
Computer Networks 54 (2010) 1375–1388
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
An online framework for catching top spreaders and scanners

Xingang Shi a,*, Dah-Ming Chiu a, John C.S. Lui b

a Department of Information Engineering, The Chinese University of HongKong, Hong Kong
b Department of Computer Science and Engineering, The Chinese University of HongKong, Hong Kong

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 August 2009
Received in revised form 20 October 2009
Accepted 4 December 2009
Available online 16 December 2009
Responsible Editor: J. Neuman de Souza

Keywords:
Network monitoring
Sampling
Streaming
Small flow
1389-1286/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.comnet.2009.12.003

* Corresponding author. Tel.: +852 31634296.
E-mail addresses: sxg007@ie.cuhk.edu.hk (X. S

edu.hk (D.-M. Chiu), cslui@cse.cuhk.edu.hk (J.C.S. Lu
Flow level information is important for many applications in network measurement and
analysis. In this work, we tackle the ‘‘Top Spreaders” and ‘‘Top Scanners” problems, where
hosts that are spreading the largest numbers of flows, especially small flows, must be effi-
ciently and accurately identified. The identification of these top users can be very helpful in
network management, traffic engineering, application behavior analysis, and anomaly
detection.

We propose novel streaming algorithms and a ‘‘Filter-Tracker-Digester” framework to
catch the top spreaders and scanners online. Our framework combines sampling and
streaming algorithms, as well as deterministic and randomized algorithms, in such a
way that they can effectively help each other to improve accuracy while reducing memory
usage and processing time. To our knowledge, we are the first to tackle the ‘‘Top Scanners”
problem in a streaming way. We address several challenges, namely: traffic scale, skew-
ness, speed, memory usage, and result accuracy. The performance bounds of our algo-
rithms are derived analytically, and are also evaluated by both real and synthetic traces,
where we show our algorithm can achieve accuracy and speed of at least an order of mag-
nitude higher than existing approaches.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In network traffic measurement and analysis, flows are
often used to represent communications between different
end points. Fig. 1 shows a typical scenario in our network:
hosts in a local ISP network communicate with other hosts
in the global Internet through a high speed link, and we can
monitor the traffic on that link. In this case, host3 is com-
municating with a great number of other hosts, thus
spreading a large number of flows. In many applications,
such as detecting port or address scan, DDoS attack, worm
propagation, and hot spots, the first step is to quickly and
efficiently identify such kind of flow ‘‘spreaders”. Yet,
among those spreaders, what is the difference between a
popular server and a malicious host scanning the network?
. All rights reserved.

hi), dmchiu@ie.cuhk.
i).
A malicious host scanning a lot of ports or addresses typ-
ically sends only a small number of probing packets to each
victim to keep the overhead small and lower the chances to
be detected, while a web server lets its users download con-
tent thus each flow may contain lots of packets. So flow size
(in terms of the number of packets) can be a differentiator
for spreaders. We refer to spreaders with many small flows
as ‘‘scanners”.

Let us consider some real-world examples. In a SYN
flood attack, each flow typically contains only one SYN
packet, discarding replied ACK packets. A low-rate TCP at-
tack [23] uses many long-lived flows to exhaust resources
of the victim, while the packet rates of these flows are kept
low. Clients of online-games [2] may spread highly bursty
and short UDP flows during server discovery. A bot server
may send short commands to many bots under its control
to initial an attack. P2P nodes search new peers and ex-
change control messages in a periodical fashion, and such
messages typically contain a small number of packets

http://dx.doi.org/10.1016/j.comnet.2009.12.003
mailto:sxg007@ie.cuhk.edu.hk
mailto:dmchiu@ie.cuhk.edu.hk
mailto:dmchiu@ie.cuhk.edu.hk
mailto:cslui@cse.cuhk.edu.hk
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1376 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
(even fewer if the contacts fail). On the other hand, a pop-
ular server may have many long downloading sessions, and
a P2P node usually keeps a few good connections for down-
loading, where flows typically have high rate and lots of
packets. Generally speaking, the reason for monitoring
large (elephant) flows is usually self-evident (e.g., for
accounting and billing), and there is plenty of prior work
[15]. The reasons for monitoring small (mice) flows are
mostly due to security problems, and the monitoring of
small flows is our focus in this work. Although intuitively
it is easy to find hosts spreading many small flows by mon-
itoring each flow and each host, the task is much harder on
high speed links of a large network.

The rest of the paper is organized as follows: In the
remainder of this section, we explain the problem formula-
tion in more detail, and state our contributions. In Section
2, we review related work in this field. After that, we elab-
orate on two families of streaming algorithms for catching
top spreaders and scanners in Sections 3 and 4, and com-
bine them into a three-level framework in Section 5. We
describe our evaluation methodology and results in Section
6, and conclude in Section 7.

1.1. Problem formulation

We formulate the ‘‘top spreaders” and ‘‘top scanners”
problems as follows:

(1) A user is defined as a host and the user ID is just the
IP address of that host. In the rest of this paper, the
terms user and host will be used interchangeably.

