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Figure 1: Left: A burr puzzle made from BIMBA and right: the eleven puzzle pieces after disassembly.

Abstract

A 3D burr puzzle is a 3D model that consists of interlocking pieces
with a single-key property. That is, when the puzzle is assembled,
all the pieces are notched except one single key component which
remains mobile. The intriguing property of the assembled burr puz-
zle is that it is stable, perfectly interlocked, without glue or screws,
etc. Moreover, a burr puzzle consisting of a small number of pieces
is still rather difficult to solve since the assembly must follow cer-
tain orders while the combinatorial complexity of the puzzle’s piece
arrangements is extremely high.

In this paper, we generalize the 6-piece orthogonal burr puzzle (a
knot) to design and model burr puzzles from 3D models. Given a
3D input model, we first interactively embed a network of knots into
the 3D shape. Our method automatically optimizes and arranges the
orientation of each knot, and modifies pieces of adjacent knots with
an appropriate connection type. Then, following the geometry of
the embedded pieces, the entire 3D model is partitioned by splitting
the solid while respecting the assembly motion of embedded pieces.
The main technical challenge is to enforce the single-key property
and ensure the assembly/disassembly remains feasible, as the puz-
zle pieces in a network of knots are highly interlocked. Lastly, we
also present an automated approach to generate the visualizations
of the puzzle assembly process.
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1 Introduction

Puzzles have always been fascinating, intriguing and entertaining
adults and kids. Naturally, several computational methods have

been developed for solving or generating puzzles [Freeman and
Garder 1964; Goldberg et al. 2002; Kong and Kimia 2001; Cho
et al. 2010]. In this work, we are interested in the making of burr
puzzles, which are particularly attractive, complex, and highly chal-
lenging to solve (Figure 1). A burr puzzle is a 3D model that con-
sists of interlocking components with a single-key property [Cutler
1978; Cutler 1994; IBM Research 1997]. That is, when the puzzle
is assembled, all its parts are notched except one single key com-
ponent which remains mobile. Unlike conventional puzzle games
such as jigsaw puzzles, where the challenge mainly arises from the
quantity of puzzle pieces, a burr puzzle attains a very high difficulty
index with only a small number of puzzle pieces. Such difficulty
index relates to the combinatorial complexity in the puzzle piece
arrangement and assembling order.

The burr puzzle pieces have specially-designed geometric struc-
tures which yield the unique characteristic of being interlocking:
once a burr puzzle is assembled by slipping in the last puzzle piece,
no other pieces can be taken out unless we first move the last piece,
which is called the key. Since the key piece locks the entire 3D
model, the whole geometric structure of the 3D puzzle can remain
stable without glue, screw, and nail, but at the same time, we can
still disassemble and then re-assemble it like common puzzles.

In this paper, we take a computational approach to generate burr
puzzles from a given 3D geometric model, in contrast to the tradi-
tional burr puzzles that are mainly cuboid in shape (Figure 2(a)).
The result is a partition of the 3D shape into perfectly-interlocking
puzzle pieces (Figure 1) that can be disassembled with a single

Figure 2: (a) A traditional cuboid burr puzzle; and (b) the canoni-
cal six-piece burr puzzle.



moveable key piece. Our basic building block is a single canoni-
cal six-piece burr puzzle, in which we call it a knot for simplicity
(Figure 2(b)). We illustrate our method by first generating a single-
knot puzzle (6 puzzle pieces only) from the 3D model. Then we
extend it to the more complicated multi-knot puzzle (a network of
knots) that contains a larger number of puzzle pieces.

Note that extending to the multi-knot case does not naturally pre-
serve the single-key property of the canonical single-knot case. En-
suring such property is a highly challenging issue since there might
be a large number of puzzle pieces in the geometric construction,
and yet the puzzle pieces have to be fully interlocked with suit-
able connection types (interdependency). Moreover, the assem-
bly/disassembly of burr puzzles requires each piece to have a non-
blocking motion space so that they can be assembled/disassembled
in a specific trajectory. Thus, puzzle pieces have to be carefully gen-
erated to avoid blocking the trajectory of some other puzzle pieces.
To help visualizing the assembly/disassembly of our generated burr
puzzle, we further develop visualization methods to automatically
illustrate and annotate the puzzle assembly process.

