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Abstract— Analyzing transport layer operation and enhancing
its performance over multihop ad hoc networks have attracted
a lot of attentions. Although the fundamental reasons for the
performance degradation of TCP have been studied for many
years, the tight coupling between transport layer and the wireless
MAC layer is still not well understood. In this paper, we focus
on the interactions between the hidden nodes and network
congestion1. By modeling the frame loss ratios of competing flows,
a novel index is presented to measure congestion and fairness of
these interfered links simultaneously. We formulate a practical
optimization framework for TCP flows, and propose a distributed
algorithm to improve the end-to-end throughput, and at the
same time, provide per-flow fairness by exploiting cross-layer
information. In the link layer, each node uses a proportional
controller to determine the ECN marking probability for the
purpose of notifying incipient congestion. Then the rate based
TCP sender adjusts its sending rate according to the feedbacks
from the link layer. Compared with standard TCP/802.11 as well
as recent wireless TCP enhancements, our method substantially
improves both long-term fairness and short-term fairness without
sacrificing the aggregate end-to-end throughput. For some topolo-
gies with long hops, the throughputs of our proposed algorithm
even outperform basic TCP/802.11 by over 100%.

I. Introduction

Transmission Control Protocol (TCP) is designed to provide
reliable and efficient end-to-end data delivery, and it is widely
adopted in the current Internet infrastructure. With the rapid
deployment of Mobile Ad Hoc Networks (MANETs), esp.
IEEE 802.11 (WiFi) Ad Hoc networks, TCP protocol is also
extended to these networks so as to perform the data transfer
in such dynamic and autonomous wireless environments. But
TCP was not originally developed for wireless networks in
which physical links are relatively un-reliable as opposed to
wired networks and the transmissions are interference-limited.
As a matter of fact, experimental research has shown that the
performance of TCP degrades considerably in 802.11 multihop
ad hoc networks [1], [2].

Under wireless environments, TCP not only exhibits serious
throughput degradation, but also experiences severe unfairness
among competing flows [3]. Much effort has been invested to
improve throughput or fairness of TCP traffics over multi-
hop ad hoc networks. These previous works can be roughly

1Congestion generally refers to the channel contentions in IEEE 802.11
multihop ad hoc networks, which is quite different from the buffer overflow
in wired Internet.

grouped into two classes: layered design [4], [9], [10] and
cross-layer design [6], [8], [12], [13]. In the layered design, the
approach is to find efficient solutions in the transport layer or
MAC layer independently. While in the cross-layer design, the
interactions among TCP, routing and MAC protocols convey
some important information that can be utilized to diagnose the
reasons of performance degradation over multihop links. Thus
the TCP sender will learn how to adjust its congestion window,
retransmission timeout or methods to reply acknowledgement.
However, approaches of layered-design such as CWL [4], Few
[9], Adaptive ACK [10], do not consider the fairness issue. The
cross-layer design such as Neighborhood RED (NRED) [12]
sacrifices the aggregate throughput in favor of the per-node
fairness. The Link RED [8] uses the average number of MAC
retries to generate ECN probability, but it cannot reflect the
contributions of competing flows to the network congestion.

In this paper, we quantitatively investigate the impact of
hidden nodes on the collision probability and end-to-end
performance over 802.11 multihop networks, and show that
previous approaches of using the average number of MAC
retries or collision probability in an individual node are
inadequate to guarantee good throughput and fairness. A novel
index is proposed to simultaneously measure congestion &
fairness among competing TCP flows. We also formulate
a practical unconstrained optimization model that captures
both the rate allocation and fairness issues. A distributed
cross layer algorithm is presented to address the fair rate
allocations among TCP flows. The idea is that each wireless
node measures its congestion status and uses a proportional
controller to calculate the explicit congestion notification
(ECN) marking probability of outgoing packets. We illustrate
the drawbacks of window based TCP (e.g. AIMD mechanism)
in 802.11 multihop ad-hoc networks and propose to add a
rate adjustment mechanism to the original TCP. If an ECN
echoed acknowledgement packet is received by a TCP sender,
it will slow down the sending rate by choosing a larger
transmission interval. Otherwise, the TCP sender increases its
sending rate. Our algorithm significantly reduces the number
of TCP timeout and drives TCP senders to operate around
the optimal average sending rates. Simulation results show
that our proposed algorithm can dramatically enhance the TCP
throughput and improve the fairness.

The organization of this paper is as follows. In Section II



we first review the background and the important algorithms
that our work is based on. In Section III, we analyze the
interactions of hidden nodes. In section IV, we formulate
an optimization model for multihop TCP flows and propose
a distributed control algorithm to address throughput and
fairness problems simultaneously. Comprehensive experiments
have been carried out to evaluate the proposed algorithm in
section V. Finally, conclusion is given in Section VI.