(2) A flow is defined as a group of packets sharing common
value for some fields, e.g., IP address, port, TCP flags, or
even packet content. Here we use the commonly used
5-tuple f ¼hsrcIP;dstIP;srcPort;dstPort;protoi. The
lifetime of a flow is not explicitly considered, since (i)
a measurement interval naturally bounds the lifetime,
and (ii) during a short interval, a flow is unlikely to ter-
minate and start again.

(3) We consider small flows that have no more than q
packets, which are closely related to security
problems.

(4) The top-k spreaders1 are users who are ranked within
top k by their total flow counts and have at least T
flows. Similarly, the top-k scanners are users who are
ranked within top k by their numbers of small flows
(flows of size no greater than q) and have at least T
small flows. Using ranking alone may find users with
only a small number of flows, while using threshold
alone may suffer from the difficulty of choosing an
appropriate threshold. Our definition combines these
two constraints together and the exact value of T is
less important. Besides, although theoretically k can
vary from one to the total number of users, we usually
consider a small k, e.g., 20 or 30, which is most useful
for network management and security. By our online
framework, we can answer questions like ‘‘What are
1 This ‘‘top spreaders” problem has been studied in some earlier work
[33,19] without considering the threshold T.
the top 20 hosts that are spreading the largest num-
ber of small flows of no more than three packets?”
at the end of a measurement epoch.

Our objective is to study online algorithms for catch-
ing those top users (spreaders or scanners) and accu-
rately estimating their counts of specific flows (total
flows or small flows). To keep up with the growth of
the network, the algorithms must be scalable with re-
spect to: traffic scale, that is the number of users and
flows; traffic skewness, that is the per user flow count
distribution; traffic speed, that is the packet arriving rate;
result accuracy, which includes identified top users and
their flow counts. In a nowaday ISP network, millions
of users may send millions of flows during a small inter-
val, and the wire-speed may be up to 40 Gbps leaving
only tens of nanoseconds for processing each packet ar-
rival. With such a stringent time constraint, only a very
small amount of memory should be used so that it can
reside in high speed SRAM to keep up with the link
speed.
1.2. Our contribution

Our main contribution can be summarized as follows:

(1) We propose two streaming algorithms with prov-
able performance bounds for counting small flows,
especially singleton flows (flows with only one
packet), of top scanners. To our knowledge, we are
the first to address this problem in a streaming
way. These algorithm can also be used for counting
flows of top spreaders without any trouble.

(2) We propose a novel three-level framework which
combines the above two algorithms and can catch
top spreaders or scanners online. The first level, fil-
ter, translates arriving packets into a certain type
of flow information; the second level, tracker,
dynamically tracks the potential top users; and the
third level, digester, maintains accurate flow infor-
mation digest for these potential top users. In this
framework, the two algorithms effectively help each
other to improve accuracy while reducing memory
usage and processing time, and work much better
than individually used.

(3) We demonstrate through extensive experiments
that our framework can get at least an order of mag-
nitude better result for the ‘‘top spreaders” problem
than existing approaches, and several orders of mag-
nitude better for the ‘‘top scanners” problem than
the straightforward application of sampling meth-
ods, in both speed and accuracy.
2. Related work

In this section, we review existing works related to our
problem. Since catching top users requires knowledge of
their flow counts and rankings, we begin with some back-
ground on these basic problems.

X. Shi et al. / Computer Networks 54 (2010) 1375–1388 1377
2.1. Sampling and streaming

To deal with a huge number of packets, flows and users
in real time, it is infeasible to store all the massive data and
then use straightforward methods such as sorting in an off-
line manner, but only feasible to process data in a single
pass. Traditional sampling methods, such as uniform pack-
et (or flow) sampling, record a small set of packets (or
flows) to reduce memory usage and processing time. How-
ever they usually have to employ a low sampling rate and
thus bring significant errors [11]. On the other hand,
streaming algorithms [27] record a small amount of infor-
mation called digest2 for each piece of data, and can derive
much more accurate answer from the digest.
2.2. Estimating flow statistics

For the sake of accurately catching top users, we must
be able to count the number of specific flows for each user.

The simplest form of this problem is to count the total
number of flows. On high speed links, sampling has to be
used if we simply keep per flow information in a hash table
(i.e., in Netflow [7] or Snort [32]), since hash table is both
memory and time consuming [28,8]. Simple packet sam-
pling will miss many small flows [12], while simple flow
sampling must employ a very low sampling rate, since
the worst case expense of accessing a hash table may be
very high, and a large flow, if sampled, can cause continu-
ous accesses.3 On the other hand, if we regard flows as dis-
tinct elements and packets as their duplications, it is just a
cardinality estimation problem that has been extensively
studied in the literature of streaming algorithms. Besides
some theoretical work [1,18], two families of algorithms,
including the ”bitmap sketch”[35,15,31] and the ”LogLog
sketch” [13,16], which we will denote by flow counting
(FC) sketches, are the most efficient (for processing) and
accurate (for estimation) in practice.

