method [15], [18], [7], [3],

[51], [20], [25], [13] can be used to create this input as long as the given parameterization is

quad-based and has low distortion in the surface mapping.

Following this input, our first task is to compute the dual of the parameterized surface and

pass the generated dual surface to the stochastic tiling task later on. However, unlike other offline

tasks, the tile set generation is surface independent, so we can pre-construct a dual Poisson-disk

tile set that stores the Poisson disk distribution. Section III details the generation process, while

Section IV introduces the stochastic tiling task for arranging the generated tiles on dual surfaces.

Finally, based on the distributed points on object surface, we can construct the Poisson disk map,

and implement various surface modeling applications, see Section V.

II. THE DUAL SURFACE

As pointed out in Section I-A, when tiling a parameterized surface of arbitrary topology, tile

corners could be shared by three, four, five, or even six tiles [13], see Figure 2; we cannot properly

ensure distribution correctness across tile corners if we simply apply conventional tiling schemes

on parameterized surfaces of arbitrary topology. To address this problem, our first strategy is to

create a dual surface, so that we can make every tile corner to be shared exactly by 4 tiles all

over the surface. By this means, we can avoid complex cases like irregular tile corner regions

with 3, 5 or even more incident tiles, and thus can significantly reduce the tile set size because

we only have one form of corner tiles in our scheme, see Section III.

Fig. 2. The tile corner heterogeneity.
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Fig. 3. (a) Input surface; (b) We connect neighboring edge midpoints on the input surface to generate the dual surface. The

dotted lines are edges of the dual surface; (c) The dual surface is composed of Tri-tiles, Quad-tiles, and Quin-tiles.

To construct dual surfaces, we first take edge midpoints in the input surface parameterization as

vertices of the dual surface to be generated. Then, we connect each midpoint to every neighboring

midpoint on the same subquad belonging to the original surface parameterization, see Figure 3

for an illustrative example. After this dual transform, we have three kinds of interior tiles in

our tile set: Tri-tile, Quad-tile, and Quin-tile, corresponding to the interior regions bounded by

3, 4, and 5 tile corners, respectively, but now, we only have one kind of corner junction over

the entire model surface. Depending on the surface parameterization, we somehow could have

Sex-tile for interior regions bounded by 6 tile corners.

III. CONSTRUCTING A DUAL TILE SET

The dual Poisson-disk tile set is generated using the corner-edge-interior decomposition [29],

see Figure 9 for an example tiling. With the dual transform, we only have one form (shape)

of corner tiles (and edge tiles), while interior tiles can take several forms: Tri-tile, Quad-tile,

Quin-tile, etc. The size of corner and edge tiles are determined by the Poisson disk radius, so

that any Poisson disk placed on the interior tiles cannot affect any other disk in neighboring

interior tiles. Hence, we first create corner tiles, and then edge tiles in our tile set construction,

and employ these tiles to generate Tri-tiles, Quad-tiles, Quin-tiles, etc.

Furthermore, unlike regular Wang tiles that have a fixed orientation, we have to allow tile

rotation in our case because we work on surfaces of arbitrary topology. Therefore, our corner

tiles, edge tiles, and interior tiles are all rotatable, and the tile matching condition is determined

not only by the tile colors, but also by the tile orientations relative to corner tiles as well.
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Fig. 4. The construction of a corner tile.

A. Constructing Corner Tiles

Similar to the idea of colored corners in [31], we arrange colors at corners, rather than on

edges. Here we have C colors and hence C different corner tiles. Each corner tile takes the

shape of a regular octagon with side length exactly equal to 2R, where R is the Poisson disk

radius. Figure 4 shows the corner tile construction procedure. Firstly, we employ relaxation dart

throwing to dissipate N points onto a unit square region, and Lloyd’s relaxation to optimize

the distribution. Then, an octagon region is cut out of the distribution to form a corner tile; by

independently repeating this construction process C times, we can generate all C corner tiles.