II. Related Works & Their Challenges

A. Overview

The deployment of TCP in 802.11 multihop ad hoc networks
is greatly challenged by throughput degradation and unfairness
problems. Most of the previous transport layer or MAC layer
designs are focused on either throughput improvement or fair-
ness enhancement respectively. The enhanced TCP versions in
[1] [6] are based on the notion that routing dynamic affects
the end-to-end performance significantly, authors proposed
alternatives to distinguish the packet losses caused by network
congestion from those induced by channel errors and routing
failures, etc. Chen et al. [4] proposed a congestion window
limit (CWL) to identify the bandwidth delay product of a
path in MANET. Fu et al. [8] presented a Link RED (LRED)
algorithm to decide the wireless link’s ECN mark probability
based on the perceived frame losses. TCP-FEW [9] adopted a
fractional window increment to prevent the aggressiveness of
AIMD mechanism from degrading TCP performance. Another
prominent problem with TCP over wireless network is the
contention between TCP data flow and the corresponding
acknowledgement (ACK) flow. Oliveira and Braun [10] pro-
posed dynamic acknowledgement strategies to minimize the
number of ACK packets in transit and mitigating spurious
retransmissions.

The above algorithms improve the end-to-end TCP through-
put, however, they cannot guarantee fairness among competing
flows with serious interference. For example, fairness cannot
be achieved even in a simple symmetric cross-chain or a
dumbell topology. To resolve the fairness problem, Xu et al.
[12] used a RED-like distributed queue management scheme
to balance the throughput among competing TCP flows in
multihop ad hoc networks. TCP-AP [13], which is originated
from TCP pacing for wired networks, can provide good
fairness for TCP flows that span 4-hops. The sender of TCP-
AP can adapt its transmission rate using an estimate of the
current 4-hop propagation delay and the coefficient of variation
of recently measured round-trip times. But TCP-AP relies
on the accurate estimation of 4-hop propagation delay and
requires the knowledge about the number of hops.

B. RED-like Link Layer Methods

Link RED plus Adaptive Pacing: The effects of multihop
wireless link on TCP throughput and loss behavior have
been studied in [8]. Authors revealed three interesting results.
First, given a specific network topology and flow patterns,
there exists a TCP congestion window size W ∗, at which
its throughput is highest via improving the spatial channel

reuse. Second, The standard TCP does not operate around the
optimal congestion window size W ∗ and typically grows much
larger than the optimal value. Third, the buffer occupancy
of wireless nodes is fairly low and the packet losses are
dominated by channel contention instead of buffer overflow
[8]. In the paper, authors proposed an interesting solution
based on the observation that TCP can potentially benefit from
AQM-like drop/mark mechanism in the MAC layer. The main
idea is to further adjust the wireless link’s drop probability
according to the perceived link frame losses. The end-to-
end throughput of link RED algorithm can outperform the
standard TCP/802.11 by 4% to 21%. However, the number of
retries in a wireless node cannot reflect its contribution to the
channel congestion accurately. Link RED might aggravate the
unfairness of competing flows in many wireless topologies. We
will illustrate this problem quantitatively in the next section.

Neighborhood RED: Because the original RED active queue
management can enhance the per-flow fairness in wired net-
works, Xu et al. [12] extended this algorithm to the distributed
neighborhood queues of wireless ad hoc networks. In NRED
algorithm, each active node estimates the “total size” of the
distributed queue length and applies RED method to calculate
the aggregate drop rate of the wireless channel. Through
broadcasting the aggregate drop probability to its neighboring
nodes, each node can acquire the congestion information be-
yond its transmission range. The aggregate drop rate is shared
by the distributed queues in the neighboring nodes according
to their proportions of channel busy time. Neighborhood RED
can substantially improve TCP fairness in some topologies and
traffic patterns, at the cost of decreased throughput.

Neighborhood RED still has several adverse aspects. First, it
sacrifices TCP throughput for fairness under some topologies
and traffic patterns. Second, the overhead of neighborhood
coordination might be significant. Consider an 802.11 wireless
network comprised of four nodes and two links that can
sense each other. We tested the impact of periodic broadcast
and found that 3% to 5% throughput were consumed by
asynchronously broadcasting the notification packets every
0.25s. Periodic broadcast can also result in potential hidden
node collisions in multihop scenarios. Third, NRED usually
over-reacts to the channel contentions by dropping both the
incoming and outgoing data packets, and it is also difficult
to configure the controlling parameters. Fourth, NRED is
unable to control contentions which are within the carrier
sensing range but outside of the transmission range through
neighborhood coordination.

In this paper, we propose a novel distributed congestion
control algorithm to enhance TCP throughput and fairness
simultaneously. A proportional controller is used to decide
the mark probability of incoming packets. Based on binary
feedback, a rate-based TCP congestion control algorithm can
greatly outperform the standard 802.11/TCP, as well as some
of the recent wireless TCP proposals.

III. On the Interactions Among Hidden Nodes
Some previous works on wireless TCP enhancement are

based on measurements of MAC retries or collision probability
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Fig. 1. (a) Short Cross-Chain Topology, (b) Contention Graph

[8], [27]. The goal of this section is to illustrate that solely
using the collision probability or the number of MAC retries
is not adequate to reveal the congestion status. To make this
claim, we present the interactions between hidden nodes and
transport layer flow rates to show the inadequacy of using
collision probability to predict congestion.

