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Abstract
In everyday life, we often observe unusually frequent interactions among people before or
during important events, e.g., people send/receive more greetings to/from their friends on
holidays than regular days. We also observe that some videos or hashtags suddenly go viral
through people’s sharing on online social networks (OSNs). Do these seemingly different
phenomena share a common structure? All these phenomena are associated with the sudden
surges of node interactions in networks, which we call “bursts” in this work.We uncover that,
in many scenarios, the emergence of a burst is accompanied with the formation of triangles in
networks. This findingmotivates us to propose a new and robustmethod for burst detection on
anOSN.Wefirst introduce a newmeasure, i.e., “triadic cardinality distribution,” correspond-
ing to the fractions of nodes with different numbers of triangles, i.e., triadic cardinalities, in
a network. We show that this distribution not only changes when a burst occurs, but it also
has a robustness property that it is immunized against common spamming social-bot attacks.
Hence, by tracking triadic cardinality distributions, we can more reliably detect bursts than
simply counting node interactions on an OSN. To avoid handling massive activity data gen-
erated by OSN users during the triadic tracking, we design an efficient “sample-estimate”
framework to provide maximum likelihood estimate of the triadic cardinality distribution.
We propose several sampling methods and provide insights into their performance difference
through both theoretical analysis and empirical experiments on real-world networks.
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1 Introduction

Online social networks (OSNs) have become ubiquitous platforms that provide various ways
for people to interact over the internet such as (re-)tweeting tweets, sharing links, messaging
friends, commenting on posts, and mentioning/replying to other users (i.e., @someone).
When intense user interactions take place in a short time period, there will be a surge in
the volume of user activities in an OSN. Such a surge of user activity, which we call a
“burst” in this work, usually relates to emergent events that are occurring or about to occur
in the real world. For example, Michael Jackson’s death on June 25, 2009, triggered a global
outpouring of grief on Twitter [22], and the event even crashed Twitter for several minutes
[45]. In addition to bursts caused by real-world events, some bursts arising from OSNs can
also cause enormous social impact in the real world. For example, the 2011 England riots,
in which people used OSNs to organize themselves, resulted in 3443 crimes across London
due to this disorder [31]. Hence, detecting bursts in OSNs is an important task, both for OSN
managers to monitor the operation status of an OSN, as well as for government agencies to
anticipate any emergent social disorder.

Typically, there are two types of user interactions in OSNs. First is the interaction between
users (we refer to this as user–user interaction), e.g., a user sends a message to another user,
while the second is the interaction between a user and a media content piece (we refer to
this as user–content interaction), e.g., a user (re-)posts a video link. Examples of bursts
caused by these two types of interactions include, many greetings being sent/received among
people on Christmas Day, and videos suddenly becoming viral after one day of sharing in
an OSN. At first sight, detecting such bursts in an OSN is not difficult. For example, a naive
way to detect bursts caused by user–user interactions is to count the number of pairwise user
interactionswithin a timewindow, and report a burst if the volume lies above a given threshold.
However, this method is vulnerable to spamming social-bot attacks [7,8,12,21,48,51], which
can suddenly generate a huge amount of spamming interactions in the OSN. Hence, this
method may result in many false alarms due to the existence of social bots. Similar problem
also exists when detecting bursts caused by user–content interactions. Many previous works
on burst detection are based on idealized assumptions [17,24,37,62] and simply ignore the
existence of social bots.

The primary goal of this work is to leverage a special triangle structure, which is a feature
of human interaction and behavior, to design a robust burst detection method that is immune
against common social-bot attacks. We first describe the triangle structure shared by both
types of user interactions.

Interaction triangles in user–user interactions Humans form social networks with larger
clustering coefficients than those in random networks [60] because social networks exhibit
many triadic closures [26]. This is due to the social phenomenon “friends of my friends
are also my friends.” Since user–user interactions usually take place along social links, this
property implies that user–user interactions should also exhibit many triadic closures (which
we will verify in later experiments). In other words, when a group of users suddenly become
active, or we say an interaction burst occurs, in addition to observing the rise of volume of
pairwise interactions, we expect to also observe many interactions among three neighboring
users, i.e., many interaction triangles form if we consider an edge of an interaction triangle
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(a) (b) (c)

Fig. 1 Interaction triangles and interaction burst. Edges in a and b represent interactions among users

to be a user–user interaction. This is illustrated in Fig. 1a when no interaction burst occurs,
and in Fig. 1b, an interaction burst occurs. In contrast, activities generated by social bots do
not possess many triangles since social bots typically select their targets randomly from an
OSN [8,51].

Influence triangles in user–content interactionsSimilar triangle structure can also be observed
in bursts caused by user–content interactions. We say that a media content piece becomes
bursty if many users interact with it in a short time period. There are many reasons why a user
interacts with a piece of media content. Here, we are particularly interested in the case where
one user influences another user to interact with the content, aka the cascading diffusion [28]
or word-of-mouth spreading [40]. It is known that many emerging news stories arising from
OSNs are related to this mechanism such as the story about the killing of Osama bin Laden
[53]. We find that a bursty media content piece formed by this mechanism is associated with
triangle formations in a network. To illustrate this, consider Fig. 2a, in which there are five
user nodes {a, b, d, e, u} and four content nodes {c1, c2, c3, c4}. A directed edge between
two users means that one follows another, and an undirected edge labeled with a timestamp
between a user node and a content node represents an interaction between the user and the
content at the labeled time. We say content node c has an influence triangle if there exist
two users a, b such that a follows b and a interacts with c later than b does. In other words,
the reason that a interacts with c is due to the influence of b on a. In Fig. 2a, only c2 has an
influence triangle, the others have no influence triangle, meaning that the majority of user–
content interactions are not due to influence. In Fig. 2b, every content node is part of at least
one influence triangle, meaning that many content pieces are spreading in a cascadingmanner
in the OSN. From the perspective of an OSNmanager whowants to know the operation status
of the OSN, if the OSN suddenly switches to a state similar to Fig. 2a (from a previous state
similar to Fig. 2a), he knows that a cascading burst is present on the network.

Characterizing bursts So far, we find a common structure shared by different types of bursts:
the emergence of interaction bursts (caused by user–user interactions) and cascading bursts
(caused by user–content interactions) are both accompanied with the formation of triangles,
i.e., interaction or influence triangles, in appropriately defined networks. This finding moti-
vates us to characterize patterns of bursts in an OSN by characterizing the triangle statistics
of a network, which we called the triadic cardinality distribution.

Triadic cardinality of a node in a network, e.g., a user node in Fig. 1a or a content node in
Fig. 2a, is the number of triangles that it belongs to. The triadic cardinality distribution then
characterizes the fractions of nodes with certain triadic cardinalities. When a burst occurs,
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(a) (b) (c)

Fig. 2 Influence triangles and cascading burst

because many new interaction/influence triangles are formed, we will observe that some
nodes’ triadic cardinalities increase, and this results in the distribution “shifting” to right, as
illustrated in Figs. 1c and 2c . The triadic cardinality distribution provides succinct summary
information to characterize burst patterns of a large scale OSN. Hence, by tracking triadic
cardinality distributions, we can detect the presence of bursts.

In this paper, we assume that user interactions are aggregated chronologically to form a
social activity stream, which could represent Twitter’s tweets timeline stream or Facebook’s
news feed stream. We aim to calculate triadic cardinality distributions from this stream. The
challenge is that when a network is large or users are active, the social activity stream may
be of high speed. For example, the speed of the Twitter’s tweets stream can be as high as
5700 tweets per second on average, 143,199 tweets per second during the peak time, and
about 500 million to 12 billion tweets are aggregated per day [27]. To handle such a high-
speed social activity stream, we design a sample-estimate framework, which can provide
maximum likelihood estimates of the triadic cardinality distributions using sampled data.
Our framework works in a near-real-time fashion, and is demonstrated to be accurate and
efficient.