2 Related Work

Burr Puzzle. Burr puzzles have been massively produced in Asia
as early as in the 18th century, but there is no consensus as to the
origin of the burr puzzle. The IBM research website [IBM Re-
search 1997] dated burr puzzles as early as 1803 in the Bestelmeier
Toy catalogs while Coffin [2007] quoted Slocum’s work, which
traced its history to at least 1698 in Germany. The six-piece burr
puzzle can be constructed by arranging three pairs of mutually-
perpendicular rods, notching each other in a central region (Fig-
ure 2(a)). There are only very limited number of burr puzzle vari-
ations for a long time until 1978 when Cutler [1978; 1994] em-
ployed computers to systematically and thoroughly analyze all pos-
sible combinations of six-piece burr puzzles. Cutler is an American
mathematician who worked on analyzing burr puzzles. In addition
to six-piece burrs, he also worked on various kinds of burr puzzles,
such as rectilinear burrs, non-rectilinear burrs, and box-filling burrs,
see [Cutler 2000].

Puzzles in Graphics. Graphics researchers proposed techniques
for recreational assembly, including the construction of papercraft
toy models by Mitani and Suzuki [2004], the plush toys by Mori
and Igarashi [2007], the digital bas-relief models by Weyrich et
al. [2007], the paper-folding models by Kilian et al. [2008], the
polyomino 3D puzzle models by Lo et al. [2009], the shadow-art
models by Mitra and Pauly [2009], and the paper-popup architec-
tural models by Li et al. [2010].

Since 60’s, computational methods have been developed for solv-
ing puzzles, in particular 2D jigsaw puzzles. Freeman and
Garder [1964] were the first to approach this problem by consider-
ing the geometry of puzzle pieces. Wolfson et al. [1988] introduced
a two-stage puzzle assembly algorithm. Goldberg et al. [2002]
further developed techniques to improve the performance and ro-
bustness. Rather than apictorial, Cho et al. [2010] recently devel-
oped a probabilistic approach for solving 2D image jigsaw puzzles.
While previous works mostly focus on solving 2D jigsaw puzzles,
our method practically creates interlocking 3D burr puzzles from
general 3D shapes. Without the computer aid, such interlocking 3D
puzzles are extremely difficult to design, and can only be developed
by highly skilled craftsmen.

3 Overview

The problem of making a burr puzzle from a 3D model is a volume
partitioning problem. The given 3D model is split into disjoint com-
ponents that can be assembled to form an interlocking burr puzzle.

Our solution is based on extending the pieces of a known canoni-
cal burr puzzle into larger pieces that conform to the shape of the
input model without violating their interlocking properties. To sim-
plify the description of the method, we first start with a basic case
of making a six-piece burr puzzle, or a single-knot burr puzzle, and
then extend our solution to the general multi-knot burr puzzle.

Figure 3: (a) Single knot: the canonical six-piece burr; (b) em-
bedding the single knot into the 3D model, SQUIRREL; (c) extend-
ing the “blade” to partition the volume without touching the center
burr lock; and (d) pieces after flesh attachment.

To generate a single-knot burr puzzle, we embed a canonical six-
piece burr (knot) in the input 3D model. The method is illustrated
in Figure 3. The knot in Figure 3(a) is first partitioned into inner and
outer parts. The inner part, which remains a canonical six-piece, is
placed entirely inside the 3D model (Figure 3(b)). Then the outer
pieces are extruded using an anisotropic (axial) scaling till they go
beyond the 3D model. Then we can apply a CSG intersection be-
tween the extruded six pieces and the given 3D model to produce
the puzzle “skeleton” as shown in Figure 3(c). The last step is to
compute the missing octant volumes (“fleshes”) and attach them to
the “skeleton” pieces to yield the single-knot burr puzzle shown in
Figure 3(d) (Section 4).