To guarantee a good distribution quality in the final tiling, we further have to compare these

C corner tiles after the synthesis, and re-generate any corner tile (among the C corner tiles) that

is too similar in distribution as compared to others in the corner tile set.

B. Constructing Edge Tiles

After creating corner tiles, the next step is to generate edge tiles. Figure 5 shows the edge tile

construction procedure. Here we first put two corner tiles at the two opposite ends of an edge

tile to be generated (Figure 5(a)). Then, we constrain the point distribution by the points pre-

generated inside the two corner tiles, and we apply relaxation dart throwing to fill the remaining

empty area. Next, we carry out a number of Lloyd’s relaxation to fine-tune the distribution

(Figure 5(b)). Note that during the dart throwing and relaxation, new points are prohibited from

entering the corner regions, so that we can ensure proper distribution matching while matching

corner tiles and edge tiles in the tiling. Finally, we extract the points inside the edge tile region

and produce an edge tile. The thickness of an edge tile is 2R.
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Fig. 5. The construction of an edge tile. The black triangles attached to the corner tiles indicate the corner-tile orientation.

Rotational Symmetry in Edge Tiles Since corner tiles are rotatable, each corner tile could

have four possible axis-to-axis orientations relative to the edge tile being constructed. Hence,

we could have as many as (4C)2 different edge tiles in total. However, because of rotational

symmetry, some edge tiles are in fact equivalent in terms of tileability. Figure 6 shows an

example edge tile set with one single corner color; we label top, bottom, left, and right sides

of a corner tile as T, B, L, and R, respectively; for instance, edge 1 and edge 11 shown in the

figure is a symmetric pair, while edge 3 is self-symmetric.

Fig. 6. Rotational symmetry in edge tiles; we have six symmetric pairs: 1 and 11, 2 and 15, 4 and 7, 5 and 12, 10 and 13, as

well as 6 and 16, whereas the other four edges (3, 8, 9, and 14) are self-symmetric. Thus, there are totally 10 unique edges.

Since our tile matching scheme is based solely on corner color and corner orientation, we

have to enforce edge tile uniqueness, so that after we layout all corner tiles on the dual surface,

we can uniquely determine which edge tile to be placed in-between each pair of corner tiles,

as well as which interior tile to be placed inside a ring of corner tiles. Otherwise, we will have

to add additional color code (diversity) to edge tiles, and escalate the tile set complexity and

size. In this way, within the 16 possible combinations shown in the figure above, we have to

determine the symmetric pairs and generate only one edge tile for each pair found.
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Further than that, we need to specially handle self-symmetric edges, e.g., edge 3 shown in the

figure. The point distribution inside a self-symmetric edge tile has to be rotationally symmetric.

Otherwise, we could have two ways in placing these edge tiles in a tiling, and escalate the tile set

complexity; this is similar to tagging additional colors on edges and expanding the tile set size.

Note that to construct a self-symmetric edge tile, we have to constrain the initial dart throwing

and the Lloyd’s relaxation process to enforce rotational symmetry during the tile construction.

C. Constructing Interior Tiles

After corner tiles and edge tiles, we can move on to create the interior tiles: Tri-tiles, Quad-

tiles, Quin-tiles, etc.

Quad-tiles Figure 7 shows the construction procedure of Quad-tiles. Similar to edge tiles, we

first assemble an appropriate configuration of 4 corner tiles and pick up related edge tiles to form

a frame (Figure 7(a)). Then, we apply relaxation dart throwing followed by Lloyd’s relaxation

to generate the point distribution in the interior region (Figure 7(b)). Again, new points cannot

enter the corner and edge regions during the dart throwing and relaxation process, while points

originally in the corner and edge tiles are fixed throughout the construction process.

Fig. 7. The construction of a Quad-tile. The black triangles attached to the corner tiles indicate the corner-tile orientation.