In this work, we make the following contributions:

– We discover a useful and robust measure, i.e., triadic cardinality distribution, that can be
used to characterize burst patterns formed by both user–user interactions and user–content
interactions in a large OSN. It has a natural robustness property and it is immunized
against common spamming social-bot attacks.

– We design a unified sample-estimate framework that is able to provide maximum likeli-
hood estimates of the triadic cardinality distribution. Under this framework, we study two
types of stream sampling methods and provide insights into their performance difference
through calculating the Fisher information matrices and empirical evaluations.

– We conduct extensive experiments using real-world data to demonstrate the usefulness
of triadic cardinality distribution, and prove the effectiveness of our sample-estimate
framework.

The remainder of this work will proceed as follows. In Sect. 2, we summarize some
related work. In Sect. 3, we formally define the triadic cardinality distribution, and give an
overview about our sample-estimate framework. In Sect. 4, we design two types of stream
sampling methods to reduce storage complexity and improve computational efficiency. We
then elaborate a maximum likelihood estimation method in Sect. 5, and obtain its Cramér–
Rao lower bound in Sect. 6. We provide detailed validations of our methods in Sect. 7,
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including a real-world application on detecting bursts during the 2014 Hong Kong occupy
central movement. Finally, Sect. 8 concludes.

2 Related work

The problem of burst detection from data streams was first studied in [24], where the author
used a multistate automaton to model a stream consisting of messages such as an email
stream. The occurrence of a burst is modeled by an underlying state transiting into a bursty
state that emits messages at a higher rate than at the non-bursty state. Based on this model,
many variantmodels have been proposed for detecting bursts fromdocument streams [33,62],
e-commerce query stream [37], time series [67], and social networks [17]. Although these
models are theoretically interesting, some assumptions made by them are idealism such as
the Poisson process of message arrivals (refer to [4] on arguing against this assumption) and
nonexistence of spams/bots, which may limit their practical usage.

The topic of (anomaly) event detection is also related to our work. Chierichetti et al. [11]
found that Twitter user tweeting and retweeting count information can be used to detect sub-
events during some large event such as the soccer World Cup of 2010. Takahashi et al. [49]
proposed a probabilistic model to detect emerging topics in Twitter by assigning an anomaly
score for each user. Sakaki et al. [41] proposed a spatiotemporal model to detect earthquakes
using tweets. Manzoor et al. [32] studied anomaly event detection from a graph stream based
on graph similarity metrics. Different from theirs, we exploit the triangle structure existing
in user interactions which is robust against common spams and can be efficiently estimated
via maximum likelihood estimation.

Anomaly event detection on graphs is also extensively studied on dynamic graphs [10,30,
50,63], streaming graphs [18], and social media platforms [13]. In [63], the authors proposed
AnomRank to assign node scores for detecting two types of anomalies caused by (i) addition
of edges between previously unrelated nodes and (ii) increase in the number of edges between
connected nodes, respectively.Note thatAnomRankdoes not leverage the subgraph structure
information when calculating node scores. In [50], the authors proposed DeepSphere that
leverages deep learning methods to detect anomalies from time series data generated from
edges in a dynamic graph. Their problem setting is significantly different from ours. In
[10], the authors designed algorithms to solve the heaviest dynamic subgraph problem for
anomalous detection. In [18], the authors define anomaly as the sudden (dis)appearance of a
dense subgraph in a graph and proposed theSpotLight sketch to calculate the anomalousness
of the original graph. In [30], the authors proposed a stochastic approach to find dense lasting
subgraphs in dynamic graphs. Note that the goals in [10,18,30] are similar to each other, and
their key problem is to count the number of edges (or sum of edge weights) in a subgraph
(in addition, [10] and [30] require the subgraph to last for a period of time), while our key
problem is to count the number of triangles corresponding to each node in a graph rather
than counting edges. In [13], the authors aim to detect anomalies caused by social bots, and
their method depends on modeling the inter-arrival times (IATs) of human communications
in social media such as posting photograph, comments, and videos. Note that our goal is to
detect bursts caused by humans not spamming social bots.

The triangle structure can be considered as a type of network motif. Network motif is
studied in the seminal work [34] for the purpose of characterizing the structural difference
of different types of networks. Turkett et al. [56] used motifs to analyze computer network
usage, and [59] proposed sampling methods to efficiently estimate motif statistics in a large
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graph. Paranjape et al. [36] introduced δ temporal motifs and designed algorithms to count
the temporal motif patterns in dynamic graphs. However, both the motivation in [36,56] and
subgraph statistics defined in [59] are different from ours. Recently, a special network motif
called butterfly motif is also studied on bipartite graphs [42,43] such as the graph formed by
the user-product purchasing relation.

Recently, there are many works on estimating the number of global and local triangles
[1,2,9,23,29,38,46,47,54,61,65], or clustering coefficient [44] in a large graph. If we apply
these existing algorithms to estimate triadic cardinality distribution, we need to estimate the
number of triangles for each node in the graph, i.e., run the algorithm on a subgraph centered
at the node. As a result, this approach is rather inefficient. Becchetti et al. [5] used a min-wise
hashing method to approximately count triangles for each individual node in an undirected
simple graph, and the algorithmneeds to traverse the graph datamany times. Ourmethod does
not rely on counting triangles for each individual node. Rather, we use a carefully designed
estimator to estimate the statistics from a sampled graph in a streaming fashion.

3 Problem formulation

Wefirst formally define the notions of social activity streamand triadic cardinality distribution
mentioned in Introduction. Then, we give an overview of our sample-estimate framework.

3.1 Social activity stream

We represent an OSN by a simple graph G = (V , E, C), where V is a set of users, E is a set
of relations among users, and C is a set of media content such as hashtags and video links.
Here, a relation between two users can be undirected like the friend relationship in Facebook,
or directed like the follower relationship in Twitter.

Users in the OSN generate social activities, e.g., interact with other users in V , or interact
with content in C . We denote a social activity by a ∈ V × (V ∪ C) × [0,∞). A user–user
interaction, a = (u, v, t), corresponds to user u interacting with user v at time t . A user–
content interaction, a = (u, c, t), corresponds to user u interacting with content c at time t .
These social activities are then aggregated chronologically to form a social activity stream,
denoted by S � {a1, a2, . . .} where al denotes the l-th social activity in the stream.

3.2 Triadic cardinality distribution

We introduce two interaction multigraphs formed by the two types of user interactions,
respectively. Triadic cardinality distribution is then defined on these two interaction multi-
graphs.

Interaction multigraphs. Within a time window (e.g., an hour, a day, or a week), user–user
interactions in stream S form a multigraph Guu = (V , Euu), where V is the set of users, and
Euu is a multiset consisting of user–user interactions in the window. The triadic cardinality of
a user u ∈ V is the number of interaction triangles to which u belongs in Guu. For example,
user u in Fig. 1a has triadic cardinality two, and all other users have triadic cardinality one.

Likewise, user–content interactions also form a multigraph Guc = (V ∪ C, E ∪ Euc) in
a time window. Unlike Guu, the node set in Guc includes both user nodes V and content
nodes C , and the edge set includes user relations E and a multiset Euc denoting user–content
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Fig. 3 A sample-estimate framework

interactions in the window. Note that in Guc, triadic cardinality is only defined for content
nodes, and the triadic cardinality of a content node c ∈ C is the number of influence triangles
to which c belongs in Guc. For example, in Fig. 2a, content c2 has triadic cardinality one, and
all other content nodes have triadic cardinality zero.