A. Contention Graph

Given a set of wireless nodes and flows, a network can be
mapped into a contention graph. In general, contention graph
is used to represent the interference within the carrier sensing
range of a transmitting node. In a general multihop network
topology, there exists two types of interferences, namely (a)
hidden node contention, and (b) carrier sensing contention.

Based on the general analytical framework in [16], one can
construct the flow contention graph and study the influence of
hidden links quantitatively. Consider a cross-chain topology as
depicted in Fig.1(a) wherein we have two transport layer flows:
A ⇀ E and F ⇀ I . The link layer flows are represented
by numbers in Fig.1. Each node has a transmission range of
250m and a carrier sensing range of 550m. All the neighboring
nodes are evenly spaced apart with a distance of 200m. We
construct a flow contention graph for this cross-chain topology
according to following three steps:
Step 1: From the network topology, we generate an undirected
graph that depicts the interference within carrier sensing range
of a given node. Node D, F are beyond the carrier sensing
range of node A, and node A, H are outside of the carrier
sensing range of node F. In brief, link 4 is the intra-flow
hidden link of link 1, and link 5 is the inter-flow hidden link
of link 1, while link 1 (link 8) is the inter-flow hidden link
(intra-flow hidden link) of link 5. When the sending rate is
low, the transmission of node D (or node H) can be completed
before node A (or node F) initiates its next frame transmission.
Therefore, the intra-flow collisions can be neglected. When
the sending rate is high, all the nodes can be saturated and the
intra-flow collisions cannot be ignored.
Step 2: From the network topology and the set of active links,
one can construct a flow contention graph G(V, Eg) (depicted
in Fig.1(b)) that captures the carrier sensing contention, where
V represents the set of active links and Eg is the set of
undirected edges. For example, link 1 interferes with link 2,3,6
and 7. Then link (1,2), (1,3), (1,6), (1,7) are edges in the
set Eg. Because each node in the set {B, C, G} can sense

all other nodes, for the ease of presentation, we replace the
maximal clique f−−→

BC
, f−−→

CD
, f−−→

GC
, f−−→

CH
by the character X in the

contention graph.
Step 3: We add the hidden node interference to the flow
contention graph using directed dash lines. We represent the
final contention graph by G(V, Eg, Eg

′
), where Eg

′
is the

set of hidden link interferences. Assume that node D first
transmits its buffered packet to node E after a random backoff
period by initiating the DATA-ACK or RTS-CTS-DATA-ACK
handshakes. After hearing from node D, node B will defer
until the transmission is completed. Node A cannot sense
the on-going transmission beyond its carrier sensing range
and transmits its buffered packet to node B. But node B
cannot reply to node A within this period, resulting a frame
loss. Similarly, we can find other three hidden nodes’ interfer-
ence depicted in the final contention graph G(V, Eg, Eg

′
) in

Fig.1(b).

B. Collision Probability

From a link’s perspective (i.e., link i), it can determine
the following information: (a) xi, where 0 ≤ xi ≤ 1 is the
normalized airtime in transmitting its frame, (b) γi, its collision
probability. Similar to those in [14], [15], we assume that the
packet collisions are mainly induced by hidden nodes, while
the collision event with links inside its carrier sensing range
is negligible.

Let γij denote the collision probability induced by the
jth hidden link of link i and γi denote the overall collision
probability of link i. Let θU and θT be the fraction of time
used for transmitting a UDP data packet and a TCP data packet
respectively. Let TXd to be the transmitting time of a data
packet and TACK to be the transmitting time of a MAC ACK.
TXa is the transmitting time of an acknowledgement packet
if the source uses TCP protocol, we have

θU =
TXd

DIFS + TXd + SIFS + TACK

θT =
TXd

2 ∗DIFS + TXd + TXa + 2 ∗ SIFS + 2 ∗ TACK

Since a TCP flow frequently timeouts and is bidirectional in
nature (data & ack sub-flows), we focus on the unidirectional
transport layer flows in this section in order to simplify
our analysis. Let θUxi and θUxj represent the normalized
transmitting time of data packets for link i and j respectively.

In order to calculate the collision probability of a given
link, we introduce three random transmission events. Define
Eventi,jA as the event that the normalized data transmission
time of link i (θUxi) and link j (θUxj) overlaps, Eventi,jB as
the event that the transmission of link j starts before link i,
while Eventi,jC is the event that common neighboring links of
link i and link j do not transmit. Taking the flow contention
graph in Fig.1(b) as an example, one can find that links
2, 3, 6, 7 are the common neighboring links for link 1, 4, 5, 8.
Base on the analytic method in [16], for link i, the probability
of Eventi,jA , Eventi,jB , Eventi,jC are:
Prob{Eventi,jA } = θUxi + θUxj ,
Prob{Eventi,jB } = θUxj , Prob{Eventi,jA Eventi,jB } = θUxj ,



Prob{Event1,5
C } = Prob{Event1,4

C } = Prob{Event5,1
C } =

Prob{Event5,8
C }=1−⋃

xc=1−x2−x3−x6−x7.
The collision probabilities of link 1 and 5 can be represented
by:

γ1,5 = Prob{Event1,5
A Event1,5

B |EventC} =
θUx5

1−⋃
xc

, (1)