Furthermore, we also explore rotational symmetry in interior tiles and generate only unique

interior tiles. However, it is worth to note that removing duplicated interior tiles, e.g., Quad-tiles,

is not as critical as removing duplicated edge tiles. For edge tiles, if we ignore tile uniqueness,

we could escalate the tile set complexity because we need more interior tiles to match different

edge tiles introduced, even when the colors and orientations of the boundary corner tiles are the

same; but for interior tiles, since the points added inside the interior tiles never affect points
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Fig. 8. The construction of a Tri-tile (above) and a Quin-tile (below); the warping method is employed here.

elsewhere in any other tile (different from points in the edge tiles), having duplicated interior

tiles will increase the tile set size, but not the tile set complexity.

Tri-tiles and Quin-tiles As compared to Quad-tiles, the construction of Tri-tiles and Quin-

tiles are more complicated because these tiles are intrinsically non-planar, see Figures 8(a) and

(e). To address this problem, we propose two methods to generate non-planar interior tiles:

• The first method employs geodesic distance and jitters the distributed point samples directly

on the non-planar domain. After we make up a tile frame using corner tiles and edge tiles,

see Figures 8(a) and (e), we apply dart throwing in the interior area, and employ geodesic

distances to construct a Delaunay triangulation for all points distributed so far, including

also the points on the corner tiles and edge tiles. Finally, we apply Lloyd’s relaxation in

this non-planar domain and fine-tune the point distribution inside.

• The second method is based on the observation that when we arrange non-planar tiles such

as Tri-tiles and Quin-tiles on object surfaces, the surface regions covered by these tiles are

usually highly smooth and planar. Hence, if we employ the first approach to arrange point

samples with same density as that on Quad-tiles, we could end up having a relatively denser

point distribution on the surface regions covered by non-planar tiles. Therefore, we propose

to warp the non-planar region to a planar domain, distribute and relax points directly on
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it, and finally map the distributed points back to the object surface. In detail, we employ

equilateral triangle and regular pentagon, as the warped domains for Tri-tiles and Quin-tiles,

respectively, see Figures 8(b) and (c), and barycentric coordinate mapping to perform the

warping. Furthermore, like what we have done for Quad-tiles, we also forbid any newly

added point to enter the corner tile and edge tile regions in the warped domain during the

tile construction process. Also, we can construct the Sex-Tiles in a similar way, but rather

than using an equilateral triangle or pentagon as in the cases of the Tri-tiles and Quin-tiles,

respectively, we use a regular hexagon on the planar domain.

D. Size of a dual Poisson-disk tile set

In this subsection, we examine the size of a complete dual Poisson-disk tile set; the Cauchy-

Frobenius lemma [58] (also known as the orbit-counting theorem) is used in the analysis, so that

we can take rotational symmetry into consideration, and determine the number of unique edge

tiles and interior tiles in a dual Poisson-disk tile set.

Edge tiles Let E be the set of all possible edge tile configurations without considering rotational

symmetry, i.e., |E| = (4C)2. Let G be a finite group that acts on E. For each g ∈ G, let Eg denote

the set of elements in E that are fixed by g. For edge tiles, we have two g’s in G: one is an

identity, say g0, and hence, Eg0 = (4C)2; the other one is an 180-degree rotation (in 2D), say

g1, and we have Eg1 = 4C because only four edge tiles per color (the two neighboring corner

tiles having the same color) are identical after an 180-degree rotation. Therefore, by using the

Cauchy-Frobenius lemma, the number of unique edge tiles under rotational symmetry is:

|E/G| =
1
|G|

∑

g∈G

|Eg| =
1
2

((4C)2 + 4C) = 8C2 + 2C .

Interior tiles For Quad-tiles, we have four possible operations: an identity, a 90-degree

clockwise rotation, an 180-degree clockwise rotation, and a 270-degree clockwise rotation. By

counting the number of fixed elements under each of them, we can again apply the Cauchy-

Frobenius lemma to find out the number of unique Quad-tiles under rotational symmetry:

|Q/G| =
1
|G|

∑

g∈G

|Qg| =
1
4

((4C)4 + 4C + (4C)2 + 4C) = 64C4 + 4C2 + 2C ,
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where G is a finite group acting on the full Quad-tile set Q. Using a similar method, we can

also compute the number of unique Tri-tiles and Quin-tiles under rotational symmetry. Table I

summarizes the size of a dual Poisson-disk tile set. Note that we normally do not need a full set

of Quin-tiles; a relatively small amount of them are sufficient for stochastic tiling, see Section IV.