Although very important, counting small flows is far
less studied due to its difficulty [29]. Theoretically speak-
ing,4 the total number of flows falls into the cash register
model since a new packet will never decrease that number,
while the number of small flows falls into the strict turn-
stile model since a new packet may decrease the number
of small flows when a flow size changes from q to qþ 1.
Some algorithms [10,29,21] estimate the flow size distri-
bution but most of them will not perform well here since
they do not focus on small flows. One algorithm [21],
although is experimentally accurate, provides no theoreti-
cal analysis.

There are also works estimating other useful flow statis-
tics on single or multiple streams, including per flow size
[24], flow entropy [22,36], traffic and flow matrices [38],
to name but a few. Although not directly related to our
problem, they are worth further exploration.
2 In the literature, this information is called synopsis. We use digest to be
coherent with the name of our data structure.

3 Using CAM, although can guarantee bounded access time, is much more
expensive.

4 Refer to [27] for the theoretical models.
2.3. Finding frequent or top elements

Another closely related and extensively studied prob-
lem is to ask for elements of top or high frequency, so
called ‘‘heavy hitters”. Given � as a user-defined error, it
asks a list of (at most) k elements such that each element
Ei in the list has frequency Fi > ð1� �ÞFk, where Fk is the
frequency of the kth most frequent element or just a
threshold. A lot of algorithms [5,25,26,9] have been pro-
posed, but all of them can only work on one level of aggre-
gation, which is to say, they can find top hosts (or elephant
flows) having a large number of packets, but are not di-
rectly applicable to our problem of finding hosts with a
large number of (small) flows, since flow itself is one level
of aggregation.
2.4. Catching top users

We have discussed the shortcomings of simply storing
per flow information or sampling, and now we introduce
some related non-trivial algorithms.

The distinct-count (DC) sketch [17] designs special hash
tables and collects flows without hash collision as samples.
It is indeed a kind of flow sampling, and can be used for
catching both top spreaders and scanners. Since flows are
allowed to co-exist in the same bucket, collision resolution
is not needed and the speed of the DC sketch can be guar-
anteed. However, its accuracy is inherently limited by
sampling.

Zhao et al. [37] proposed streaming algorithms for
catching ‘‘super spreaders” who spread a large number of
flows (no explicit threshold was considered). Their first
algorithm uses a filter similar to bloom filter [3], and their
second algorithm uses an array of bitmap sketches, which
we will explain in more detail in Section 3.1. They evalu-
ated on cardinalities of 15–200, and concluded that the fil-
ter based algorithm was less accurate and might be used
on low speed links, while the bitmap sketches based one
was more accurate and could work with speed up to
40 Gbps using SRAM. For catching the top-k spreaders, it
is straightforward to use the FC sketches (i.e., bitmap/Log-
Log sketches) with a heap, as done in some recent works
[33,19]. However, they do not have good scalability with
respect to traffic skewness and link speed, as we will ana-
lyze in Section 3.4.

Other special sampling methods [34,20,4] have also
been proposed to find hosts with cardinalities above an ex-
plicit threshold or within a specific range, but they often
tolerate a high cardinality error (i.e., P 20%) since they fo-
cus on finding hosts but not ranking them. Besides, they
cannot be easily extended for catching scanners.

We propose streaming algorithms to catch top scan-
ners, and address several challenges of scalability, includ-
ing: traffic scale, skewness, speed, and result accuracy. The
algorithms can also be used for catching spreaders without
any trouble. Although the DC sketch has the same capabil-
ities, we will show that our framework performs several
orders of magnitude better, since they use collision-free
samples, while we dig out information hidden in collisions.

Fig. 1. User communication senario.

Fig. 2. Set and sketch operations.

h(f)

Fig. 3. Sketch for Algorithm A.

1378 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
3. Algorithm A – sketches based

In this section, we extend the flow counting sketches
based idea into our first algorithm for catching scanners.
3.1. Composing FC sketches for spreaders

First let us review the idea of composing FC sketches for
catching spreaders, using the bitmap sketch as an example.
When n flows are uniformly mapped into an m bit bitmap
so that packets of the same flow set the same bit to ‘‘1”, the
untouched bits in the bitmap is expected to be
y0 ¼ mð1� 1=mÞn � me�n=m, so n can be estimated by
m lnðm=y0Þ. A naive solution for catching top users is to
maintain a FC sketch for each user [14,4], but it does not
scale well with the number of users. Instead, a fixed num-
ber of sketches of the same size can be shared by all users
as follows [38,33,19]:

They compose d equal-sized sketches ðM1;M2; . . . ;MdÞ
and ‘ independent uniform hash functions ðh1;h2; . . . ;h‘).
A packet with user ID s is mapped to the same position
of ‘ sketches, namely, Mh1ðsÞ;Mh2ðsÞ; . . . ;Mh‘ðsÞ, and updates
each of them. Assume the flow count estimated from
sketch Mi is jMij, and the set of users that are mapped to
Mi is Si, having jSij flows in total, then jSij can be esti-
mated by djSij ¼ jMij. Given two sketches M1 and M2, the
total flow count of jS1 [S2j can be estimated bydjS1 [S2j ¼ jM1 _M2j, where M1 _M2 is the result of com-
bining the two sketches M1 and M2 by bit-wise OR (or by
entry-wise maximum if using the LogLog sketch). Then, as
illustrated in Fig. 2, we have the estimator for set
intersection:

djS1 \S2j ¼ djS1j þ djS2j � djS1 [S2j
¼ jM1j þ jM2j � jM1 _M2j;

and this can be easily generalized to ‘ sketches. Denoting
by jjSjj the total number of users, if d‘ � jjSjj, then the
probability that any two users are mapped to the same ‘

sketches is very small.5 So with high probability, we have
Sh1ðsÞ \Sh2ðsÞ \ . . . \Sh‘ðsÞ ¼ fsg, and
5 This probability is 1� jjSjj
d‘

 !
jjSjj!=ðd‘ÞjjSjj .
djfsgj ¼ jSh1ðsÞ \ dSh2ðsÞ\ . . . \Sh‘ðsÞj;

which means the flow count of user s can be derived from
the ‘ sketches Mh1ðsÞ;Mh2ðsÞ; . . . ;Mh‘ðsÞ which s is mapped to.
This nice property indicates that d sketches can be shared
among many user, instead of one sketch per user.

We can also get the estimator for set difference:djS1 nS2j ¼ djS1 [S2j � djS2j ¼ jM1 _M2j � jM2j;

and this can be used to count attack flows with no corre-
sponding flows of reverse direction, i.e., SYN attack flows.

3.2. Sketch for counting small flows

We tailor the sketch for estimating flow size distribu-
tion [21] to count small flows, and derive new analytical
results. Consider an array of m counters, c1; c2; . . . ; cm, all
being initialized to zero. We use a uniform hash function
h : f ! ½1 . . . m� to map each flow f (and all its packets) to
a position hðf Þ, and use cj to record the number of packets
mapped to position j. As shown in Fig. 3, each square rep-
resents a packet, and the different gray patterns represent
different flows.

After recording all packets, we use yk to represent the to-
tal number of counters with value k. So there are y0 coun-
ters with value zero, y1 counters with value one, and so
on. In addition, we use n to represent the total flow count,
and use nk to represent the number of flows with exactly
k packets. These notations are summarized in Table 1.

Counting singleton flows. Since a counter cj has value
one if and only if exactly one singleton flow but no other
flow maps into position j, this probability is expected to

be E y1
m

� �
¼ n1

1

� �
1
m 1� 1

m

� �n1�1 1� 1
m

� �P
iP2

ni � n1
m e�n=m, and

n̂1 ¼ y1en=m can be used as an estimator of n1, which was
evaluated experimentally in [21]. We give the following
new theoretical results:

Lemma 1. When n and m simultaneously approach infinity,6

we have
6 Strictly speaking, when limm!1n2=m > 0.

Table 1
Notations in Algorithms A&B.

m the number of counters
h the hash function mapping flow ID’s to counters
yk the number of counters with value k
ykðtÞ similar to the definition of yk , except right before

The tth packet arrives
F the set of all flows
n the total number of flows, n ¼ jFj
nk the number of flows with exactly k packets
a loading factor, a ¼ n=m
ak ak ¼ nk=m
cj the value of the jth counter, and is also the number of packets mapped to position j
cjðtÞ similar to the definition of cj , except right before the tth packet arrives
fx the xth packet of flow f
et the tth packet among all packets
v t the counter value that et sees

X. Shi et al. / Computer Networks 54 (2010) 1375–1388 1379
lim
m!1

Eðy0Þ ¼ me�a; lim
m!1

Eðy1Þ ¼ n1e�a;

where a ¼ limm!1n=m. Furthermore, y0 and y1 are the MLEs
of Eðy0Þ and Eðy1Þ, respectively.

Then we can get
Conclusion 1. The number of singleton flows, n1, can be

estimated by an asymptotically unbiased MLE:

n̂1 ¼ m� y1=y0: ð1Þ

The variance is approximately

n1 ðea � 2aÞa1 þ ea � 1ð Þ;

where a1 ¼ limm!1n1=m.
The proofs for Lemma 1, Conclusion 1 and more proper-

ties of y1 can be found in our technical report [30].
Although we do not have a closed form to bound the error
caused by the above approximation of the variance, the er-
ror is neglectable based on our experiments.

So if we remember the number of counters with value
zero and one, namely, y0 and y1, we can estimate the num-
ber of singleton flows, namely, n1. Each counter only needs
two bits, since any value greater than one can be remem-
bered as two. Next, we generalize this result to flows with
q packets.