Triadic cardinality distribution Let θ � (θ0, . . . , θW ) and ϑ � (ϑ0, . . . , ϑW ′) denote the
triadic cardinality distributions on Guu and Guc, respectively. Here, θi (or ϑi ) is the fraction
of user (or content) nodes with triadic cardinality i in Guu (or Guc), and W (or W ′) denotes
the maximum triadic cardinality.

The importance of the triadic cardinality distribution lies in its capability of providing
succinct summary information to characterize burst patterns in a large scale OSN as we
mentioned previously. By tracking triadic cardinality distributions, we will discover burst
occurrences in an OSN, as illustrated in Figs. 1c and 2c.

3.3 Overview of our sample-estimate framework

We propose an online solution capable of tracking the triadic cardinality distribution from a
high-speed social activity stream in a near-real-time fashion. Our framework is illustrated in
Fig. 3.

Our framework consists of two stages. In the first stage, we sample a social activity stream
in a time window maintaining only summary statistics. In the second stage, we construct an
estimate of the triadic cardinality distribution from the summary statistics at the end of a time
window. The advantage of this approach is that it reduces the amount of data needed to be
stored and processed, and enables detecting bursts in a near-real-time fashion.

4 Stream samplingmethods

In this section, we elaborate the sampling module in our framework, and design two types
of stream sampling methods. The purpose of sampling is to reduce the computational cost in
handling the massive amount of data in a high-speed stream.

4.1 Identical triangle sampling (ITS)

The simplest stream sampling method works as follows. We toss a biased coin for each
coming social activity a ∈ S. We keep a with probability p, and ignore it with probability
1 − p. Hence, each social activity is independently sampled, and at the end of the time
window, only a fraction p of the stream is kept. When social activities are sampled, triangles
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(a) (b) (c)

Fig. 4 Sampling triangles. A solid edge represents an interaction in Euu ∪ Euc. A dashed edge represents a
social edge in E

in graphs Guu and Guc are sampled accordingly. Obviously, an interaction triangle is sampled
with probability p3, as illustrated in Fig. 4a.

For influence triangles, we need a few more considerations. First, an influence triangle
consists of two user–content interaction edges in Euc and one social edge in E . Second, stream
sampling only applies to edges in Euc ∪ Euu, and edges in E are not sampled because they do
not appear in the stream. In Fig. 4b, suppose we have sampled two user–content interactions
(u, c, t1) and (v, c, t2), and assume t1 ≤ t2, i.e., user u interacts with c earlier than v does. To
determine whether content c has an influence triangle formed by users u and v, we need to
check whether (directed) edge (v, u) exists in E . This can be done by querying neighbors of
one of the two users in the OSN. For example, in Twitter, we query followees of v and check
whether u is in these followees; or in Facebook, we query friends of v and check whether u is
a friend of v. Sometimes this query cost is expensive if we do not own G and need to call the
APIs provided by the OSN. To reduce this query cost, we check a user pair with probability
p′. This is equivalent to sampling a social edge in E with probability p′, conditioned on
the two associated user–content interactions being sampled. Thus, an influence triangle is
sampled with identical probability p2 p′. In summary, we have the following result.

Lemma 1 If we independently sample each social activity in stream S with probability p,
and check a user relation in E with probability p′, then each interaction (influence) triangle
in Guu (Guc) is sampled with probability

pITS� �
{

p3 for an interaction triangle,

p2 p′ for an influence triangle.
(1)

ITS-color: A more efficient identical triangle sampling method An obvious drawback of the
previous sampling method is that an interaction triangle is sampled with probability cubic
to the edge sampling probability. This means that an interaction triangle is hardly sampled
if p is small. In fact, we can increase triangle sampling probability to p2 and still keep each
edge being sampled with probability p by leveraging a clever colorful triangle sampling
method [35]. Let N = 1/p be an integer, and [N ] represents a set of N colors. Define a
hash function h : V �→ [N ] that maps a node to one of these N colors uniformly at random.
During sampling, for a coming social activity a = (u, v, t), we keep a if h(u) = h(v), and
drop a otherwise. We can see that a user–user interaction is still sampled with probability p,
but an interaction triangle is now sampled with probability p2, and hence it is more efficient
in collecting triangles from edge samples. For influence triangle, we can let p′ = 1, i.e., we
check every sampled user pair (similar to gSH [1]), and an influence triangle is also sampled
with probability p2.Wewill refer to ITSmethod with colorful triangle sampling as ITS-color
in the following discussion.
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Remark 1 In both ITS and ITS-color, although triangles are sampled identically, they may
not be sampled independently, such as the cases two triangles share edges in Fig. 4c. We will
consider this issue in detail later.

4.2 Harvesting triangles by subgraph sampling (SGS)

The ITS-based methods are easy to implement, and they are already used for counting the
triangles in a large network [35,54]. However, ITS-based methods have drawbacks when
they are used for estimating the triadic cardinality distribution. One main drawback is that,
because ITS samples each triangle with identical probability, the sampling will be biased
toward nodes belonging to many triangles. That is, nodes with larger triadic cardinalities are
more likely to be sampled, and for nodes with small triadic cardinalities, the triangles these
nodes belonging to will be seldom sampled. This hence may incur large estimation error for
nodes with small triadic cardinalities. To address this weakness, we propose another triangle
sampling method that leverages interaction multigraphs and social graph in a different way,
which we call the subgraph sampling (SGS) method.

For sampling interaction triangles, assume that we are only interested in user–user inter-
actions along social edges. Then, SGS works as follows. At the beginning of a time window,
we first sample a set of user samples that each user is sampled with probability pn (and this
step can be implemented on social graph G using well-studied graph sampling techniques
[19]). For each sampled user, a subgraph induced by the user and the user’s neighbors in G
is maintained, i.e., each edge in the induced subgraph is a social edge in G. During stream
sampling, for each social activity a = (u, v, t), if (u, v) is an edge in one of these subgraphs,
we keep a; otherwise a is dropped. In this way, interaction triangles related to the user sample
are kept completely.

Similar procedure is also applied to sampling influence triangles, and here we aim to
keep complete influence triangles related to each sampled content node. To sample a content
node with probability pn , we need to store content nodes seen so far in a Bloom filter for
ease of testing whether a coming content node is new or not. For a coming social activity
a = (u, c, t), if c is already marked as a sampled content node, we keep a; if c is new (i.e.,
c is not found in the Bloom filter), we mark c as a content node sample with probability pn

and save a, otherwise we drop a. No matter a is saved or discarded, if c is new, we store c in
the Bloom filter. So, we can see that social activities related to sampled content nodes are all
kept. If we also check the existence of social edges with probability p′ = 1, then influence
triangles related to sampled content nodes are kept completely.

Comparing with ITS methods, SGS method has a feature that it keeps every triangle a
node sample belonging to, whatever the node sample has a large or small triadic cardinality.
We will later develop rigorous method to compare the performance of ITS methods and SGS
method.