TABLE I

THE SIZE OF A DUAL POISSON-DISK TILE SET.

Num. of Colors Num. of Corner Tiles Num. of Edge Tiles Num. of Tri-tiles Num. of Quad-tiles Num. of Quin-tiles

1 1 10 24 70 208

2 2 36 176 1044 6560

3 3 78 584 5226 49776

C C 8C2 + 2C 1
3 (64C3 + 8C) 64C4 + 4C2 + 2C 16

5 (64C5 + C)

Comparing to standard tiling scheme Without using dual tiling, conventional tiling schemes,

for example, the corner-edge-interior decomposition, will result in different kinds of corner tiles

because we work on surfaces of arbitrary topology. A corner tile could meet with three, four,

five, or even six edge tiles unlike the case we have in dual tiling. As a result, the set of corner

tiles will become more complex even we consider only a small number of colors in the tiling.

Note that these corner tiles need to be rotatable; hence, such a complexity could further affect

the size of the edge tile set and the interior tile set as well.

For instance, if C is the number of colors we have for each kind of corner tiles, that is, we

have C 3-corner tiles, C 4-corner tiles, and C 5-corner tiles, etc. When we consider edge tiles,

we have to consider several kinds of edge tiles: edge tiles joining two 3-corner tiles, edge tiles

joining one 3-corner tile and one 4-corner tile, etc. It unavoidably complicates the edge tile set

as well as the interior tile set that follows. Moreover, it will also significantly increase the tile

set size as well. By dual tiling, we can avoid such a complexity and keep a compact corner tile

set; hence, we can also maintain manageable sets of edge tiles and interior tiles.

IV. THE DUAL TILING ALGORITHM

A. The Dual Tiling Algorithm

We have the following steps in applying our dual Poisson-disk tile set to generate the Poisson

disk distribution on dual surfaces; stochastic tiling [31] is used in our algorithm.
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• First of all, we properly assign Quin-tiles available in our tile set onto the Quin-tile slots

on the dual surface. Since conventional surface parameterization methods normally produce

very few 5-corner (as well as 6-corner) junctions (as compared to 4-corner junctions) on

the surface parameterizations, we normally do not have many Quin-tile slots (as well as

Sex-tiles) on the dual surface, as compared to Quad-tile slots. Therefore, a relatively small

amount of Quin-tiles (and Sex-tiles) are sufficient in our stochastic tiling. Furthermore, in

extreme cases where Quin-tile slots dominate, we can make use of one or two corner colors

to generate a full set of Quin-tile set (See Table I); then, we can still guarantee an agreeing

tiling.

• After arranging Quin-tiles, we randomly assign colors and orientations to the remaining

corner tile slots on the dual surface. Since we have a complete set of Tri-tiles and Quad-

tiles, we do not need to constrain the corner tile assignment as we did for Quin-tiles.

• Finally, based on the arranged corner tiles, we can lookup related edge tiles and then Quad-

tiles and Tri-tiles to fill the remaining space on the dual surface.

In our actual implementation, we develop a tile-reassembling scheme to facilitate the tiling

process. After we generate the whole dual tile set, we expand the region of each interior tile to

include parts of the related corner and edge tiles. Since interior tiles and edge tiles are unique,

given any interior tile, we can uniquely determine its boundary corner and edge tiles, pack

half of the related edge tiles and a quarter of the related corner tiles around it, and generate

a reassembled tile for each interior tile, see Figure 7(c), Figure 8(d), and Figure 8(h) for a

reassembled Quad-tile, Tri-tile, and Quin-tile, respectively. In this way, we can replace corner

tiles, edge tiles, and interior tiles by the reassembled tiles in our implementation, and hence

simplify our data structure, and make the tiling more convenient.