γ1,4 = Prob{Event1,4
A Event1,4

B |EventC} =
φθUx4

1−⋃
xc

, (2)

γ1 = γ1,5 + γ1,4 =
φθUx4 + θUx5

1−⋃
xc

, (3)

where φ is the weight of the intra-flow contentions and 0 ≤
φ ≤ 1. We assume that the competing flows have the same φ.
Similarly, for link 5, we also have

γ5 = γ5,1 + γ5,8 =
φθUx8 + θUx1

1−⋃
xc

. (4)

When the offered load is very light, the influence of intra-
flow hidden node can be negligible compared with that of
inter-flow hidden node. If the network is saturated, the adverse
impacts of intra-flow hidden node are more pronounced. Let
us consider these two extreme cases:

1) If the offered load is light, the intra-flow collisions are
negligible. The collision probabilities of link 1 and 5
are:

γ1 =
θUx5

1−⋃
xc

; γ5 =
θUx1

1−⋃
xc

(5)

2) If the offered load is high and all links are saturated,
the influence of intra-flow contentions is prominent, i.e.

γ1 =
θUx4 + θUx5

1−⋃
xc

; γ5 =
θUx8 + θUx1

1−⋃
xc

(6)

According to above analysis, one can find that the collision
probability of link 1 is smaller than that of link 5 in both
cases when the rate of flow A ⇀ E is larger than that of
flow F ⇀ I . Because the link set {1, 2, 3, 4} belongs to
transport layer flow A ⇀ E and the set {5, 6, 7, 8} belongs
to flow F ⇀ I , the airtime of each link must satisfy the flow
constraints: x1(1 − γ1) = x2 = x3 = x4 and x5(1 − γ5) =
x6 = x7 = x8. We have the following claim:
Theorem 1: If the airtime of link 1 is larger than that of link
5, the collision probability of link 5 is not less than that of link
1, and vise versa. Formally, we have: (x1−x5)(γ1−γ5) ≤ 0.
Proof: Please refer to the Technical Report [28].

C. Congestion Evaluation

The importance of offered load control has been well
studied in [14]–[16]. When the offered load increases from
a low level, the end-to-end throughput also increases linearly.
When the offered load is larger than certain threshold, the
throughput decreases. For TCP flows over 802.11 multihop ad
hoc networks, the packet drops are mainly caused by MAC
contention due to hidden terminals. Fu et.al [8] observed that
the TCP packets were dropped even at a low buffer occupancy
in a 9-node chain topology.

Link RED [8] measures the average number of MAC
retries of each packet and generates the ECN marks with
calculated probability. But there is an obvious drawback in
the collision based algorithms. The aggressive flow has a
smaller collision probability, while the meek flow has a higher
collision probability that is illustrated in Theorem 1. Therefore,
Link RED exerts more penalty on the meek flow than that on
the aggressive one.

IV. Optimal Rate Allocation: A Cross-Layer Approach

In this section, we formulate the congestion control of
TCP flows as an optimization problem. We propose a novel
method to evaluate the channel congestion and adopt explicit
congestion notification (ECN) bit as the binary feedback
signal. A distributed rate allocation scheme is also presented.

A. Motivations

The resource allocation in wired Internet is originally for-
mulated as an optimization problem in [17]. TCP congestion
control algorithms are interpreted as distributed primal-dual
problems to maximize the aggregate utility, and a user’s
utility function is defined by the its TCP version [18]. The
fundamental idea is widely extended to the cellular networks
and IEEE 802.11 ad hoc networks such as [19]–[22].

Consider a continuous, concave, twice-differentiable and
strict increasing utility function U(ri) for a TCP source with
rate ri in an 802.11 multihop ad hoc network. In [19] the
congestion control and MAC contention control are designed
jointly. The objective is to maximize the aggregate network
utility subjected to both flow constraints and link scheduling
constraints. Let r be the rate vector of source flows, c be the
link rate vector, ε be the capacity vector of maximal cliques
in the contention graph, the optimization problem is:

∑

{rs∈S}
max

s
Us(rs) (7)

s.t. Rr ≤ c & Fc ≤ ε,

where R is the routing matrix and F is the contention matrix
that depicts the mutual interference of wireless links.

This optimization framework captures the major charac-
teristics of rate allocation problem in shared medium and
interference-limited networks. However, it has four major
problems when one applies to real CSMA ad hoc networks.

1) The model does not incorporate the hidden node prob-
lems in 802.11 multihop scenarios.

2) The implementation of the distributed algorithm needs
at least the knowledge of local contention graph, while
the construction of local contention graph will introduce
significant overheads.

3) The model is insufficient to describe the dynamic net-
work conditions, esp. c, ε, R and F are all time-varying
when one considers mobility.

4) The clique based optimization framework may produce
incorrect solutions in some topologies topologies, (e.g.
in a pentagon graph). The maximal normalized sum rate



is 5/2 according to the optimization model, but the actual
sum rate is 2 for CSMA networks [19].

Due to above difficulties, an alternative method is in-
troduced to reformulate the congestion control problem. In
this paper, we formulate the TCP congestion control as an
unconstrained optimization problem. Except for the utility
functions, the objective function contains the penalty function
which approximately models the contention and is calculated
directly from the wireless nodes’ status.