4.3 Statistics of sampled data

ITS, ITS-color, and SGS can be thought of as sampling edges in multigraphs Guu, Guc, and
social graphG, in differentmanners. In ITS, interaction edges e ∈ Euu∪Euc are independently
sampled with probability p, and social edges e′ ∈ E are sampled with conditional probability
p′ conditioned on the two user–content interaction edges being sampled. In SGS, we first
sample a collection of user/content nodes with probability pn , and then only keep triangle
subgraphs related to these sampled user/content nodes.
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At the end of the time window, we obtain two sampled multigraphs, denoted by G′
uu and

G′
uc, respectively. We calculate statistics on these sampled graphs, and will show that these

statistics are sufficient to estimate the triadic cardinality distributions. Specifically, for the
sampled graph G′

uu, we calculate triadic cardinality for each (sampled) user node in ITS
(SGS), and obtain statistics g � (g0, . . . , gW ), where g j , 0 ≤ j ≤ W , denotes the number
of user nodes belonging to j triangles in graph G′

uu. Similar statistics are also obtained from
G′
uc, denoted by f � ( f0, . . . , fW ′), where f j is the number of content nodes belonging to

j influence triangles in graph G′
uc. We only need to store g and f in main memory and use

them to estimate θ and ϑ in the next section.

5 Maximum likelihood estimate

In this section, we elaborate the estimation module in our framework, and derive a maximum
likelihood estimate (MLE) of the triadic cardinality distribution using statistics obtained in
the sampling step. The estimation in this section can be viewed as an analog of the network
flow size distribution estimation [15,39,55,57,58], in which a packet in a flow is viewed to be
a triangle a node belonging to. However, in our case, triangle samples are not independent,
and a node may have no triangles at all. These issues complicate the estimation algorithm,
and we will describe how to solve these issues in this section.

Note that we only discuss how to estimate θ using g, as the MLE of ϑ using f is easily
obtained using a similar approach. To estimate θ , we first consider the easier casewhere graph
size |V | = n is known. Later, we extend our analysis to the case where |V | is unknown.

5.1 MLE when graph size is known

Recall that g j , 0 ≤ j ≤ W , is the number of nodes having j sampled triangles in graph G′
uu.

First, note that observing a node with j sampled triangles in graph G′
uu implies that the node

has at least j triangles in graph Guu. Second, we also need to pay special attention to g0,
which is the number of nodes with no triangle observed in graph G′

uu. Due to sampling, some
nodes may be unobserved (e.g., no edge attached to the node is sampled in ITS, or the node
is not sampled in SGS), and these “evaporated” nodes are actually “observed” to have zero
triangle because graph Guu has n nodes. Hence, we need to include these evaporated nodes
in g0, i.e.,

g0 := g0 + n −
W∑

j=0

g j = n −
W∑

j=1

g j .

To derive aMLE of θ , we use a conditional probability to model the sampling process. For
a randomly chosen node, let X denote the number of triangles to which it belongs in Guu, and
let Y denote the number of triangles observed during sampling. Let b ji � P(Y = j |X = i)
for 0 ≤ j ≤ i be the conditional probability that a node has j sampled triangles in G′

uu given
that it has i triangles in the original graph Guu. Then, the probability of observing a node to
have j sampled triangles is

P(Y = j)=
W∑

i= j

P(Y = j |X = i)P(X = i)=
W∑

i= j

b jiθi . (2)
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Then, the log-likelihood of observations {Yl = yl}n
k=1, where Yl = yl denotes the k-th node

having yl sampled triangles, yields

L(θ) � log P({Yl = yl}n
k=1) =

W∑
j=0

g j log
W∑

i= j

b jiθi . (3)

The MLE of θ can then be obtained by maximizing L(θ) with respect to θ under the
constraint that

∑W
i=0 θi = 1. To solve the likelihood maximization problem, we face two

challenges: (1) What are the specific formulas of b ji for the sampling methods we have pro-
posed previously? (2) Note that it is impossible to obtain a closed form solution maximizing
Eq. (3), so how should we design an algorithm to maximize Eq. (3) conveniently?

5.1.1 Sampling model specification

We specify the sampling models b ji for ITS and SGS, respectively. We start with SGS for
its simplicity.

SGS Remember that SGS keeps all the triangles of each sampled node, and a node is sampled
with probability pn . Hence, if we observe a sampled node belonging to j > 0 triangles in
G′
uu, the node must have i = j triangles in Guu, and this occurs with probability pn . If we

observe that a node has no triangle in G′
uu, i.e., j = 0, there are two possibilities, i.e., the

node indeed has no triangle in Guu, i = 0, or the node is not sampled. Therefore,

b ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, j = i = 0,

pn, j = i > 0,

1 − pn, j = 0 ∧ i > 0,

0, otherwise.

ITS and ITS-color In ITS or ITS-color, each triangle is sampled with an identical probability,
denoted by p�. Sampling a triangle can be thought of as a Bernoulli trial with success proba-
bility p�. If Bernoulli trials are independent with each other, i.e., triangles are independently
sampled, then b ji should follow the standard binomial distribution parameterized by i and

p�, i.e., b ji = Bin( j |i, p�) �
(i

j

)
p j
�(1 − p�)i− j . Unfortunately, independence does not

hold for triangles sharing edges, as illustrated in Fig. 4c. As a result, it is non-trivial to derive
an accurate sampling model b ji for ITS and ITS-color due to the dependence among triangle
samples. To deal with this issue, we propose to use the beta-binomial distribution [6], which
is a suggested model to approximate the sums of dependent Bernoulli random variables [64].
In our case, we denote the beta-binomial distribution by

BetaBin( j |i, p�, α) �
(

i

j

)∏ j−1
s=0 (sα + p�)

∏i− j−1
s=0 (sα + 1 − p�)∏i−1

s=0(sα + 1)

and
∏−1

0 � 1. The above distribution parameterized by α ≥ 0 allows pairwise identically
distributed Bernoulli random variables to have a covariance α p�(1− p�)/(1+α). It reduces
to the standard binomial distribution when α = 0. Hence, for ITS and ITS-color sampling,
we propose to approximate the sampling model by

b ji (α) = BetaBin( j |i, p�, α), 0 ≤ j ≤ i .
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Intuitively, if there are many triangles sharing edges in the graph, then covariance between
two triangle samples will turn to be large, and we expect to have a large α in the model;
otherwise the graph may be sparse and only few triangles share edges, then covariance will
be small and we expect a small α in the model. Therefore, the covariance parameter α allows
us to model dependent triangle samples in our problem.

5.1.2 MLE via EM algorithm

To solve the second challenge, we propose to use the expectation-maximization (EM) algo-
rithm to obtain the MLE in a more convenient way. For general consideration, we use b ji (α)

to denote the sampling model.
If we already know that the k-th node has xl triangles in Guu, i.e., Xl = xl , then the

complete likelihood of observations {(Yl , Xl)}n
l=1 is

P({(Yl , Xl)}n
l=1) =

n∏
l=1

P(Yl = yl , Xl = xl)

=
W∏

j=0

W∏
i= j

P(Y = j, X = i)zi j

=
W∏

j=0

W∏
i= j

[
b ji (α)θi

]zi j

where zi j = ∑n
l=1 1(xl = i ∧ yl = j) is the number of nodes with i triangles and j of them

being sampled; 1(·) is the indicator function. The complete log-likelihood is

Lc(θ, α) �
W∑

j=0

W∑
i= j

zi j log
[
b ji (α)θi

]
. (4)

Here, we can treat {Xl}n
l=1 as hidden variables, and apply the EM algorithm to calculate the

MLE.

E-step We calculate the expectation of the complete log-likelihood in Eq. (4) with respect to
hidden variables {Xl}l , conditioned on data {Yl}l and previous estimates θ(t) and α(t). That
is

Q(θ, α; θ(t), α(t)) �
W∑

j=0

W∑
i= j

E[zi j |θ(t), α(t)] log [
b ji (α)θi

]
.