Counting small flows. Using this sketch, an EM (Expecta-
tion–Maximization) algorithm [21] has been proposed to
estimate nk, which is slow and can only guarantee a local
optimal result. Here we derive a simpler procedure for esti-
mate nq for a small q. Use Bq to denote the set of different
flow set patterns that have exactly q packets, and use bi

(1 6 i 6 jBqj) to denote a specific flow set pattern in Bq, so
there are totally q packets in bi, and a counter with a value
of q will correspond to some bi. Suppose bi is composed of
bið1Þ flows of size one, bið2Þ flows of size two, . . ., biðqÞ flows
of size q, and no flow of size more than q, we can write
bi ¼ hbið1Þ; bið2Þ; . . . ; biðqÞ;0; . . .i and order them: b1 ¼
hq;0; . . . ; 0;0; . . .i corresponding to q flows of size one,
b2 ¼ hq� 2;1;0; . . . ;0;0; . . .i corresponding to q� 2 flows
of size one and one flow of size two, and
bjBq j ¼ h0;0; . . . ;1;0; . . .i (the qth element is 1) corresponding
to one flow of size q. Denoting the number of counters with
value x by yx, and the number of flows of size x by nx, when m
is large, we have E yq

m

� �
¼
PjBq j

i¼1 PrðbiÞ, where PrðbiÞ, the proba-
bility that the flow pattern bi appears, isYq

d¼1

C
biðdÞ
nd

1
m

� �biðdÞ

1� 1
m

� �nd�biðdÞY
d>q

1� 1
m

� �nd

:

Then by simple manipulation, we get

EðyqÞ
m
� Eðy0Þ

m

XjBq j�1

i¼1

Yq�1

d¼1

ðnd=mÞbiðdÞ

biðdÞ!

 !
þ nq

m

" #
;

so

nq � m�
EðyqÞ
Eðy0Þ

�
XjBq j�1

i¼1

Yq�1

d¼1

ðnd=mÞbiðdÞ

biðdÞ!

 ! !
:

Since Bq can be pre-computed for any q, we get,
Conclusion 2. We can use an iterative equation

n̂q ¼ m�
yq

y0
�
XjBq j�1

i¼1

Yq�1

d¼1

ðn̂d=mÞbiðdÞ

biðdÞ!

 ! !
ð2Þ

to estimate n1;n2; . . . ;nq one by one.
For example, when q ¼ 1, Eq. (2) degenerates to

m� y1=y0 in Conclusion 1; n̂2 ¼ m� ðy2=y0 � ðn̂1=mÞ2=2Þ,
and n̂3 ¼ m� ðy3=y0 � ðn̂1=mÞ3=6� n̂1=m� n̂2=mÞ. Besides,
each counter needs dlogðqþ 2Þe bits since any value great-
er than q can be recorded as qþ 1. We might expect the
asymptotic maximum likelihood and unbiasedness of esti-
mator (2), however, the accuracy will decrease when q be-
comes larger, since its error is bounded by errors of
n̂1; . . . ; n̂q�1 and yq=y0. We will present its accuracy in the
evaluation section.

Counting total flows. When using a single bit for each
counter, the sketch falls back into a bitmap sketch, so the
old algorithms [14,31] apply.

3.3. Composing sketches for scanners

We will use sketches composed of this kind of counter
arrays in our framework. However, when d sketches are
shared among many users, the relation between sketch
operations and set operations, which is essential for deriv-
ing the small flow count for a specific user s, is not as trivial
as that for spreaders (see Section 3.1). The final formulas

1380 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
are simple but are not straightforward to derive, and we
put them in our technical report [30] for brevity. Here we
only note that sketches are combined by counter-wise
addition.

3.4. Shortcomings of sketches based algorithms

Three shortcomings exist in sketches based algorithms.
First, it is impossible to recover user ID’s from the composed
sketches. One remedy [37] is to explicitly store all user
ID’s but is memory and time consuming. Another method
[33,19] is to use a heap to track only those top users but
faces the second problem: estimating flow count from
sketches is not fast enough to keep up with the link speed,
since sketch combination is time consuming. At last, the
estimation error r increases when traffic skewness decreases,
as suggested by the following lemma:

Lemma 2.

r
djS1 \ . . . \ S‘j

jS1 \ . . . \ S‘j

 !,
r

djSij
jSij

 !

� O
jS1 [. . . [S‘j
jS1 \ . . . \ S‘j

� �
:

An intuitive but less rigorous explanation is as follows.7

Given a bitmap sketch Mi of size m, the relative standard devi-
ation r djSij=jSij

� �
�Oð1=

ffiffiffiffiffi
m
p
Þ [35,13], and for the combina-

tion of two sketches, r djS1 [S2j=jS1 [S2j
� �

�Oð1=
ffiffiffiffiffi
m
p
Þ.

Then

r
djS1 \ S2j

jS1 \ S2j

 !
¼ r

djS1j þ djS2j � djS1 [S2j
jS1 \ S2j

 !