B. Tiling Examples

Figure 9 presents a tiling example to exemplify how we tile a non-planar surface in the form

of a T-shape brick with our dual Poisson-disk tiles. Here we have C = 2 and N = 32, where C is

the number of colors (corner tiles) and N is the point distribution density. In this example, we

can see that we have four Quin-tiles and twelve Tri-tiles, whereas all corner tiles meet exactly

four edge tiles over the entire model surface due to dual tiling.
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Fig. 9. A tiling example – Generating the Poisson disk distribution on a dual parameterized surface in the form of a T-shape

brick; C = 2 and N = 32. The black quadrants on the corner tiles indicate the corner-tile orientation.

In addition, we also present the tiling of a two-dimensional plane using our tiling scheme,

see Figure 10. Since the tiling domain is now planar, we only need corner tiles, edge tiles, and

Quad-tiles, but not Tri-tiles and Quin-tiles. Moreover, the corner tiles can be placed at the grid

junctions, rather than at the edge mid-points. Furthermore, since only corner tiles, edge tiles, and

Quad-tiles are involved, this 2D tiling structure is very similar to the colored corner approach

proposed in [31]; however, our corner tiles are rotatable and our tiling is dual-based, so that our

method can handle parameterized surfaces of arbitrary topology.

V. IMPLEMENTATION, ANALYSIS AND APPLICATIONS

A. Implementation issues

The Poisson disk map To support interactive control on distributed features, we developed

the idea of Poisson disk map. It is basically a texture map defined on a parameterized surface,

with each texel storing three values: (d, θ) is the polar coordinate of the pixel center measured

from the nearest distributed feature point on object surface using geodesics (see Figure 11 for

an example Poisson disk map), and feature index could be a unique feature ID associated with
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Fig. 10. A tiling example – Generating the Poisson disk distribution on a two-dimensional plane; C = 2 and N = 128.

Fig. 11. An example Poisson disk map: the distance component d (left) and angular component θ (right) on LAURANA. Note

that there are 874 points distributed on LAURANA, and the reference direction for θ is picked randomly at each point.
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that feature point or an integer denoting the color index resulted from k-coloring. Note that in

the figure, red dots are additionally drawn on the LAURANA surface to indicate the location of

feature points, and also, by using k-coloring, we can assign multiple colors and patterns to the

distributed features and ensure no two neighboring features share the same color or pattern.

In the renderings, we employ fragment programs on the GPU: 1) to retrieve (d, θ) and feature

index for each pixel fragment, and 2) to compute the texture coordinates on the corresponding

feature texture if the pixel fragment falls within an effective Poisson disk from a feature point.

The advantage of having a Poisson disk map is that we can interactively deform and modify the

features, for example, scaling or re-orientating the features without needing to build any form

of static geometries for them, as well as editing the feature textures and reloading the feature

appearance on objects interactively at run-time.

Distribution refinement on object surface With our tiling method, we can precisely guarantee

a valid Poisson disk distribution on parameterized surfaces, and this distribution guarantee can

be carried to the object surface, provided the surface parameterization does not introduce any

distortion. But as one might expect, since surfaces of 3D models are seldom flat, this is,

however, rarely the case in practice. To address this issue so that we can produce a valid

Poisson disk distribution on object surface, certain refinement process is unavoidable after

the tiling. In our current implementation, we first refine the Delaunay triangulation (from the

corresponding Voronoi diagram) mapped from the parameterized surface to the object surface,

so that the resultant connectivity information can be truly defined on the object model; note

that geodesics must be computed for connected edges on high curvature regions so as to

ensure connectivity correctness. Then, we can precisely apply Lloyd’s relaxation locally at each

distributed point and jitter them towards their Voronoi centroids on the object surface. Since the

surface parameterization we used are of low distortion, the entire refinement process takes no

more than a few minutes (around 10−20 iterations, depending on the number of distributed points

and the parameterization complexity) to finish on a commodity PC: an HP xw4400 workstation

with Intel Core(TM)2 CPU 6400 at 2.13GHz and 1GB Memory, see Table II for the timing

result. Also, to fairly compare the refinement time against different 3D objects, and also against

different number of distributed points, we use 20 iteration steps in all testing cases shown.