The general case of making a multi-knot burr puzzle is based on the
basic case. The goal is to connect multiple knots into a network so
that the resultant puzzle owns the single-key property and all puzzle
pieces are interlocked but still can be disassembled. The network is
in general an orthogonal grid structure with each knot correspond-
ing to a unique grid point. To work out the connection, we first com-
pute the shortest path tree of the network to obtain a partial order of
the knots. Then, we propose novel strategies to orient neighboring
knots and modify adjacent puzzle pieces to connect them, aiming at
enforcing the single-key and disassemblability properties. Finally,
we compute the disassembly order of the pieces, and generate the
geometry of each piece with CSG boolean operations (Section 5).

To help understanding how the puzzle can be disassem-
bled/assembled or preparing an “instruction manual,” we develop
a series of visualization methods in the spirit of [Mitra et al. 2010]
to automatically generate annotated disassembly/assembly anima-
tion for each created puzzle (Section 6). In Section 7, we present
our results of various burr puzzles made from different 3D models,
and the rapid-prototyped burr puzzles. Finally, Section 8 draws the
conclusion.

4 Single-Knot Burr Puzzle

As mentioned before, we employ the canonical six-piece burr puz-
zle (single-knot) (Figure 2(b)) as the basic building block for our
burr puzzle construction. Then we extend it to the general multi-
knot puzzle in Section 5.

Locking Mechanics. Before we go on, we first describe the lock-
ing mechanics of a knot. Without loss of generality, we denote the
six puzzle pieces of a single knot as A1, A2, ..., and A6 (for knot
(A)) (Figure 2(b)), and consistently color-code each of them in or-
der to facilitate discussion throughout this paper. The disassembly
of a single knot must start with the only moveable key A1. A1 can



only slide a little bit outward as it is later blocked by A4 and A5.
After such little move, the burr lock becomes partially unlatched
(namely the activated state), and we can then take out A2 or A3

entirely. The selection of a removable piece at each step may af-
fect the disassembling ordering (path) of the remaining pieces. In
general, as one more piece is removed, the choice of further remov-
able pieces increases. Figure 4 shows all possible disassembling
sequences (paths) in the form of a graph. Note that the notation
A is dropped for clarity in the graph and the unlocked state means
that all remaining pieces can be taken out in any order. A video se-
quence of assembling a knot is shown in the supplementary video.

Figure 4: Possible disassembling orders: the vertical rectangular
boxes and rounded squares next to each of them denote the states
and the removable puzzle piece(s) at each state, respectively.

Knot Embedding. To create burr puzzles from a given 3D shape,
we can simply embed the knot into the shape (Figure 3(b)) and
extend the “blades” of burr pieces along the three principle axes to
partition the shape (Figure 3(c)). By this, we regard the problem
of making a burr puzzle from a 3D model as a volume partitioning
problem. The extension of “blades” can be achieved by applying
an anisotropic (axial) scaling only on the blades without touching
the center notch of the burr lock. Note that such extension does
not violate the interlocking property since each piece is extended
only radially from the knot center. After that, the six burr pieces are
formed by CSG intersection with the given 3D shape (Figure 3(c)).

Flesh Attachment. So far, we only form the “skeleton” of the
burr puzzle. There are eight missing octant volumes (“fleshes”)
as in Figure 3(c), and these fleshes have to be attached to the six
extended puzzle pieces to complete the final puzzle. There can be
many ways to attach the fleshes. The key criteria we used is to make
the cutting plane of the flesh radial from the knot center to avoid
potential occlusion in the assembling/disassembling trajectory of
the puzzle pieces.

Figure 5: Top: Two-way attachment; Bottom: Even attachment by
three 45-degree cutting planes.

Figure 6: Fragments may be resulted during partitioning.

Here, we suggest three kinds of attachment schemes, namely two-
way, multi-way, and even attachments. The two-way scheme at-
taches the eight fleshes to two out of the six pieces on the oppo-
site side, e.g., A1 and A6, A2 and A3, or A4 and A5 (Figure 5
(top)). The multi-way scheme generalizes the two-way one by arbi-
trarily attaching a flesh to one of its three neighboring puzzle pieces,
resulting in 38 possible choices altogether. The even attachment
scheme strives for a more balanced partitioning by first partitioning
each flesh into three subvolumes and then attaching each subvolume
to the neighboring puzzle piece (Figure 5 (bottom)). The choice of
flesh attachment schemes is decided by the users. In practice, we
couple the flesh attachment step with the skeleton construction step,
by subtracting unwanted subvolumes from the given object using
CSG operations.