6
jS1 [S2j
jS1 \ S2j

� r
djS1j
jS1j

 !
þ r

djS2j
jS2j

 !

þr
djS1 [S2j

jS1 [S2j

 !!

� O
jS1 [S2j
jS1 \ S2j

� �
� r

djSij
jSij

 !
:

Generalizing it to ‘ sketches proves Lemma 2.
So even the flow count of s can be derived form the ‘

sketches it maps to as cjsj ¼ djS1 \ S2 \ . . . \ S‘j, Lem-
ma 2 tells us that the estimation error of cjsj will increase
with jS1 [S2 [. . . [S‘j. jS1 [S2 [. . . [S‘j is
just the total flow count of all users mapped to any of
the ‘ sketches, and these flows will interfere with flows of
s. Intuitively, the expected number of interfering flows is
approximately ‘2 � n=d, which will be greater than the
flow count of a top user if d is small and the traffic is not
very skewed. For example, with n ¼ 106; d ¼ 1000 and
‘ ¼ 3, ‘2 � n=d is 9000, and the estimation error will be
high unless jsj is much larger than 9000, and a non-top user
spreading only a few flows may be wrongly estimated to
be spreading a large number of flows. Even this error mag-
nification effect may possibly be reduced by extending
7 A more rigorous proof for composing bitmap sketches can be found in
[6].
some special sketch [6], the other two shortcomings still
exist. These are inherent shortcomings of sketches based
algorithms (including ours), and we will revisit them in
our framework.

4. Algorithm B – filter based

4.1. Counting small flows

Now we introduce our second algorithm for counting
small flows. An array of m counters are used again and
the update process of the counters, instead of only their fi-
nal values in algorithm A, is investigated. We use the same
notations as before, except that we use ykðtÞ and cjðtÞ to
explicitly denote the number of counters with value k
and the value of the jth counter right before the tth packet
arrival, respectively. As shown in Fig. 4, B1, the tth packet,
sees a counter value of two. Gray squares represent pack-
ets that have arrived before B1, squares with characters
represent forthcoming packets, and different patterns or
characters represent different flows. For clarity we have
omitted the uniform hash function that maps flows to
counters.

First we establish a simple lemma stating that, the
counter value that any packet sees is independent of the
arriving order of its preceding packets.

Lemma 3. Assuming the flow ID of the tth packet is f ; chðf ÞðtÞ,
the counter value it sees, is independent of the arriving order
of its preceding t � 1 packets.
Proof. It holds simply because chðf ÞðtÞ only depends on the
total number of packets mapped into position hðf Þ before
time t, but not their order. h

Let us denote the set of flows by F, and denote the xth
packet of flow f by fx. We also denote the tth packet among
all packets by et , which sees value v t , so the event
‘‘9f 2F; et ¼ fx” (abbreviated to ‘‘et ¼ fx”) means ‘‘the tth
packet is the xth packet of some flow f, and v t ¼ chðf ÞðtÞ”.
Let Iðet ¼ fxÞ be an indicator function which equals 1 if
the tth packet really is the xth packet of some flow and 0
otherwise. The total number of flows is just
n ¼

P
t Iðet ¼ f1Þ, that is the number of the packets, of

which each is the first packet of some flow. The number
of small flows of size no more than q isPq

k¼1nk ¼
P

t Iðet ¼ f1Þ �
P

t Iðet ¼ fqþ1Þ, where nk is the
number of flows with k packets.

If there is no mapping collision between flows, the first
packet of a flow will always see a counter value of zero,
and the xth packet of a flow will always see a counter value
of x� 1. That is, Iðet ¼ fxÞ ¼ Iðv t ¼ x� 1Þ. So

Pq
k¼1nk ¼
Fig. 4. Algorithm B.

X. Shi et al. / Computer Networks 54 (2010) 1375–1388 1381
P
tIðet¼f1Þ�

P
tIðet¼fqþ1Þ¼

P
t Iðv t¼0Þ�

P
t Iðv t¼qÞ, which

means, we can get the total number of flows by counting
packets seeing value zero, and get the number of small
flows of size no more than q by deducting the number of
packets seeing value q.

However there do exist collisions and we have to do a
deeper analysis on Iðet ¼ f1Þ and Iðet ¼ fqþ1Þ.

Theorem 1. The conditional probability that the tth packet et

sees a counter value of z, given that et is the xth packet of
some flow, is:

Prðv t ¼ zjet ¼ fxÞ ¼
0; if z < x� 1;

y=m; if z P x� 1 and x ¼ 1;

p; if z P x� 1 and x > 1;

8><>:
where y ¼ yz�xþ1ðtÞ is the number of counters with value
z� xþ 1 right before this packet arrives,
ðy� 1Þ=m 6 p 6 ðyþ 1Þ=m and with high probability,
p ¼ y=m. Particularly, for x ¼ 1, that is for the first packet of
each flow, we have Prðv t ¼ zjet ¼ f1Þ ¼ yzðtÞ=m.