Here, E[zi j |θ(t), α(t)] can be viewed as the average number of nodes that have i triangles in
Guu, of which j are sampled. Because

P(X = i |Y = j, θ(t), α(t)) = P(Y = j |X = i, α(t))P(X = i |θ(t))∑
i ′ P(Y = j |X = i ′, α(t))P(X = i ′|θ(t))

= b ji (α
(t))θ

(t)
i∑

i ′ b ji ′(α(t))θ
(t)
i ′

� pi | j
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and we have observed g j nodes belonging to j sampled triangles, then E[zi j |θ(t), α(t)] =
g j pi | j .

M-step We nowmaximize Q(θ, α; θ(t), α(t))with respect to θ and α subject to the constraint∑W
i=0 θi = 1. After the log operation, θ and α are well separated. Hence, we obtain

θ
(t+1)
i = argmax

θ
Q(θ, α; θ(t), α(t))

=
∑i

j=0 E[zi j |θ(t), α(t)]∑W
j=0

∑W
i ′= j E[zi ′ j |θ(t), α(t)] , 0 ≤ i ≤ W ,

and α(t+1) = argmaxα Q(θ, α; θ(t), α(t)) can be solved using classic gradient ascent meth-
ods.

Alternating iterations of the E-step and M-step, EM algorithm converges to a solution,
which is a local maximum of L(θ, α). We denote this solution by θ̂ and α̂.

5.2 MLE when graph size is unknown

When the graph size is unknown, one can use probabilistic counting methods such as loglog
counting [16] to obtain an estimate of graph size from the stream, and then apply our previ-
ously developed method to obtain estimate θ̂ . Note that this introduces additional statistical
errors to θ̂ due to the inaccurate estimate of the graph size. In what follows, we slightly
reformulate the problem and develop a method that can simultaneously estimate both the
graph size and the triadic cardinality distribution from the sampled data.

When the graph size is unknown, we cannot calibrate g0 because “evaporated” nodes are
indeed unobservable in this case. There is no clear relationship between an unsampled node
and its triadic cardinality. As a result, we cannot easily model the absence of nodes by θ .
If we observe a node having no triangle after sampling, we cannot reason out which way
caused the observation, the node has no triangle in the original graph, or the triangles the
node belonging to are not sampled. This difficulty hence complicates the estimation design.

To solve this issue, we need to slightly reformulate our problem: (1) Instead of estimating
the total number of nodes in Guu, we estimate the number of nodes belonging to at least
one triangle in Guu, denoted by n+; (2) We estimate the triadic cardinality distribution θ+ =
(θ+

1 , . . . , θ+
W ), where θ+

i is the fraction of nodes with i triangles over the nodes having at
least one triangle in Guu.

Estimating n+ Under the beta-binomial model, the probability that a node has i triangles in
Guu, of which none are sampled, is

qi (α) � P(Y = 0|X = i) = b0i (α).

Then, the probability that a node has triangles in Guu, of which none are sampled, is

q(θ+, α) � P(Y = 0|X ≥ 1) =
W∑

i=1

qi (α)θ+
i .

Because there are
∑W

j=1 g j nodes having been observed to have at least one sampled triangle,
n+ can be estimated by

n̂+ =
∑W

j=1 g j

1 − q(θ+, α)
. (5)
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Note that estimator (5) relies on θ+ and α, and we can estimate them using the following
procedures.

Estimating θ+ and α We discard g0 and only use g+ � (g1, . . . , gW ) to estimate θ+ and
α. The basic idea is to derive the likelihood for nodes that are observed to have at least one
sampled triangle, i.e., {Yl = yl : yl ≥ 1}. In this case, the probability that a node has X = i
triangles, and Y = j of them are sampled, conditioned on Y ≥ 1, is

P(Y = j |X = i, Y ≥ 1) = P(Y = j |X = i)

P(Y ≥ 1|X = i)

= b ji (α)

1 − qi (α)
� a ji (α), j ≥ 1.

Then, the probability that a node is observed to have j sampled triangles, conditioned on
Y ≥ 1, is

P(Y = j |Y ≥ 1) =
W∑

i= j

P(Y = j |X = i, Y ≥ 1)P(X = i |Y ≥ 1)

=
W∑

i= j

a ji (α)φi ,

where

φi � P(X = i |Y ≥ 1) = θ+
i [1 − qi (α)]∑W

i ′′=1 θ+
i ′ [1 − qi ′(α)] , (6)

is the distribution of observed node triadic cardinalities. Now it is straightforward to obtain
the previously mentioned likelihood. Furthermore, we can leverage our previously developed
EM algorithm by replacing θi by φi , b ji by a ji , to obtain MLEs for φ and α. We omit these
details, and directly provide the final EM iterations:

φ
(t+1)
i =

∑i
j=1 E[zi j |φ(t), α(t)]∑W

j=1
∑W

i ′= j E[zi ′ j |φ(t), α(t)] , i ≥ 1,

where

E[zi j |φ(t), α(t)] = g j a ji (α
(t))φ

(t)
i∑W

i ′= j a ji ′(α(t))φ
(t)
i ′

, i ≥ j ≥ 1,

and α(t+1) = argmaxα Q(φ, α;φ(t), α(t)) is solved using gradient ascent methods.
Once EM converges, we obtain estimates φ̂ and α̂. The estimate for θ+ is then obtained

by Eq. (6), i.e.,

θ̂+
i = φ̂i/[1 − qi (α̂)]∑W

i ′=1 φ̂i ′/[1 − qi ′(α̂)] , 1 ≤ i ≤ W . (7)

Finally, n̂+ is obtained by the estimator in Eq. (5).

5.3 Logarithmic binning simplification

In our previous study [66],we have observed that triadic cardinality distributions inmany real-
world networks exhibit heavy tails. Thus, it is better to characterize them in the logarithmic

123



Tracking triadic cardinality distributions for burst detection... 953

scale. That is, instead of estimating the fraction of nodes having exact triadic cardinality i ,
we may want to estimate the fraction of nodes with triadic cardinality in log2 scaled bins.
We aim to estimate the fraction of nodes having triadic cardinality in the k-th bin [2k, 2k+1),
denoted by θ+

k , for k = 0, 1, . . . , K where K � �log2 W
. If we allow i = 0 as in the case
where graph size is known, we define the first bin to be {0} assigning to bin k = −1, and use
θk, k = −1, 0, . . . , K , to represent the binned triadic cardinality distribution.

In the logarithmic binning simplification, for each i in the k-th bin, we assume that θi has
the same value, and θi = 2−kθk for k ≥ 0. We further define

b jk � P(Y = j |X ∈ bin(k)) (8)

=
2k+1−1∑

i=2k

P(Y = j |X = i)P(X = i |X ∈ bin(k)) (9)

= 2−k
2k+1−1∑

i=2k

b ji (10)

for k ≥ 0. For k = −1, we define b jk = 1 if j = 0 and 0 otherwise. Similar to Eq. (2),
the probability of observing a node having j triangles after sampling becomes P(Y = j) =∑K

k=−1 b jkθk . Thus, it is straightforward to obtain a MLE of θk using previously developed
methods. Similar analysis can also be applied to estimate θ+

k , and hence is omitted. In the
logarithmic binning method, parameters {θk} and {θ+

k } are actually smoothed versions of the
original parameters {θi } and {θ+

i }, respectively, which we will observe in experiments.
The logarithmic binning simplification reduces the number of parameters from O(W )

to O(log2 W ). This allows us to consider large triadic cardinality bound W in large net-
works. Because the computational complexity of the EM algorithm is proportional to the
number of parameters to be estimated, hence the logarithmic binning simplification reduces
the computational complexity by a factor of O(W/ log2 W ).