B. Problem Formulation

Given a set of TCP sources S = {1, 2, 3, ......, S} and a set
of 802.11 active links L = {1, 2, 3, ......, L}, we denote the ith

flow’s utility function as U(ri), where ri is the sending rate
of flow i. To send back the congestion prices to the sources,
we propose to use the explicit congestion notification (ECN)
which is a binary feedback mechanism. A general system-wide
objective function J(r) can be represented by:

maximize J(r) = α
S∑

i=1

U(ri)− β

ν

S∑

i=1

pi
markrν

i , (8)

where α and β are constant controlling parameters, pi
mark is

the mark probability of the ith source. The first term represents
the aggregate utility while the second term represents the
penalty (which is expressed as marking probability). A con-
stant integer ν is introduced in order to reinforce the penalty
of the aggressive flows when the network gets congested. The
objective function can be tuned to achieve the desired trade-
off between maximizing the aggregate utility and penalizing
frame losses. We choose ν = 1 in this paper for simplicity. Our
mathematic model is similar to [22], yet their work focused
on the contention control in 802.11 MAC layer and mainly
considered the scenarios of multiple single-hop flows within
a single cell.

Defining the mark probability of flow i in link l as pli, one
can obtain the expression of aggregate marking probability of
flow i as:

pi
mark = 1−

L∏

l=1

(1− pli). (9)

The mark probability of each link is decided by the measured
link variables. Consider a simple case where each link l has
only one flow. The marking probability of the ith flow on the
lth link, pli, is

pli = f(Tl, γl) = kp × γlT
2
l . (10)

Here, Tl, γl are the normalized transmission time and the TCP
data packet collision probability of link l respectively, and kp is
the proportional coefficient of the active MAC controller. For
multiple TCP flows sharing the same link, the implicit mark
probability of ith flow is pli = Tli

Tl
f(Tl, γl), where Tli is the

normalized airtime of ith flow in link l. We denote z = γlT
2
l

as our congestion index and use this index to generate the
ECN marking probability at each node. The intuitive idea of
the congestion index z is that the aggressive flow should be
penalized more even if its collision probability is smaller than

its competing flows. The network needs to tolerate the meek
flows with larger collision probability. A possible enhancement
is to use the congestion index z so one can correctly penalize
the aggressive flows and protect the meek ones.

C. Verifying the Congestion Index

In Section III, we analyze the interactions of hidden links
among competing flows. The average number of MAC retries,
which is a strictly increasing function of collision probability,
is insufficient to estimate the congestion and fairness of
wireless channels. If we rely on the average number of retries
to decide the mark probability, the aggressive flows might
occupy most of the channel capacity eventually.

Let us first illustrate the advantages of our proposed index.
Consider two TCP flows A ⇀ E and F ⇀ I in Fig.1(a)
with fixed average sending rates. The link capacity is 2Mbps
and the TCP packet size is 1000 Bytes. We will demonstrate
how our rate allocation scheme can capture the congestion and
unfairness issues simultaneously.
Case 1 - Light Offered load: The sending rate of the TCP
flow A ⇀ E is about 100Kbps and another TCP flow F ⇀ I
rate is about 50Kbps. The sending time of a TCP packet is
randomly chosen in the very small vicinity of a fixed time
scale. The average collision probability is measured every
0.5s and the exponential weighted moving average (EWMA)
parameter ω is set to 0.125. The collision probabilities of link
flow f−−→

AB
and flow f−−→

FG
are shown in Fig.2. One can see that

the data packet collision probability of the aggressive link flow
f−−→

AB
is smaller than that of the meek link flow f−−→

FG
, which

indicates that naviely using the collision probabilty/MAC
retries [8], [27] may give an incorrect conclusion of which
flow generates more congestion.
Case 2 - Heavy Offered load: In this experiment, We set
the rates of A ⇀ E and F ⇀ I to be around 200Kbps
and 100Kbps respectively. As is shown in Fig.3, the data
packet collision probabilities of link flow f−−→

AB
and f−−→

FG
are

comparable. This indicates that at heavy load, one may not
be able to distinguish which flow causes the congestion.
Although we investigate the interactions of hidden nodes with
unidirectional transport layer flows in Section III, the above
experiments of fix-rate TCP flows also coincide with our
analytic results to a great extent.
Effectiveness of Congestion Index z: We demonstrate the
congestion index z of links f−−→

AB
and flow f−−→

FG
in the cross-

chain topology under both light and heavy offerload patterns
in Fig. 4 and Fig. 5. Using z has two advantages. First, it
can detect congestion effectively. The congestion indices z of
the heavy offered load case are remarkably larger than those
of the light offereed load for both link flow f−−→

AB
and f−−→

FG
, so

one can use the value of z to infer congestion. Second, z can
identify which flow contributes more to the congestion. The
congestion index z of link flow f−−→

AB
is larger than that of

link flow f−−→
FG

in both the light and heavy offered load case.
Therefore, the link layer can penalize the aggressive flow to
alleviate the channel congestion.
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D. Distributed Fair Rate Allocation