Note that a puzzle piece may result in multiple disjoint parts during
the partitioning in knot embedding and/or flesh attachment (Fig-
ure 6). We have to constrain the partitioning process to a single
connected component to avoid fragmentation during the CSG oper-
ations.

5 Multi-Knot Burr Puzzle

Extending the burr puzzle from single-knot to multi-knot results in
more complicated and challenging 3D puzzles with a larger num-
ber of interlocking puzzle pieces. To do so, we need a series of
procedures: designing the knot network, computing the knot in-
terdependency and orientation to maintain the single-key property,
modifying certain pieces to connect neighboring knots, and finally
generating the puzzle pieces.

Knot Network Design. Given an input 3D object, our first step is
to design a network of knots that fits inside the volumetric space of
the object (Figures 7(a)-(b)). We employ an interactive GUI to load
the 3D model, position the knots inside the volume, and connect
them into an undirected network. Since the 6 pieces of a knot are
axis-aligned (orthogonal) in nature, edges in the knot network are
also axis-aligned. Therefore, the placement of neighboring knots is
constrained to be axis-aligned. During the knot network design, the
system renders partition planes, i.e., the mid-plane between neigh-
boring knots (Figure 7(c)). This allows us to visualize the parti-
tioned sub-volumes corresponding to each knot, thereby avoiding
uneven subdivision of the object volume among the knots. The last
input in this step is the specification of the key knot. That is the knot
containing the key piece of the entire puzzle (Figure 7(b)).

Note that, when designing the knot network, edges are undirected
(the knot dependency is not yet decided) and the knot orientation is
not yet determined. Our methods to be described later can automat-
ically compute them.

Knot Orientation. Due to its axis-aligned nature, the knot net-
work is a subgraph of a complete 3D grid graph. For any two neigh-
boring grid points in the graph, there must be an edge connecting
them to ensure the graph connectivity. When placing a knot at a grid



Figure 7: Constructing a multi-knot burr puzzle: (a) a given 3D
model; (b) a network of knots; (c) partition the model volume for
each knot; (d) compute the knot interdependency; (e) compute the
knot orientation; and (f) generate the puzzle pieces.

point, we have 48 possible choices of orientations via rotation and
mirror-reflection. This is due to the fact that there are 24 different
orientations by applying axis-to-axis rotations; in addition, we can
obtain another 24 different orientations by applying mirror reflec-
tion of them because the burr structure is asymmetrical. Note that
mirror reflection of a knot is still a valid burr puzzle. To facilitate
the knot connection, we further divide the 48 orientations into two

Figure 8: Connection types of neighboring knots.

groups using the following group operations: 180◦-rotation about
X , Y , or Z axis and mirror reflection. This gives us groups G1 and
G2, each with 24 orientations.

To connect neighboring knots, we found that the orientation of two
neighboring knots, say A and B, must be chosen from different
orientation groups. That is, if A is from G1 (or G2), B must be
from G2 (or G1). In this way, the proposed constraint can always
result in a distinctive contact (90-degree-off) between all neighbor-
ing knots, as depicted by the top-left thumbnails (cross-sections)
in Figure 8(a). This pattern can support the connection technique
described in the next step.

Knot Connection and Dependency. With the above orientation
constraint, we can connect neighboring knots and then create inter-
dependency to maintain the single-key property. This requires mod-
ification on the puzzle pieces. To facilitate the discussion, we de-
note a knot as A and its i-th piece as Ai. We also employ the same
subscript numbering and color-coding of pieces as in Figure 2(b).

Connection type #1: Strong dependence. Consider two neighbor-
ing knots A and B. In this type, we orient B1 to face Ai where
Ai can be any piece of A other than A1. Next, we cut Ai into two
halves as in Figure 8(a) and merge them into B4 and B5, respec-
tively. Since B1 is the key piece of knot B (Figure 4), by orienting
B1 to face knot A, we block the movement of B1 and make B

fully dependent on A. That is, B cannot be unlocked without first
unlocking A. We denote such strong dependence by B → A.