Furthermore, note also in the table that the number of points in parameterization denotes the

model complexity.
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TABLE II

TIMING ON THE REFINEMENT PROCESS.

3D Tile set Total number of Number of points Total time for

models distributed points in parameterization refinement (sec.)

C = 2, N = 16 3142 25596 5.4

HOLES3 C = 2, N = 32 6360 25596 9.0

C = 2, N = 64 12724 25596 19.2

C = 2, N = 16 7039 14587 9.6

LAURANA C = 2, N = 32 14082 14587 19.2

C = 2, N = 64 27986 14587 39.0

C = 2, N = 16 10121 82434 15.0

BUNNY C = 2, N = 32 20380 82434 28.8

C = 2, N = 64 40983 82434 58.8

Now, one may argue why we employ tiling to generate the Poisson disk distribution on 3D

models, while after-tiling refinement is still needed. In fact, if we do not use tiling, we have

to do dart throwing and Lloyd’s relaxation to distribute points on object surfaces. It is a one-

point-at-a-time process, and could be exceedingly time-consuming. By tiling, we can efficiently

initialize a point distribution that is nearly a Poisson disk distribution, and this distribution can,

in turn, be readily refined on object surface within a few iteration steps.

B. Examining the Generated Distribution

Spectral Analysis One common way to examine the quality of Poisson disk distributions is

by using periodogram [54]. Here we experiment six different color and point density settings

in our dual Poisson-disk tiling, and generate around 16,384 points on a 2D plane for each

Poisson disk distribution being analyzed, see Figure 12. In addition, we also generate one Poisson

disk distribution purely using dart throwing as a reference. From the figure, we can see that

increasing the number of colors and distribution density can improve the distribution quality,

which means that the resultant distribution could become less periodic. Moreover, if we compare

the periodograms generated by our method against those by other tile-based methods [32], our

method has one crucial difference; even with the same number of color code, we have additional

variation in generating the Poisson disk distribution because our tiles are rotatable.

Radius Statistics In addition, we also study the Poisson disk distributions that generated on

surfaces using radius statistics [31]. Here we first have to compute two radius data: Rmax and r,
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Fig. 12. Periodograms of Poisson disk distributions generated with dual Poisson-disk tiles (a-f) and dart throwing (g).

where Rmax is an upper bound of the Poisson disk radius given the total surface area and the

distribution density, whereas r is the Poisson disk radius we have in the generated Poisson disk

distribution.

Rmax = (2
√

3K/S)−1/2 ,

where S is the total surface area and K/S is the distribution density. Here r is half of the shortest

distance among neighboring point pairs distributed on the object surface. Furthermore, radius

statistics measure the ratio ρ = r/Rmax to estimate the regularity of the generated distributions.

A small ρ indicates an uneven distribution, while a large ρ indicates a regular distribution.

According to Section 3.1 in [32], Poisson disk distributions should have a relative radius that

is large (ρ > 0. 65), but not too large (ρ > 0. 90). Furthermore, it is worth noting that since the

equation for estimating Rmax is originally for 2D planar domain, we have to assume sufficiently

large point sets in our experiments, so that Rmax can serve as a good upper bound approximation

even on non-planar surfaces. In practice, we can obtain ρ values of around 0. 3 to 0. 6 (on surfaces)

after the tiling depending on the quality of the surface parameterization, and can quickly optimize

ρ to be around 0. 7 to 0. 8 after distribution refinement. Table III presents some related results

for HOLES3, BUNNY, and LAURANA before and after relaxation, while Figure 13 shows the

generated distributions on BUNNY before and after relaxation. Note that we also compute mbefore
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and mafter (see the table); m refers to the average half-distance between neighboring point pairs

on the object surface.

TABLE III

RADIUS STATISTICS.