After we formulate the optimization framework for TCP
flows over multihop ad hoc networks, the remaining question
is to derive a general methodology for TCP rate adaptation.
Note that the system objective function J(r) is maximized
when

dJ(ri)
dri

= 0 ⇐⇒ αU
′
(r∗i )− βpi

mark = 0 (11)

⇐⇒ α− βpi
mark

U ′(r∗i )
= 0, (12)

where the optimal TCP rate of flow i is denoted by r∗i . Because
the utility function U(ri) is an increasing, strict concave and
differentiable function for any ri ≥ 0, one can employ the
distributed congestion control algorithm using the gradient
based method. Let ṙi be the gradient of rate ri, we have

ṙi = α− βpi
mark

U ′(r∗i )
. (13)

Therefore, one can easily see that the sending rate ri arrives
equilibrium point r∗i when dJ(ri)

dri
= 0. This equilibrium point

is actually the solution of system-wide objective function
J(r). Let us state the following theorem.
Theorem 2: Suppose all flows in the network have concave,
differentiable, strict increasing utility function U(r) for r ≥ 0,
the gradient based rate allocation scheme in Eq.(13) converges
to the unique equilibrium point r∗i for some positive constants
α and β.
Proof: Please refer to the Technical Report [28].

Consider an utility function in the log form, U(ri) = log ri,
which corresponds to the proportional fairness rate allocation.
The congestion control law of TCP flows can be represented
by

ṙi = α− βpi
markri . (14)

In the equilibrium state, the following equation holds if we
take the utility function of log-form for TCP flows,

α = βpi∗
markr∗i . (15)

Proposition 1: A vector of mutually interfered TCP rates r =
(ri, i ∈ R) is proportionally fair if it is feasible, that is r ≥ 0
and r subjects to flow constrains, and if r satisfies the rate
allocation scheme Eq.(14).
Remark: A class of distributed congestion control algorithms
can be derived for different goals based on our framework in
Eq.(8). If ν is set to be 2, the gradient of the flow control
problem is:

Grad(ri) = α− βpi
markr2

i , (16)

and the control law can be chosen as:

ṙi =
α

ri
− βpi

markri. (17)

This controller can accelerate the response speed if the current
sending rate deviates far from the optimal rate. The proof for
convergence is very close to Theorem 2, which is omitted here.

E. TCP: Window Based VS Rate Based

We propose to add a rate based controller to the existing
TCP congestion control mechanism for two reasons. First,
TCP acknowledgement sub-flow usually shares the same chan-
nel with the TCP data sub-flow in 802.11 wireless networks.
The backward queueing delays of acknowledgement packets
are mainly composed of the transmission time of TCP data
packets. Therefore, if the congestion window increases, the
RTTs also increase significantly, and vice versa. We have
experimentally observed that the average sending rate of a
TCP flow with the constant congestion window size of 3 is
not very far from that with the constant window size of 6 in
a 8-hop chain topology. Second, the bandwidth delay product
of a general multihop ad-hoc network is very small, thus the
optimal congestion window size is small too (i.e. 2 to 5).
Therefore, it is not efficient for TCP’s AIMD to adjust on
a very small congestion window. In this paper, we use ECN
bits to notify the sources to decrease the sending rate where it
is the reciprocal of the sending interval Tintv . If a TCP sender
receives an ECN echoed acknowledgement, it will slow down
the sending rate by choosing a larger transmission interval
Tintv . If an acknowledgement packet is not ECN echoed,
the source will decrease the transmission interval slightly. In
summary, the operations are:

1. If an ECN echo is reveiced, Tintv = β ·Tintv ; (β > 1)
2. If ECN is not received, Tintv = Tintv

1 + αTintv
, (α > 0)

Our design utilizes the potential benefits of cross-layer
information. The proposed distributed congestion control al-
gorithm, which we call the DCC algorithm, adds a sub-layer
between transport layer and MAC layer to gather channel
information and generate feedback signals for rate adaptation.

F. Practical Considerations

As a practical protocol, our DCC algorithm needs to avoid
the some kinds of wrong manipulations, that is to establish the
upper and lower bounds for the transmitting interval Tintv . We
provide an upper bound Tub of two average RTTs for a sending
interval, which corresponds to “CWND = 0.5” in other TCP
variants.



Lower bound Tlb is important for it decides maximal
sending rate of a TCP source. Authors in [5] investigated
bandwidth delay product (BDP) in an 802.11-based MANET.
A delay based upper bound of BDP of a chain topology
with more than 4 hops is derived. The upper bound of
bandwidth delay product of a chain topology cannot exceedPn

i=0 di +
Pn

i=0 d
′
i

4dmax
, where di and d

′
i are the per-hop packet

transmission delays along the forward and return paths, and
dmax is the maximum per-hop delay. This is to say, the mini-
mum sending interval is 4× dmax. If we choose 4× dmax as
the lower bound, the knowledge of hop count is indispensable.