Connection type #2: Independence. Two neighboring knots
can be connected but not dependent on each other in the as-
sembly/disassembly order. This connection type is called inde-
pendence. One example is shown by the green edge in Fig-
ures 7(d)&(e). Geometrically, it is a variant of Type #1, and
achieved by orienting B so that both B1 and B3 face away from
A, and then by modifying the puzzle pieces as in Type #1 (the re-
sult is shown in Figure 8(c)). With this arrangement, both A and
B can be unlocked independently, even though they are connected.
We denote this connection type as B − A.

Connection type #3: Partial dependence. Figure 8(b) demonstrates
how pieces are modified to construct this type. First, we orient A1

and A6 to block B1. Then, we modify these three pieces as in
Figure 8(b) (lower right) so that B1 is blocked only by A1. The
introduced gap between modified B1 and A1 & A6 is just large
enough to allow B1 to activate B (the little forward move) after A1

has moved outwards (downwards in the figure). Recall that a knot
is activated by slightly moving outwards its key piece (Figure 4).
So when A is locked, so as B. But when A is activated, so as
B, even though other pieces of A have not been moved yet. In
other words, B can still be unlocked as long as A can be activated.
This connection type is useful to provide flexibility when the knot
network is heavily interlocked. We denote this type as B ⇀ A.

Connection type #4: Partial dependence. The last connection type
is a variant of Type #3, in which we orient A2 and A3 instead of A1

and A6 to contact B1 (Figure 8(d)). In this way, B can be activated
only if A3 moves out of its place. Note that A3 is in a later stage
of the disassembly compared to A1, thus making it a more secure
type of partial dependence as compared to Type #3. We denote it as
B ⇁ A.

Determining Knot Orientations and Connections. To deter-
mine the dependency among knots and the orientation of each knot,
our method performs the following steps:

Step 1: Compute a shortest path tree. With the user specified key
knot K, we apply the Dijkstra’s algorithm starting from K to com-
pute a shortest path tree, T , with K as the root of T .



Step 2: Candidate knot orientations. Then, we can rotate K so
that its key piece K1 does not face any neighboring knots, thereby
ensuring K1 to be always movable when the puzzle disassembly
starts. Based on the parent-child relationship in T , we can de-
termine a disassembly order, and hence the interdependency con-
straint, for each pair of neighboring knots. If A and B are a pair of
parent and child knots in T , we arrange B1 to face A so that B is
dependent on A, either fully or partially. Note that, at this moment,
the orientation of B can still have four possible choices (by a 180◦

rotation along B to A and/or mirror reflection about plane of B1)
in an orientation group that is different from that of A.

Step 3: Candidate connection types. In addition to knot orienta-
tion, we determine a set of candidate connection types for each pair
of neighboring knots. If the pair is associated with an edge in T ,
we must connect the two knots with Type #1, #3 or #4, so that
B can always depend on A to maintain the interlocking. On the
other hand, if the pair is not associated with any edge in T , we use
the independence connection Type #2 to connect them so that the
resultant puzzle can be more strongly connected.

Step 4: Determining orientation and connection. With the candi-
date orientations and connection types over the knot network, we
can simulate the disassembly starting from knot K with its key
piece. The goal is to determine the orientation and connection for
all knots so that all pieces can be disassembled in order during the
simulation. Note that we can follow the logics in Figure 4 to com-
pute the valid puzzle piece moves locally in each knot together with
the logics previously defined for the four connection types.

In our current implementation, we use a greedy algorithm to make
choices during the simulation. That is, we attempt to arrange B3

and also B5 to face away from neighboring knots of B when choos-
ing the knot orientation of B because B3 is a crucial milestone
piece in the disassembly (Figure 4). In addition, we prefer Type
#1 over #3 and #4 as the dependence connection because it has
the strongest dependency among the three.