Proof

(1) Since the preceding x� 1 packets belonging to the
same flow as et map into the same position, z is at
least x� 1, so the probability is always zero when
z < x� 1.

(2) For x ¼ 1, which means et is the first packet of some
flow, since the position mapping is uniform and is
independent of any proceeding packets, the proba-
bility that it sees value z is just the percentage of
counters with value z at that time, that is, yzðtÞ=m.

(3) For x > 1, however, the mapping of Bx is dependent
on B1 and the probability is not simply yzðtÞ=m. Let
us focus on the counter which B1;B2; . . . are mapped
to, as shown in Fig. 5. Due to collisions, there may be
some other flows (gray squares) mapped to that
counter.

In the first row, the tth packet Bx is the xth packet of
flow B, and it sees a counter value of z0. At the first glance, it
is hard to tell what the probability of z0 ¼ z is. However as
we know, the probability only depends on the counter
values at that time, and by Lemma 3, we can always
reorder its preceding packets without changing the
counter values. So we can look for a particular ordering
to help the calculation. Specifically, we put all the preced-
ing x� 1 packets of the same flow right before this packet,
Fig. 5. Reordering packets.
as shown in the second row of Fig. 5, then B1, the first
packet of flow B, would have seen a counter value of
z0 � xþ 1, as shown in the third row. For this particular
reordering, we have Prðv t ¼ zjet ¼ fxÞ ¼ Prðchðf Þðt � xþ 1Þ ¼
z� xþ 1jet ¼ fxÞ, which means, the probability that Bx sees
value z equals the probability that B1 sees value z� xþ 1.

It should be noted that all the other counters remain
unchanged after this reordering. So if in the first and second
row there are y ¼ yz�xþ1ðtÞ counters having value z� xþ 1
right before Bx (the tth packet) arrives, then in the third
row there must be at lease y� 1 and at most yþ 1 counters
having value z� xþ 1 right before B1 arrives, since no
other counter except the one B1 (or Bx) is mapped to may
change its value.8 That is to say,
ðy�1Þ=m6Prðcjðt�xþ1Þ¼ z�xþ1jet¼ fxÞ6 ðyþ1Þ=m,
and hence ðy�1Þ=m6p6 ðyþ1Þ=m. And with high proba-
bility, p¼y=m. h

In one word, Theorem 1 tells us that, the conditional
probability that the xth packet of a flow sees value z is
approximately the percentage of counters having a value
of z� xþ 1 when that packet arrives.

Then we can rewrite the probability that the tth packet
is the qth packet of some flow as follows:

Theorem 2. Prðet ¼ fqÞ can be decomposed as

Prðet ¼ fqÞ �
Xq�1

i¼0

Prðv t ¼ iÞ � Yi;qðtÞ; ð3Þ

where Yi;qðtÞ is a fixed polynomial expression of y1ðtÞ=y0ðtÞ;
y2ðtÞ=y0ðtÞ; . . . ; yq�i�1ðtÞ=y0ðtÞ, and m=y0ðtÞ.

Proof. We prove by induction.

(1) For q ¼ 1, since Prðv t ¼ 0; et ¼ f1Þ ¼ Prðv t ¼ 0Þ,

Prðet ¼ f1Þ ¼
Prðv t ¼ 0; et ¼ f1Þ
Prðv t ¼ 0jet ¼ f1Þ

¼ Prðv t ¼ 0Þ � m
y0ðtÞ

;

so the theorem holds for q ¼ 1.
(2) For q > 1, we have

Prðet ¼ fqÞ ¼
Prðv t ¼ q�1;et ¼ fqÞ
Prðv t ¼ q�1jet ¼ fqÞ

�
Prðv t ¼ q�1Þ�

Pq�1

x¼1
Prðv t ¼ q�1;et ¼ fxÞ

y0ðtÞ=m

¼ Prðv t ¼ q�1Þ�
Pq�1

x¼1Prðv t ¼ q�1jet ¼ fxÞ�Prðet ¼ fxÞ
y0ðtÞ=m

� Prðv t ¼ q�1Þ� m
y0ðtÞ

�
Xq�1

x¼1
Prðet ¼ fxÞ�

yq�xðtÞ
y0ðtÞ

;

where we approximate9 Prðv t ¼ zjet ¼ fxÞ by yz�xþ1ðtÞ=m. By
induction, our theorem holds for any q. h
8 If it happens to change from z� xþ 1 to any other value, we have y� 1.
If it happens to change from z to z� xþ 1, we have yþ 1. Else we have y.

9 Here we neglect the small error of at most 1=m to simplify the analysis.
A more rigours analysis without approximation can be found in our
technical report [30]. Both our analysis and evaluation show that the
degrade of the accuracy can be safely neglected.