But in our distributed congestion control algorithm, the
aim of lower bound is to avoid the extreme worse case. For
simplicity, we just set the lower bound to be the aggregate
one-hop transmission time of a TCP data packet and an ack
packet, that is

Tlb = TXd + DIFS + SIFS + TACK + Backoff

+ TXa + DIFS + SIFS + TACK + Backoff

The upper and lower bounds are rarely met during the trans-
mission unless there is very few contention loss or most of
the in-flight packets collide with the packets from the hidden
links. We recommend to impose a slightly larger lower bound
in the TCP slow start stage to suppress the aggressiveness.
The detailed description of the algorithm is shown in Fig.6.

Distributed Congestion Control Algorithm

Part 1 : Calculate MarkProb()
1: For each transmission
2: ntrans ++
3: For each failed transmission
4: failedcount ++
5: If (DccMacTimerExpire)
6: Measure Normalized Transmitting Time Tl

7: retry prob = failedcount/ntrans
8: OverLoad = retry prob×T 2

l

9: pl = k ×Overload
10:end if

Part 2: TCP Rate Adaptation()
1: Disable ECN Induced CWND Adaptation (optional)
2: If (ECN-echoed ACK)
3: Tintv = β × Tintv

4: else if (Non-ECN-echoed ACK)
5: Tintv = Tintv

1 + αTintv

6: end if
7: Check upper & lower bounds of Tintv

8: If (DccTCPTimerExpire)
9: If (seqno < cwnd + highest ack)
10: send(pkt)
11: end if
12:end if
13: Adjust CWND size according to AIMD,

or Choose Constant CWND size

Fig. 6. Algorithm Specification

V. SIMULATIONS

A. Simulation Setup

We evaluate the end-to-end throughput and fairness of our
proposed algorithm and other related schemes such as TCP-
FEW [9], CWL [4] and Link RED plus adaptive pacing
[8] over a variety of network scenarios. The transmission
range, carrier sensing range, hop distance, TCP packet size
and link capacity are the same as those in the preceding
experiments. The original TCP/ECN mechanism is disabled.
Because RTS/CTS does not help much to reduce collisions
caused by hidden links when the carrier sensing range is more
than twice that of the transmission range, we also disable
the RTS/CTS handshake. In our distributed congestion control
algorithm, the sampling interval in the 802.11 MAC layer
is set to 0.125 second and the EWMA weighting factor is
set to 0.125. The decrement factor β is 1.05 because it is
more effective to tune the sending rate than to decrease the
congestion window for the purposes of avoiding congestion.
The increment factor α is set to 0.1. The above parameters
are fixed and serve as standard configurations in all the
simulations. Therefore, only the proportional parameter kp is
configurable which can range from 0 to 0.1. The default value
of kp is set to 13.2030 in our experiments.

B. Chain Topology

Our DCC proposal is tested over a chain topology in Fig.7
with different number of hops and with different parameter
configuration. We demonstrate both the dynamic behaviors and
end-to-end throughput.

1 2 3 n

TCP  Flow

Fig. 7. Chain Topology with a single TCP flow

1) Dynamic Behaviors: Consider a single TCP flow over
a 9-node chain topology, the end-to-end throughput of the
TCP flow is sampled every 2 seconds. Fig.7 illustrates that the
throughput of a standard TCP flow tend to strongly oscillate
over time. Because the first two wireless nodes sense smaller
interference than their downstream nodes, the source will send
more traffic into the network than it can successfully transmit.
When a downstream node fails to transmit a frame after a
number of retries, the frame will be discarded and a link
breakage is reported. During this period, no packet can be
transmitted until the routing protocol fixes the route or discover
a new route. Authors in [9] elaborated the details of the cross-
layer interactions leading to the severe network instability. The
DCC algorithm well solves the routing instability problem.
The end-to-end throughput is stabilized by controlling the TCP
sending rate according to the link feedbacks.

2) Throughputs VS Hops: We compare the average
throughput of DCC algorithm and other TCP enhancements
by varying the number of hops in the chain topology. The
increment parameter of TCP-Few is set to 0.01, and the
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congestion window limits of CWL are the same as those in [4].
The minimum, maximum thresholds and the maximum mark
probability of Link RED plus adaptive pacing are 0.2, 2.0 and
0.2 respectively. We set the Delayed ACK (DACK) interval
to be 100ms. As is shown in Fig.9, the throughput of DCC
algorithm is significantly better than standard TCP/802.11.
When the number of hops is larger than 11, our DCC algorithm
outperforms all the rest schemes in terms of throughput. Later
we will show that the proposed algorithm can achieve very
good fairness in the cross-chain and grid topologies, while the
other schemes cannot.
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Fig. 9. Throughput VS Hops

3) Robustness of the Controller: The selection of con-
trolling parameters is very important for all the enhanced
algorithms. A good algorithm should tolerate the imperfect
parameter configurations and maintain the robustness of per-
formance. In this set of experiments, the robustness of the
proportional parameter kp is tested in an 8-hop chain topology.
When we vary kp from 0 to 132.030, the maximum throughput
236.1Kbps is achieved at k∗p = 7.922. Fig. 10 shows that
at the point kp being 13.203, the end-to-end throughput is
164.67Kbps. Note that even when kp is arbitrarily chosen to
be nearly 20 times of k∗p , the throughput is still significantly
larger than the standard TCP/802.11 mechanism.