Generating Puzzle Pieces. After determining the knot orienta-
tions and connections, we can generate the “skeleton” of multi-knot
burr puzzles as in the single-knot case. At the same time, we can
also modify the puzzle pieces according to the determined connec-
tion type. Then, starting from the key piece, we can attach the
“flesh” into the skeleton puzzle pieces by computing the motion
space of each puzzle piece while ensuring a non-blocking trajec-
tory. Our implementation employs the CGAL library API to gen-
erate an action list, and performs the CSG boolean operations in
3D Studio Max via scripting. An action list encodes a sequence
of CSG operations for constructing the geometry of each puzzle
piece. Each action in the list is basically a CSG operation such as
A(∩/ ∪ /−)B = C, where A, B, and C are mesh models.

Extensions. Our multi-knot puzzle modeling framework can be
further extended in the following two ways:

Non-Orthogonal Connection. So far, neighboring knots are ar-
ranged exactly axis-aligned. We can generalize orthogonal knot
connection to be non-orthogonal by shearing the volumetric space
in-between neighboring knots (Figure 9 (left)). Since such shearing
does not block the motion trajectory of puzzle pieces in the assem-
bly, we can retain the interlocking and connection structure among
the puzzle pieces. To construct the non-orthogonal connection as
shown in Figure 9 (left), we first arrange three knots in the DRAGON

body in zigzag way (with 55◦ turning angle). Then, we can apply
a piecewise shearing along one specific direction (while isomet-
ric along the others) to deform the subspace in the puzzle skeleton
structure. Finally, we can continue with the standard CSG opera-
tions in our multi-knot framework to generate the puzzle pieces.

Figure 9: Non-orthogonal connection (left) and connecting disjoint
knot networks (right).

Disjoint Knot Networks. Another interesting variation is that we
can produce disjoint knot networks within a 3D model, and yet we
can connect them by merging puzzle pieces among them. As shown
in Figure 9 (right), we in fact start with three disjoint knots here. By
merging relevant contacting pieces (those become grey) between
the middle and left knots (as well as the middle and right knots),
we can connect these three disjoint knots. However, it is worth to
note that such connection does not enforce the single-key property.
In this example, we can add in two pairs of tabs and blanks on the
blue and the two red pieces (left and right) as indicated in the figure.
The tabs on the blue piece can block the motion volume of the two
red pieces, which are the keys of the left and right knots. As a
result, these two knots become dependent on the blue piece of the
middle knot, hence leaving a single key in the entire system. The
general rule is that we have to pick one of the knot networks as the
key, and block the key pieces of all the other disjoint knot networks
by pieces subsequently dependent on the key network.

Please refer to the supplementary video for animations to present
these results.

6 Assembly/Disassembly Illustration

Assembling burr puzzles can be very challenging, particularly for
multi-knot burr puzzles. To aid the understanding on the puzzle as-
sembly/disassembly process, we develop illustrative visualization
methods to automatically generate animations and figures to illus-
trate and annotate the assembly/disassembly process. Related lit-
eratures on illustration generation include: Mitra et al. [2010] used
cap, side and translational arrows to illustrate the spatial movement
of mechanical parts. Agrawala et al. [2003] used motion arrows
as a guidance. Our method follows the principle of these works to
illustrate the spatial configuration and object motion of our puzzle
pieces. In particular, simultaneous movement of multiple puzzle
pieces is also possible in our illustration.

Camera Movement. To ensure the visibility of puzzle piece in-
motion, we change the camera view on the puzzle pieces. Given an
initial camera position and the puzzle assembly order, we compute
the visibility of each puzzle piece in-motion by rendering it together
with all the other pieces in the camera view. If the proportion of its
occlusion in the view is higher than a threshold (τo = 50%), we
move our camera to a new orientation such that the camera viewing
direction and the piece movement direction is within a prescribed
threshold (τa = 60 degrees). The upward vector of the camera
frame remains constant to minimize the annoying tilting. For the
case of multi-knot puzzles, we also automatically translate the cam-
era to center our view on the next knot to be assembled or disassem-
bled.



Figure 10: Illustrating the puzzle disassembly: (a) motion arrow placement to indicate puzzle piece movement; (b) number label to show the
movement stage; (c) contact areas coding with zoom-in view to illustrate the interlocking structure; (d) successive views showing the camera
movement to expose the next puzzle piece in-motion; and (e) annotating multiple puzzle pieces in motion.