Tile set Rmax rbefore rafter mbefore mafter ρbefore ρafter

HOLES3 (S = 1. 7258)

C = 2, N = 16 0.0128 0.0077 0.0100 0.0131 0.1300 0.6052 0.7653

C = 2, N = 32 0.0089 0.0050 0.0067 0.0091 0.0090 0.5677 0.7558

C = 2, N = 64 0.0063 0.0033 0.0048 0.0064 0.0064 0.5310 0.7674

BUNNY (S = 2. 3775)

C = 2, N = 16 0.0085 0.0031 0.0063 0.0086 0.0086 0.3660 0.7371

C = 2, N = 32 0.0060 0.0016 0.0044 0.0061 0.0061 0.2591 0.7358

C = 2, N = 64 0.0042 0.0012 0.0031 0.0043 0.0042 0.2749 0.7315

LAURANA (S = 1. 5414)

C = 2, N = 16 0.0082 0.0029 0.0061 0.0083 0.0083 0.3594 0.7363

C = 2, N = 32 0.0057 0.0024 0.0042 0.0058 0.0057 0.4219 0.7342

C = 2, N = 64 0.0041 0.0015 0.0030 0.0041 0.0041 0.3658 0.7339

Fig. 13. An example showing the distributions before and after the relaxation; the tile set in use is Bunny, C = 2, N = 16.

C. Applications in Surface Modeling

Figures 14-19 present the rendering results of five different surface modeling applications we

briefly explored:
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Pattern and Shape distribution The most straightforward application of our tiling method is

to distribute texture-based features like patterns and shapes on 3D models; Figure 14 demonstrates

three different kinds of patterns distributed on HOLES3, BUNNY, and LAURANA. By storing

patterns and shapes as small image textures, we can apply fragment program to lookup texture

values based on the per-fragment values, (d, θ), sampled from the Poisson disk map. Furthermore,

since the image textures in use are for texture lookup only, we can interactively modify, deform,

and reload the texture-based patterns during the program run-time. Similarly, we use small bump

maps (normal maps) storing distorted surface normals instead of colors, and apply a modified

fragment program to lookup distorted surface normals. In this way, we can shade the object

surfaces with bumpy appearance (see the bumpy BUNNY, LAURANA, and HOLES3 in Figure 15).

Illustrative rendering To create the illustrative renderings shown in Figure 16, points are first

distributed onto the object surface according to our tiling method; compared to other applications,

we need far more points in illustrative rendering; in detail, they can be generated by subdividing

the dual surface before the tiling, i.e., more tiles on the initial parameterized surfaces. For

the examples shown in the figure, 27, 986 and 40, 983 points are generated on LAURANA and

BUNNY, respectively. In addition, it is worth to note that since all distributed points have well-

defined 3D locations on object surface (in object space), we can easily attain frame-to-frame

coherency in the renderings subject to viewpoint changes.

Mold Simulation Moreover, we also apply our distribution method to simulate mold growth.

Similar to illustrative rendering, we first distribute a dense set of points on object surface, and

compute the accessibility [6] (like ambient occlusion) at each distributed point in object space.

Note that to compute the accessibility, we put a hemisphere aligned with the surface normal

at each distributed point, and randomly send out hundreds of rays (over the hemisphere) from

the distributed point. The accessibility is the percentage of rays that are not blocked by the

object itself. Hence, the lower accessibility, the higher the chance (density) for mold to appear

on that specific location. Hence, we apply the accessibility map as a filter to assign colors and

transparency to distributed points, and simulate the mold growing process. Figure 17 shows

molded HOLES3 and BUNNY.

BTF synthesis Furthermore, we can also apply our tiling method to arrange the bidirectional

texture functions (BTF) by keying BTF-based features on object surfaces. To create the BTF

renderings shown in Figure 18, we first associate a BTF hole data with each distributed point

February 2, 2008 MINOR REVISION



22

on the object surface. Then, we can synthesize the BTF on the unfilled surface area on the 3D

model by using constrained texture synthesis in the parameterized space. Hence, we can have

BTF elements defined for all pixels on the parameterized surface, and hence, can render the

model surface under variable illumination and viewing directions.