C. Cross-Chain Topologies

In this set of simulations, we concentrate on the fairness
issues of competing TCP flows.

1) New Insights of TCP fairness: TCP unfairness is ob-
served in a lot of previous research. But they merely con-
cern the long-term unfairness, while neglecting the short-
term unfairness. Consider the two long-lived TCP flows from
node A to E and node F to I in Fig.1(a), serious unfairness
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Fig. 10. Robustness of the proportional parameter k

is caused by the interactions of congestion control, routing
and 802.11 MAC protocols. If two flows starts at the same
time, one flow will occupy the whole wireless channel for
a long time until it timeouts due to intra-flow contentions.
Then another TCP flow has an opportunity to take over the
channel. If the average end-to-end throughputs are measured in
a very long time interval, the unfairness seems not so severe.
However, when the throughputs over time are examined in
a fine-grained mode, the two competing flows achieve quite
different short-term throughput. There is a tradeoff between
throughput and fairness. Some enhanced TCP versions can
improve the aggregate throughput, yet aggravate the per-flow
fairness. The reason lies in that the maximum aggregate
throughput is achieved only when one of the flows occupies
the whole channel capacity and operates around the optimal
sending rate. In our distributed congestion control algorithm,
the proportional parameter k is a knob to balance the aggregate
throughput and per-flow fairness.

2) Cross-Chain Topology: We run extensive simulations to
investigate the unfairness issue with two competing TCP flows
on a cross-chain topology in Fig.1(a). The parameter configu-
rations are the same as those in the previous experiments. We
measure the average aggregate throughput in 200 seconds and
calculate the fairness indexes according to [24]:

Fairness Index : F (r) =
(
∑N

i=1 ri)2

N
∑N

i=1 r2
i

.

In our experiment, the aggregate throughput of DCC al-
gorithm is only larger than that of Link RED and the Fair-
ness Index of TCP-FEW algorithm is the largest over 200s
simulation. If we judge fairness depending on the fairness
index over at least 200s, we will draw a wrong conclusion
that all the above algorithms can achieve satisfactory fair rate
allocation. In order to highlight the short-term unfairness, we
measure the average throughput of above algorithms every
2 seconds. Fig.11 to 17 show that our DCC algorithm can
guarantee both the long-term and short-term fairness for the
two competing TCP flows: A ⇀ E and F ⇀ I in the cross-
chain topology while other schemes cannot. For standard TCP
and other enhanced algorithms, the throughput of one TCP
flow is extremely low, even equal to zero, when its competing
flow begins to transmit. In addition, dynamic behaviors of the
sending intervals of the DCC algorithm are shown in Fig.17.
Because the sending intervals of two competing TCP flows are



very close to each other, the short-term fairness is guaranteed.
Our DCC algorithm can also improve throughput and short-
term fairness in long cross-chain and dumbell topologies,
which is omitted due to page limit.

D. Grid Topology

On a 5 × 5 grid topology shown in Fig.18, we run six
long-lived FTP flows. One can see in Fig.19 that the middle
flows FTP2 and FTP4 under the CWL, DACK and standard
TCP/802.11 schemes suffer from serious unfairness while the
DCC can provide good fairness for all the flows. The short-
term fairness is also evaluated and Fig.20 shows that the
instantaneous fairness index of DCC algorithm is about 0.9
and the fairness indexes of other algorithms oscillate around
0.5. A fairness index of 0.5 represents very serious unfairness
among competing flows. Although the aggregate end-to-end
throughput of our DCC algorithm is slightly less than that of
standard TCP/802.11 and other enhanced methods, it achieves
much better fairness even in small time scales.

VI. CONCLUSION

Improving the performance of TCP over IEEE 802.11
multihop ad hoc networks has attracted a lot of attentions.
In this paper, we study the interactions between hidden nodes
and transport layer flows, and show some new insights and
fundamental properties of TCP unfairness with competing
flows. The close coupling among the MAC protocols, routing
schemes and TCP congestion control can easily lead to per-
formance degradation of wireless networks. A potential way
to enhance TCP performance is to control the TCP traffics
by exploiting the cross-layer information. The contributions
of this paper are:

1. We reveal the relationships between traffic rates and
collision probabilities due to hidden nodes in a wireless
multihop environment with competing flows.

2. We present a novel congestion index for a general
multihop ad hoc network. The congestion index can effectively
evaluate the link’s congestion status and per-flow fairness at
the same time.

3. We propose an unconstrained optimization framework for
multihop TCP flows that does not need the global information
of the networks or any local coordination.

4. We propose a fully distributed congestion control al-
gorithm to balance throughput and fairness for TCP flows
in multihop ad hoc networks. The advantages of our DCC
algorithm are validated through NS-2 simulations in a variety
of network environments.
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Fig. 11. Standard TCP/802.11
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Fig. 12. TCP-FEW
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Fig. 13. Delayed ACK
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Fig. 14. Link RED
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Fig. 15. Congestion Window Limit (CWL)
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Fig. 16. Distributed Congestion Controller
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Fig. 19. Average Throughput of Grid Topology
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Fig. 20. Fairness Index Evolution over Time