Motion Arrows and Numbering. Motion arrows have been used
in many conventional composition diagrams in instruction manuals
to indicate how parts should be assembled. With our previous puz-
zle formation result, we can determine the assembly/disassembly
sequence, and thus, produce the visualization animation. Our
method first analyses the puzzle piece movement during the assem-
bly/disassembly, and then automatically places the motion arrows
for illustration. To place a motion arrow on the moving piece, we
compute the centroid of the largest visible region occupied by this
piece in image space, and then project this point onto the puzzle
piece surface in object space. The arrow tail is then anchored at this
3D point and its head is oriented towards the moving direction of
the puzzle piece. The arrow is further translated towards the camera
in order to avoid intersection with the puzzle piece (Figure 10(a))
and scaled properly relative to the size of the related puzzle piece.

Numbering is another common feature in many conventional illus-
trations. We automatically generate number labels to show the as-
sembly/disassembly steps. We place the number labels next to the
arrow head (Figure 10(b)).

NPR Stylization and Color-Coding. To better convey the geo-
metric structure, we employ non-photorealistic rendering style sim-
ilar to [Li et al. 2008]. We color-code the canonical six pieces with
RGBYMC colors, and for multi-knot puzzles, we highlight those
merged pieces (modified after knot connection) with a light grey
color, see Figures 10(a)-(e).

Furthermore, to help visualizing how burr pieces touch each other,
we color-code the contact area at the innermost burr lock region.
The color applied to each contact area is the color of the contacting
piece (Figure 10(c)). Such visualization is applied only to the puz-
zle piece in motion, and we display also a zoom window to expose
this contact area information.

7 Results

We applied our computer-aided-geometric design system to make a
number of burr puzzles from a variety of 3D models using differ-
ent knot network arrangements. Figure 12 shows all the 3D puzzles
created from our modeling system (see the mini-map indices for the
name of the puzzles). Regardless of the knot arrangements and the
number of puzzle pieces contained, all the presented puzzle mod-
els can enforce the single-key property, and thus can be perfectly-
interlocking upon the puzzle assembly. Note also that the small
gap in the middle of CUBICBOX is a result of Type #3 connection;
such a gap is introduced to leave a movement space for taking out
the related key piece. Figure 11 depicts the corresponding knot
network arrangement for each of these puzzles, using blue arrow,

green edge, yellow arrow, and magenta arrow to indicate Type #1,
#2, #3, and #4 connections, respectively; in addition, the key knots
are colored in orange. Note that since knots connected by Type #2
are independent of each other, thereby no arrow heads are drawn. In
addition, 2-TORUS is created by connecting disjoint knot networks.
Its knots are not connected using any of the standard connection
types.

Table 1 provides the detail of the 3D puzzles in three sections. The
first section refers to the 3D puzzles created using the extended
techniques: DRAGON and 2-TORUS. The second section refers to
those produced with a rapid-prototyping counterpart, whereas the
last section is for the rest. The last column in the table shows the
time taken for our system to compute the knot orientations and con-
nections, as well as to generate the puzzle pieces. These experimen-
tal results also demonstrate the possibility of using very different
arrangements when designing the knot network.

Rapid-prototyping Results. Figure 13 shows the three rapid-
prototyping burr puzzles we have. They are created from 3D plas-
tic parts printers (SOMOS and SLA machines) with different slot
widths, i.e., the size of the slot in the inner part of the burr lock.
The slot widths for CHESS, MOAI, and TORUS are 2mm, 2.5mm,
and 3mm, respectively, and such value is controllable in the puzzle
piece generation.

The CHESS model is particularly interesting because it demon-

Figure 11: Knot networks employed to construct the 3D burr puz-
zles presented in Figure 12.



Figure 12: Single-knot and multi-knot burr puzzles created from assorted 3D models: a) CUBICBOX, b) BUNNY, c) 2-TORUS, d) MOAI, e)
DRAGON, f) LAURANA, g) SHARK, h) TORUS, i) SQUIRREL, j) MEGABOX, k) ISIDORE HORSE, l) BIMBA, and m) CHESS.