6 Asymptotic estimation error analysis

To evaluate the performance of MLEs using different sampling methods, this section devotes
to analyze the asymptotic estimation error of theMLEs by calculating the Cramér–Rao lower
bound (CRLB) of θ̂ and θ̂+. It is well known that MLE is asymptotically Gaussian centered
at the true value with variance the CRLB, and the Cramér–Rao theorem further states that
the mean squared error of any unbiased estimator is lower bounded by the CRLB, which is
the inverse of the Fisher information (see [52, Chapter 2] for more details).

Intuitively, the Fisher information can be thought of as the amount of information that
observations {Yl} carry about unobservable parameters θ (or θ+) upon which the probability
distribution of the observations depends. When graph size is known, the Fisher information
of observations {Yl} is a (W +1)× (W +1) square matrix J (θ)whose ir -th element is given
by

Jir (θ) � EY

[
∂ log P({Yl}l |θ)

∂θi

∂ log P({Yl}l |θ)

∂θr

]
.
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In our problem, Jir (θ) can be further simplified to

Jir (θ) = n
W∑

j=0

∂ log P(Y |θ)

∂θi

∂ log P(Y |θ)

∂θr
P(Y = j)

= n
W∑

j=0

b ji (α)b jr (α)

P(Y = j)
.

When graph size is unknown, the Fisher information matrix J (θ+) is a W × W matrix. To
obtain J (θ+), we can first obtain the Fisher information matrix regarding to φ, denoted by
J (φ), using an approach similar to above (by replacing n by n+). Then, J (φ) and J (θ+) are
known to have the following relationship [14]

J (θ+)−1 = ∇ H J (φ)−1∇ H T ,

where ∇ H is the Jacobian matrix, and its ir -th element is given by ∂θ+
i (φ)/∂φr (and θ+

i (φ)

is given by Eq. (7)).
The inverse constrained Fisher information of θ with constraint

∑
i θi = 1 is then obtained

by

I (θ) = J (θ)−1 − θθT ,

where the term θθT corresponds to the accuracy gain due to constraint
∑

i θi = 1 (see
[20,55] for more details). Then, mean squared error of an estimator θ̂ is lower bounded by
the diagonal elements of I (θ), i.e., E[(θ̂i − θi )

2] ≥ Iii (θ). Similar relation also holds for θ̂+.
MLE is asymptotically efficient, and CRLB is its asymptotic variance. We are thus able

to leverage CRLB to compare the asymptotic estimation accuracy of MLEs using different
sampling methods.

7 Experiments and validations

In this section, we first empirically verify the claims we have made previously. Then, we
validate the proposed estimation methods on several real-world networks. Finally, we illus-
tratively show the usefulness of triadic cardinality distribution in detecting bursts during the
Hong Kong occupy central movement in Twitter.

7.1 Analyzing bursts in enron dataset

In the first experiment, we use a public email communication dataset to empirically show
how bursts in networks can change the triadic cardinality distribution, and verify our claims
previously made.

7.1.1 Enron email dataset

The Enron email dataset [25] includes the entire email communications (e.g., who sent an
email to whom at what time) of the Enron corporation from its startup to bankruptcy. The
used dataset is carefully cleaned by removing spamming accounts/emails and emails with
incorrect timestamps. The cleaned dataset contains 22, 477 email accounts and 164, 081

123



Tracking triadic cardinality distributions for burst detection... 955

Fig. 5 Email and triangle volumes per week

email communications between Jan 2001 and Apr 2002. We use this dataset to study patterns
of bursts caused by email communications among people, i.e., by user–user interactions.

7.1.2 Observations from data

Because the data has been cleaned, the number of user–user interactions, i.e., number of sent
emails per time window, reliably indicates burst occurrences. We show the number of emails
sent per week in Fig. 5, and observe at least two bursts that occurred in Jun and Oct 2001,
respectively. We also show the number of interaction triangles formed during each week.
The Pearson correlation coefficient (PCC) between the email and triangle volume series is
0.8, which reflects a very strong correlation. The sudden increase (or decrease) of email
volumes during the two bursts is accompanied with the sudden increase (or decrease) of the
number of triangles. Thus, this observation verifies our claim that the emergence of a burst
is accompanied with the formation of triangles in networks.

How bursts change triadic cardinality distributions Our burst detection method relies on a
claim that, when a burst occurs, the triadic cardinality distribution changes. To see this, we
show the triadic cardinality distributions before and during the bursts in Fig. 6. For the first
burst, due to the sudden decrease in email communications from week 23 to week 24, we
observe in Fig. 6a that the distribution “shifts” to the left. While for the second burst, due to
the gradual increase in email communications, we observe in Fig. 6b that the distribution in
week 43 shifts to the right in comparison to previous weeks. Again, the observation verifies
our claim that triadic cardinality distribution changes when a burst occurs.

Impacts of spam As we mentioned earlier, if spam exists, simply using the volume of user
interactions to detect bursts will result in false alarms, while the triadic cardinality distribution
is a good indicator immune to spam. To demonstrate this claim, suppose a spammer suddenly
becomes active inweek 23, and generates email spams to distort the original triadic cardinality
distribution of week 23. We consider the following two spamming strategies:

– Random The spammer randomly chooses many target users to send spam.
– Random-Friend At each step, the spammer randomly chooses a user and a random friend

of the user1, as two targets; and sends spams to each of these two targets. The spammer
repeats this step a number of times.

In order to measure the extent that spams can distort the original triadic cardinality dis-
tribution of week 23, we use Kullback–Leibler (KL) divergence to measure the difference

1 We assume two Enron users are friends if they have at least one email communication in the dataset.
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(a) (b)

Fig. 6 Bursts change distribution curves. For burst 1 (burst 2), the probability mass at i = 0 slightly increases
(decreases) actually

(a) (b)

Fig. 7 Impacts of spam. In (b), the inset shows fitted curves of the three distributions

between the original and distorted distributions. The relationship between KL divergence
and the number of injected spams is shown in Fig. 7a. For both strategies, KL divergences
both increase as more spams are injected into the interaction network, which is expected. The
Random-Friend strategy can cause larger divergences than the Random strategy, as Random-
Friend strategy is easier to introduce new triangles to the interaction network of week 23 for
the reason that two friends are more likely to communicate in a week. However, even when
104 spams are injected, the spams incur an increasing KL divergence of less than 0.04. From
Fig. 7b, we can see that the divergence is indeed small. (This may be explained by the “center
of attention” phenomenon [3], i.e., a person may have hundreds of friends but he usually only
interacts with a small fraction of them in a time window. Hence, Random-Friend strategy
does not form many triangles.) Therefore, these observations verify that triadic cardinality
distribution is robust against common spamming attacks.

7.2 Validating estimation performance

In the second experiment, we evaluate the MLE performance using different sampling meth-
ods and demonstrate the computational efficiency.
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Table 1 Network statistics Network Type Nodes Edges

HepTh Directed, citation 27,770 352,807

DBLP Undirected, coauthor 317,080 1,049,866

YouTube Undirected, OSN 1,134,890 2,987,624

Pokec Directed, OSN 1,632,803 30,622,564

7.2.1 Datasets

Because the input of our estimation methods is actually a sampled graph, we use public
available graphs of different types and scales from the SNAP graph repository (http://snap.
stanford.edu/data) as our testbeds. Note that these graphs are treated as the aggregated graphs
in a time window, and we apply our estimation algorithms on these graphs to evaluate how
accurate our algorithms can estimate the true triadic cardinality distributions. We summarize
the statistics of these graphs in Table 1.