However, we have to be very careful when transforming the per-fragment viewing and lighting

vectors; the TBN transform [2], [44] has to align with the parameterized grid (rather than the

local surface curvature) so that we can correctly lookup the surface reflectance defined in the

BTF data space. Furthermore, it is worth to note that the advantage of using tiling for BTF is

that we only need to keep a very small BTF data for the entire 3D model; in the rendering

examples shown, the BTF hole data only has spatial resolution: 128 × 128 (29. 3MB in total,

without spatial compression among BTF data elements).

Geometric Texture and Shell mapping Lastly, we explored the distribution of geometric

textures in shell space of object surfaces. Since the generated Poisson disk distribution can

guarantee non-overlapping disks (or cylinders in shell space), we can see from the rendering

results in Figure 19 that the distributed thorns and pyramids (geometric features) never collide

with each other on object surfaces.

VI. CONCLUSION

In conclusion, this paper presents a practical and efficient solution for tiling the Poisson

disk distribution on arbitrary topological surfaces. Since tileable Poisson disk distributions have

been pre-synthesized on dual Poisson-disk tiles, we can efficiently tile points on an input

parameterized surface, and readily distribute features and patterns on the corresponding 3D

model. This is the first paper exploring the use of tiling to generate the Poisson disk distribution

on parameterized surfaces of arbitrary topology. Using dual tiling, we can carefully avoid the

tile corner heterogeneity problem, so that we only have one kind of corner tiles even when the

parameterized surfaces being tiled is of arbitrary topology. Hence, we can precisely generate the

Poisson disk distribution on parameterized surfaces, and also on their corresponding 3D models

after distribution refinement. The proposed method can nicely address the surface topology, and

can maintain a valid distribution with a manageable tile set.

To support interactive control on distributed features, we develop the idea of Poisson disk

map based on GPU support. With the Poisson disk map, we can interactively deform distributed
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features on object surface without incurring any feature geometry locally on object model (pro-

vided the feature is not a geometric texture). To demonstrate the applicability of this approach,

a wide range of computer graphics applications, particularly in the area of surface modeling,

are presented. Example applications that we have briefly explored in this paper include pattern

and shape distribution, bump mapping, illustrative rendering, mold simulation, texture and BTF

synthesis, and also the distribution of geometric textures in shell space.

Future work Other than the applications listed above, the proposed tiling method can bring in

far more applications yet to be investigated: surface remeshing based on the distributed points,

stochastic sampling of surface attributes, Voronoi partitioning on surfaces, approximate collision

detection using surface point clouds, as well as stereological technique for textures.
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Fig. 14. Surface modeling application (1) — Pattern and shape distribution. Here we have 397, 1289, and 874 patterns

distributed on HOLES3, BUNNY, and LAURANA (from top to bottom), respectively.
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Fig. 15. Surface modeling application (1) — Bump mapping. In this example, we distribute 874, 1289, and 397 Gaussian

bumps on LAURANA, BUNNY, and HOLES3 (from left to right), respectively.

Fig. 16. Surface modeling application (2) — Illustrative rendering. To create the above renderings, we pre-generate 27986 and

40983 points on LAURANA (top) and BUNNY (bottom), respectively.
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Fig. 17. Surface modeling application (3) — Mold simulation. The subfigures (a), (b), (c), and (d) show two sequences of

mildewing on HOLES3 (top) and BUNNY (bottom). In this simulation, we pre-generate distributions of 102, 390 and 329, 573

points on HOLES3 and BUNNY, respectively.
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Fig. 18. Surface modeling application (4) — Distributing BTF-based features. We can quickly arrange holes (BTF-based

feature) on object surface by keying them at each distributed point generated by our tiling method.
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Fig. 19. Surface modeling application (5) — Geometric textures: thorns and pyramids in shell space. Note that we have 3142,

874, and 10121 geometric features placed on HOLES3, LAURANA, and BUNNY (from top to bottom), respectively.
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