Table 1: Information about the burr puzzles in Figure 12.

Puzzle model #knots #pieces Timing (sec.)

DRAGON 3 (non-ortho.) 16 175
2-TORUS 3 (disjoint knots) 16 95

CHESS 1 (interchangeable) 7 107
MOAI 2 (evenly attachment) 11 141
TORUS 4 (2 × 2) 20 113

SQUIRREL 1 (single-knot) 6 73
BIMBA 2 (linear) 11 92
BUNNY 3 (L-shaped) 16 163
SHARK 3 (linear) 16 151

ISIDORE HORSE 4 (L-shaped) 21 187
LAURANA 4 (T -shaped) 21 171
CUBICBOX 8 (2 × 2 × 2) 36 196
MEGABOX 64 (4 × 4 × 4) 240 1405

strates a unique characteristic of using the burr structure to connect
and compose 3D models: “interchangeable.” This model consists
of seven puzzle pieces with two of them originated from exactly the
same skeleton puzzle piece out of the six pieces in the canonical set.
The headpieces for the knight and bishop are interchangeable, see
again Figure 13 (right). In addition, it is worth highlighting that the
rapid-prototyped TORUS puzzle is a 4-knot model with 20 pieces;
these pieces are perfectly interlocking with only a single key.

Implementation Issues. The automatic visualization engine was
implemented by using offscreen rendering with OpenGL to obtain
the depth buffer view at different time frame. Hence, we can ob-
tain scene conditions at the viewpoint and automatically generate
an animation script for 3D Studio Max to position and move the
camera, to arrange the motion arrows (through scripting in 3D Stu-
dio Max), as well as to layout other illustrative elements shown
in the assembly/disassembly video, see also Figure 14 for the as-

sembly sequence of the BUNNY puzzle. Compared to the case of
disassembly, these motion arrows are reversed. In addition, we also
developed a lightweight program to help preview the puzzle disas-
sembly/assembly sequence in a generated animation script; see the
supplementary material for this lightweight program and the sim-
plified version of the animation scripts.

Limitations. We cannot create burr puzzles from 3D shapes with
parts that are too narrow or flat, and the key must be on the outer
side of the knot network. Although in Section 5 we demonstrate
how to extend the connection strategies to more complicated geo-
metric shapes by attempting to relax the requirement of orthogonal
structure, we must point out that such an extension technique is not
general. The essential limitation of the orthogonal structure, in our
mind, lies in the intrinsic structure of burr. Moreover, there are also
no general methodologies that can always ensure that a single key
locking a disjoint knot network.

Figure 13: Rapid prototyping models of our 3D burr puzzles.



Figure 14: An assembly sequence of the BUNNY puzzle.

More generally, a burr puzzle should better be made up of pieces
that are roughly equal in size, similar in shape, as well as solid and
strong. In addition, input 3D models that are more symmetric are
likely to produce more balanced puzzle pieces. However, these ob-
servations are also not absolute. Building burr puzzles from asym-
metrical models may also be nicely shaped, for example, for artistic
purpose.

8 Conclusion

This paper generalizes the well-known 6-piece orthogonal burr puz-
zle to multi-knot burr puzzles and introduces a geometric modeling
system to design and create burr puzzles from 3D models. Our
geometric modeling techniques can enforce the single-key prop-
erty while connecting and interlocking the puzzle pieces partitioned
from the 3D models, meaning that a 3D puzzle model can be locked
by a single key piece regardless of the number of puzzle pieces it
consists of. Hence, the resultant 3D puzzles can be glue-less, screw-
less, and nail-less, as well as interchangeable, thus allowing us to
replace or reconfigure parts in the puzzle.

Key techniques proposed include the formulation of knot network
to model multi-knot burr puzzles, geometric modification methods
to connect knots, the computational method for knot orientation and
connection, and the volumetric partitioning schemes to shape the
puzzle pieces from “skeleton” and “flesh,” as well as the visualiza-
tion methods to illustrate the puzzle assembly or disassembly pro-
cess. All these enable us to make the 3D puzzle models perfectly-
interlocking with only a single key, as demonstrated in a variety of
examples we presented.
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