Understanding BGP Misconfiguration

Ratul Mahajan
David Wetherall
Tom Anderson

University of Washington
Motivation

- BGP instabilities have widespread impact

- Misconfigurations can be a leading cause of unreliability
 - BGP is complex to configure
 - Known major incidents

- Little is known about misconfiguration in BGP
 - Only anecdotal evidence

- Use our experience to avoid future mishaps
Understanding BGP misconfiguration

- A systematic study to understand the problem
 - How common are misconfigurations?
 - What is their impact on connectivity and routing load?
 - Why do they happen?
 - How can we stop them?

- Approach
 - Leverage global visibility of BGP actions to detect misconfigs
 - Data from 23 BGP speakers in the backbone
 - Obtain operator feedback through an email survey
Border Gateway Protocol (BGP)

Each AS announces the networks it is connected to.

Route exports depend on policy.

The selected route depends on policy.

ASes export routes to other ASes.

Each AS announces the networks it is connected to.
BGP Misconfiguration

- No universally accepted list of “Dos & Don'ts”
- Defined as behavior unintended by the operator
 - Includes both slips (inadvertent errors) and mistakes (erroneous plan)
- We study two broad classes of globally visible faults
 - Origin misconfiguration
 - Export misconfiguration
BGP Misconfiguration (2)

- **Origin Misconfiguration**: If Q is announced unintentionally.
- **Export Misconfiguration**: If AS3’s policy is to not export this route to AS6.

Global visibility: Q, {6,4,1}
Methodology

- Analyze updates from 23 BGP speakers for 21 days [route-views]
 - Rich view of backbone routing
 - Ability to observe even very short-lived events

- Identifying misconfiguration
 - IRRs are inaccurate or outdated
 - Instead use signature of misconfigs in the update stream
 - Policy changes have similar signature but bigger timescales
Methodology (2)

1. Identify short-lived (< 24hrs) changes as potential misconfigs
 • Origin misconfiguration
 § Short-lived new route – new prefix or new origin for a prefix
 • Export misconfiguration
 § Short-lived AS-path that violates policy
 § Infer AS relationships using Gao’s heuristics

2. Email verification through operators
 • Was it a misconfig? Connectivity disrupted? What caused it?

3. Use email responses to discover underlying causes
 • Test connectivity using public traceroute servers
 • Coarse independent verification of email responses
Results: Origin misconfiguration

<table>
<thead>
<tr>
<th></th>
<th>Potential misconfigs per day</th>
<th>Email responses (% of potential)</th>
<th>Misconfigs (% of email)</th>
<th>Connectivity (% of misconfigs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefixes</td>
<td>605</td>
<td>352 (58%)</td>
<td>339 (96%)</td>
<td>13 (4%)</td>
</tr>
<tr>
<td>Incidents</td>
<td>178</td>
<td>52 (29%)</td>
<td>45 (86%)</td>
<td>6 (13%)</td>
</tr>
</tbody>
</table>

- Misconfiguration detection accuracy is high
- Large number of misconfigurations
 - Extrapolated estimate is 580 (605 * 0.96) prefixes per day
 - 3 in 4 new routes seen in a day result from misconfigurations
- Most misconfigurations don’t disrupt connectivity
Results: Export misconfiguration

<table>
<thead>
<tr>
<th>Paths</th>
<th>Potential misconfigs per day</th>
<th>Email responses (% of potential)</th>
<th>Misconfigs (% of email)</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents</td>
<td>35</td>
<td>12 (36%)</td>
<td>10 (86%)</td>
<td>-</td>
</tr>
</tbody>
</table>

- Misconfiguration detection accuracy is high
- Almost no impact on connectivity
 - But congestion experienced
Routing load

- Defined as fraction of updates due to misconfigs
 - $\frac{\text{bad updates}}{\text{total updates}}$

Some misconfigs cause extreme short-term routing load
Causes: Origin misconfiguration

- Faulty redistribution (32% prefixes/ 5% incidents)
 - Errors in propagating IGP routes into BGP
- Initialization bug (22% / 5%)
 - Leaking routes temporarily during boot-up or maintenance
- Reliance on upstream filtering (14% / 46%)
 - Announcing routes assuming upstream would filter them
- Hijacks (1% / 6%)
 - Announcing somebody else’s address space
- Old configuration (1% / 4%)
 - Reactivation of stale configuration
Prefix based (mis)configuration

Prefix based configuration was responsible for 22% of the export misconfig incidents

Intended policy at A:
Provide transit of C through link A-C

Configuration:
Export all prefixes originated by C to P1 and P2

The misconfiguration is exposed when the link A-C fails
Fixes (largely speculative)

- User interfaces
 - Basic principles need to be followed
 - High-level configuration tools built into the routers
- Configuration checker
- Automated verification

- Expose errors
- Appropriate configuration semantics
- Consistent databases and updated registries
Conclusions

- Misconfigurations are commonplace

- Connectivity is surprisingly robust to most misconfigs but routing load can be significant

- The causes of misconfigurations are diverse
 - Much needs to be done to improve the operational reliability of the Internet
On email surveys

- Don’t worry. That was a configuration error of our upstream ISP.

- Yes, we know this is not a recommended way of doing things; but the packet monster of the internet must be fed.

- I am writing to thank you for your letter and say that I am glad that someone apart from me is interested in our BGP announcements.

- Hope you enjoy living in Seattle; it’s a beautiful city.