For each graph, we first shuffle the edges to form a stream, then we apply stream sampling
methods on the stream, and obtain a sampled graph. We calculate the triadic cardinality for
nodes in the sampled graph, and obtain statistics g. Note that the estimator uses g to obtain
an estimate of the triadic cardinality distribution for each graph, which is then compared with
the ground truth distribution, i.e., the triadic cardinality distribution of the original unsampled
graph, to evaluate the performance of the estimation method.

7.2.2 CRLB analysis

Our goal is to compare the amount of information contained in edge samples collected using
different sampling methods, in terms of CRLB. A small CRLB indicates small asymptotic
variance of a MLE, and hence implies that the corresponding sampling method is efficient
in gathering information from data. We will mainly use the HepTh and DBLP networks in
this study, and for ease of conducting matrix algebra, we truncate the stream with W = 20
by discarding edges that may increase a node’s triadic cardinality to larger than 20.

We depict the results when graph size is known in Fig. 8. In (a) and (b), we show the
rooted CRLB of ITS and ITS-color with different triangle sampling rates p� on the two
networks, respectively. As expected, when p� increases, CRLB decreases, indicating that
we can obtain more accurate estimates by increasing edge sampling rate. However, we find
that ITS and ITS-color are not efficient in gathering information from data. As we can see,
to decrease CRLB to less than 0.1, we need to increase p� to about 0.6, which corresponds
to a very large edge sampling rate! We then study the performance of SGS in (c) and (d). We
observe that CRLB decreases when pn increases, i.e., when more nodes (or subgraphs) are
sampled. We also observe that CRLB of SGS is much smaller than ITS, even with small pn .
It seems that SGS is more efficient in gathering information from data than ITS. However,
people may argue that SGSmay sample more edges than ITS evenwith small pn . To compare
them fairly, we need to fix the number of edge samples used by different methods. In ITS
or ITS-color, if the graph contains m edges, then ITS or ITS-color samples mp edges on
average. In SGS, because a randomly chosen node has

∑
i iθi triangles, then approximately,

SGS samples Θ(npn
∑

i iθi ) edges on average (if we assume #edges = Θ(#triangles)). In
the experiment, we turn p� and pn to make sure that different methods indeed use same
amounts of edge samples approximately, and show the results in (e) and (f). We can see
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 CRLB analysis when graph size is known. α = 0.1. In e and f, pITS� = 0.1 and pITS-color� = 0.22.
In (e), pn = 0.024. In (f), pn = 0.07

clearly that SGS is indeed more efficient than ITS and ITS-color. ITS-color is also more
efficient than ITS since ITS-color samples a triangle with larger probability than ITS using
same edge sampling rate.

We also conduct same experiments when graph size is unknown, and the results are
depicted in Fig. 9. The observations are consistent with the results when graph size is known.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 CRLB analysis when graph size is unknown. In ITS and ITS-color, α = 0.1. Parameters in (e) and (f)
are the same as in Fig. 8

7.2.3 NRMSE analysis

CRLB reflects the asymptotic variance of a MLE, i.e., the variance when sample size
approaches infinity. However, in practice, we cannot collect infinite many samples because
the number of edges in a stream is finite, or afford to use large sample rate. When sample
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rate is small, or collected edge samples are not large, MLE is usually biased and we cannot
leverage CRLB to analyze its performance (see [52, p. 147] for details). Instead, we propose
to use the normalized rooted mean squared error (NRMSE) of an estimator, which is defined

by NRMSE(θ̂i ) =
√
E(θ̂i − θi )2/θi . The smaller the NRMSE, the more accurate an estima-

tor is. In the following experiment, we mainly use the HepTh network, and compare different
sampling methods using approximately the same amount of edge samples.

We depict the results when graph size is known in Fig. 10. In (a) and (b), we compare
the estimates and NRMSE of different methods. In general, SGS is better than ITS-color,
and ITS-color is better than ITS. This observation is consistent with our previous CRLB
analysis. The NRMSE plots in (b) provide more valuable observations. We observe that SGS
can provide more accurate estimates for nodes with small triadic cardinalities than ITS and
ITS-color; however, SGS performs much worse than ITS and ITS-color for nodes with large
triadic cardinalities. This observation can be explained from the different nature between
SGS and ITS-based methods. The ITS-based methods sample each triangle with identical
probability, and if dependence between triangles is negligible, the sampling will be strongly
biased toward nodes with many triangles. That is, nodes with larger triadic cardinalities are
more likely to be sampled, and for nodes with small triadic cardinalities, the triangles these
nodes belonging to will be seldom sampled. This results in that triangles of small triadic
cardinality nodes are difficult to be sampled, and hence incurs large estimation error for these
nodes. SGS is completely different, and it reserves all the triangles of each node sample.
Because nodes are sampled with same probability, node samples will be dominated by nodes
with small triadic cardinalities. Hence, SGS can provide more accurate estimates for the head
of triadic cardinality distribution. However, SGS is inefficient in sampling nodes with large
triadic cardinalities, resulting in largeNRMSE at the tail of the triadic cardinality distribution.
To address their weaknesses, one way is to increase sampling rates, as depicted in (c) and (d).
We observe that after increasing sampling rates, estimation accuracy increases more or less
for each method. An alternative way is to design a mixture estimator, which combines the
advantage (and the disadvantage) of each method. For example, we define

θ̂mix
i � cθ̂ ITS-colori + (1 − c)θ̂ SGS

i ,

where c ∈ [0, 1] is a constant. θ̂mix
i has the property that, its variance is smaller than

θ̂SGS for nodes with large triadic cardinalities, with the loss of accuracy for nodes with
small triadic cardinalities, and the variance of the mixture estimator achieves minimal at
c∗ = var(θ̂ SGS

i )/[var(θ̂ ITS-colori ) + var(θ̂ SGS
i )]. Figure 10e, f shows the results of a mix-

ture estimator with c = 0.5. We indeed observe improvements for nodes with large triadic
cardinalities.

We also conduct experiments when graph size is unknown, and show the results in Fig. 11.
The observations are consistent with the results when graph size is known in general, and we
observe that SGS has smaller NRMSE than ITS-based methods even for nodes with large
triadic cardinalities.

7.2.4 Computational efficiency

Finally, we conduct experiments to analyze the computational efficiency of the proposed
sample-estimate framework.

As mentioned previously (see Sect. 2), there are many researches on efficiently count-
ing triangles [1,2,9,23,29,38,46,47,54,61,65] or more general subgraphs [36,42,43] in large
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Estimation accuracy analysis on HepTh when graph size is known

graphs. These methods mainly focus on counting the number of triangles or subgraphs exist-
ing in the graph. Note that our goal is to obtain the triadic cardinality distribution of the graph,
which requires stating the triangle counts in a finer granularity than simply counting triangles
globally. A straightforward way to apply existing methods on our problem is that: (i) we first
obtain the ego-network—the graph representing the connections among the neighbors of a
node—for each node; (ii) then we apply existing methods on these ego-networks to obtain
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(a) (b)

(c) (d)

Fig. 11 Estimation accuracy analysis on HepTh when graph size is unknown

the triadic cardinality of each node; (iii) stating these triadic cardinalities, we finally obtain
the triadic cardinality distribution of the graph. Obviously, this approach is significantly inef-
ficiently because there may be millions of nodes in a graph (e.g., YouTube and Pokec), and
counting triangles for each node will be of high cost. Our sample-estimate approach actually
avoids brutally counting triangles for each node but just for a subset of these nodes, and the
estimates based on node/edge samples are guaranteed to be asymptotically unbiased (due to
the property of maximum likelihood estimate).

We have conducted experiments on two larger networks, i.e., YouTube and Pokec, and
we compare the computational efficiency of our sampling approach against a naive method
that uses all of the original graph to calculate θ in an exact fashion. The results are shown in
Fig. 12. In general, for ITS, using edge sampling rates between 0.1 and 0.3, or using node
sampling rates between 0.01 and 0.1, we can achieve a significant speed-up between 10 and
200.

In addition, we also show the throughput of the proposed sample-estimate approach on
YouTube and Pokec in Fig. 13. The throughput of an algorithm is defined as the number
of edges that the algorithm can process per second. The results show that the throughput
decreases as the sample rate increases. ITS with p = 0.2 and SGS with pn = 0.01 use
approximately the same memory space, but SGS has a higher throughput than ITS.

123



Tracking triadic cardinality distributions for burst detection... 963

(a) (b)

Fig. 12 Efficiency comparison

(a) (b)

Fig. 13 Throughput analysis

7.3 Application: tracking triadic cardinality distributions during the 2014 Hong
Kong occupy central movement

Last, we conduct an application to illustratively show the usefulness of tracking triadic
cardinality distributions during the 2014 Hong Kong Occupy Central movement in Twitter.

Hong Kong Occupy Central movement a.k.a. the Umbrella Revolution, began in Sept 2014
when activists in Hong Kong protested against the government and occupied several major
streets of Hong Kong to go against a decision made by China’s Standing Committee of the
National People’s Congress on the proposed electoral reform. Protesters began gathering
from Sept 28 on and we collected the data between Sept 1 and Nov 30 in 2014.

Building a Twitter social activity stream. The input of our solution is a social activity stream
from Twitter. For Twitter itself, this stream is easily obtained by directly aggregating tweets
of users. While for third parties who do not own user’s tweets, the stream can be obtained
by following a set of users, and aggregating tweets from these users to form a social activity
stream. Since the movement had already begun prior to our starting this work, we rebuilt the
social activity stream by searching tweets containing at least one of the following hashtags:
#OccupyCentral, #OccupyHK, #UmbrellaRevolution, #UmbrellaMovement and #UMHK,
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(a) (b)

Fig. 14 Triadic cardinality distributions before and during the movement. Estimated using a mixture estimator
with c = 0.5, p = 0.2, pn = 0.002

between Sept 1 and Nov 30 using Twitter search APIs. This produced 66, 589 Twitter users,
and these users form the detectors from whom we want to detect bursts. Next, we collect
each user’s tweets between Sept 1 and Nov 30, and extract user mentions (i.e., user–user
interactions) and user hashtags (i.e., user–content interactions) from tweets to form a social
activity stream, with a time span of 91 days.

Settings We set the length of a time window to be one day. For interaction bursts caused by
user–user interactions, because we know the user population, i.e., n = 66, 589, we apply the
first estimation method to obtain θ̂ = (θ̂0, . . . , θ̂W ) for each window. For cascading bursts
caused by user–content interactions, as we do not know the number of hashtags in advance,
we apply the second method to obtain estimates n̂+, i.e., the number of hashtags with at least
one influence triangle, and ϑ̂+ = (ϑ̂+

1 , . . . , ϑ̂+
W ) for each window. Combining n̂+ with ϑ̂+,

we use n̂+ϑ̂+, i.e., frequencies, to characterize patterns of user–content interactions in each
window.

ResultsWefirst answer the question: are there significant differences for the two distributions
before and during the movement? In Fig. 14, we compare the distributions before (Sept 1 to
Sept 3) and during (Sept 28 to Sept 30) the movement. We can find that when the movement
began on Sept 28, the distributions of the two kinds of interactions shift to the right, indicating
that many interaction and influence triangles form when the movement starts. Therefore,
these observations confirm our motivation for detecting bursts by tracking triadic cardinality
distributions.

Next, we track the daily triadic cardinality distributions to look up the distribution change
during the movement. To characterize the sudden change in the distributions, we use KL
divergence to calculate the difference between θ̂ and a base distribution θbase. The base
distribution θbase represents a distribution when the network is dormant, i.e., no bursts are
occurring. Here we omit the technique details, and simply average the triadic cardinality
distributions from Sept 1 to Sept 7 to obtain an approximate base distribution θ̂base, and show
the KL divergence DKL(θ̂base ‖ θ̂ ) in Fig. 15.

We find that the KL divergence exhibits a sudden increase on Sept 28 when the movement
broke out. Themovement keeps going on and reaches a peak onOct 19when repeated clashes
happened in Mong Kok at that time. The movement temporally returned to peace between
Oct 22 and Oct 25, and restarted again after Oct 26. In Fig. 15, we also show the estimated
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Fig. 15 Triadic cardinality distributions change during the Hong Kong occupy central movement in Twitter

number of hashtags having at least one influence triangle. Its trend is similar to the trend of
KL divergence which indicates that the movement is accompanied with rumors spreading in
a word-of-mouth manner.

In conclusion, the application in this section demonstrates that the using of the triadic
cardinality distribution can trackbursts froma social activity streamand the result is consistent
with real-world events.

8 Conclusion

Online social networks provide various ways for users to interact with other users or media
content over the Internet, which bridge the online and offline worlds tightly. This provides
an opportunity to researchers to leverage online users’ interactions to detect bursts that may
cause negative impacts to the offline world. This work studied the burst detection problem
from a high-speed social activity stream generated by user’s interactions in an OSN. We
show that the emergence of bursts caused by either user–user or user–content interaction
is accompanied with the formation of triangles in users’ interaction networks. This finding
prompts us to devise a novel method for burst detection in OSNs by introducing the triadic
cardinality distribution. Triadic cardinality distribution is found to be robust against common
spamming attacks which makes it a more suitable indicator for detecting bursts than the
volume of user activities. We design a sample-estimate solution that aims to estimate triadic
cardinality distribution from a sampled social activity stream. We show that, in general, SGS
is more efficient in gathering information from data than ITS-based methods. However, SGS
incurs larger NRMSE than ITS for nodes with large triadic cardinalities. We can combine
ITS and SGS and use a mixture estimator to further reduce the NRMSE of SGS at the tail
estimates. We believe our work sets the foundation for robust burst detection, and it is an
open problem for finding and designing better or optimal sampling and estimation methods.

There are several limitations in this work that offer opportunities for future research. First,
in Sect. 5.1.1, we used a beta-binomial distribution to model sums of dependent Bernoulli
trials as triangle samples are dependent in our problem. Note that beta-binomial distribution
is just an approximate model, and it is worthy to find more accurate models. Second, the SGS
method may sample many nodes with large degrees. Large degree nodes usually have large
ego-networks (i.e., the graph representing the connections among the neighbors of a node),
and counting triangles in a large ego-network will be time-consuming. As a result, SGS may
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be inefficient if many large degree nodes are sampled. Theremay be otherways to address this
issue such as parallelly processing each ego-network and using samplingmethods to estimate
the number of triangles in a large ego-network [61]. We postpone the solution to this issue
for future work. Third, in Sect. 7.1, we studied the impacts of spam through synthetically
adding spam interactions to the interaction network, and concluded that triadic cardinality
distribution is robust against the Random and random-friend spamming strategies. It is also
important to verify this conclusion in real-world datasets, and we leave this for future work.
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