1382 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
By applying an expectation to Eq. (3), we have:

Corollary 1

EðIðet ¼ fqÞÞ �
Xq�1

i¼0

EðIðv t ¼ iÞÞ � Yi;qðtÞ:

The exact expressions of Yi;qðtÞ’s are fixed and can be
pre-computed. Particularly, for q ¼ 1 and 2,

EðIðet ¼ f1ÞÞ ¼ EðIðv t ¼ 0ÞÞ �m=y0ðtÞ; EðIðet ¼ f2ÞÞ

� EðIðv t ¼ 1ÞÞ
y0ðtÞ=m

� EðIðv t ¼ 0ÞÞ
y0ðtÞ=m

� y1ðtÞ
y0ðtÞ

:

Theorem 2 and its corollary tell us that, the counter values,
which are the bare knowledge we have, can indicate the posi-
tion of a packet inside a flow. Now let us use this informa-
tion to count specific flows.

Counting singleton flows. The number of flows with
only one packet is

n1 ¼ Eðn1Þ ¼ E
X

t

Iðet ¼ f1Þ �
X

t

Iðet ¼ f2Þ
 !

¼
X

t

EðIðet ¼ f1ÞÞ �
X

t

EðIðet ¼ f2ÞÞ

�
X

t

y1ðtÞ
y0ðtÞ

þ 1
� �

� E Iðv t ¼ 0Þð Þ
y0ðtÞ=m

� �
�
X

t

E Iðv t ¼ 1Þð Þ
y0ðtÞ=m

¼ E
X

t:vt¼0

y1ðtÞ
y0ðtÞ

þ 1
� �

� m
y0ðtÞ

� �
�
X

t:vt¼1

m
y0ðtÞ

" #
;

where the approximation is due to substituting EðIðet ¼ f1ÞÞ
and ðIðet ¼ f2ÞÞ. Now we have decomposed n1 into the
expression of y0ðtÞ; y1ðtÞ and v t , which are all observable:
the number of counters with value zero and one, and the
value that packet et sees. Due to the unbiasedness of
expectation, we have

Conclusion 3. If the tth packet sees a counter value of
zero, add ðy1ðtÞ

y0ðtÞ
þ 1Þ � m

y0ðtÞ
to the singleton flow count. If it

sees a counter value of one, deduct m
y0ðtÞ

from the singleton
flow count. This procedure gives us an asymptotically
unbiased estimator for singleton flow count:

n̂1 ¼
X

t:vt¼0

y1ðtÞ
y0ðtÞ

þ 1
� �

� m
y0ðtÞ

� �
�
X

t:v t¼1

m
y0ðtÞ

: ð4Þ

Following a standard calculation, the variance of n̂1 can be
derived asX
t:et¼f1

y1ðtÞ
y0ðtÞ

þ 1
� �2

þ y1ðtÞ
y0ðtÞ

 !
� m

y0ðtÞ
� 1

" #

þ
X

t:et¼f2

m
y0ðtÞ

� 1
� �

:

Counting small flows. Now for flows with at most q pack-
ets, we haveXq

k¼1

nk ¼ E
Xq

k¼1

nk

 !
¼ E

X
t

Iðet ¼ f1Þ �
X

t

Iðet ¼ fqþ1Þ
 !

¼
X

t

EðIðet ¼ f1ÞÞ �
X

t

EðIðet ¼ fqþ1ÞÞ:
Then by decomposing EðIðet ¼ f1ÞÞ and EðIðet ¼ fqþ1ÞÞ using
our Corollary 1, we getXq

k¼1

nk ¼
X

t

Xq

i¼0

ðEðIðv t ¼ iÞÞ � Ui;qðtÞÞ

¼ E
Xq

i¼0

X
t:vt¼i

Ui;qðtÞ
 !

;

where Ui;qðtÞ is also a fixed polynomial expression of
y1ðtÞ=y0ðtÞ; . . . ; yq�iðtÞ=y0ðtÞ, and m=y0ðtÞ. Again, we can
draw a conclusion on counting small flows:

Conclusion 4. Asymptotically, n1�q, the number of small
flows that having no more than q packets, can be unbi-
asedly estimated by summing up Ui;qðtÞ’s for those packets
that see a counter value of iði 6 qÞ. That is,

n̂1�q ¼ m
q

i¼0

X
t:vt¼i

Ui;qðtÞ: ð5Þ

It should be noted that the expressions of Ui;qðtÞ’s can be
pre-computed, and the exact value of Ui;qðtÞ can be com-
puted online efficiently for a small q. The algorithms for
pre-computing expressions of Yi;qðtÞ’s and Ui;qðtÞ’s can be
found in our technical report [30]. Although the exact var-
iance of this estimator can be derived following a standard
procedure, it is too long and tedious, and we only present
our evaluation results in Section 6. However, we note here
that, the variance is also a polynomial of yiðtÞ=y0ðtÞ’s and
m=y0ðtÞ, so if at least half of the counters are empty, that
is y0ðtÞP m=2 P yiðtÞ;8i P 1, we can derive a loose (but
already good enough) bound on the variance. And as in
algorithm A, only dlogðqþ 2Þe bits are needed for each
counter, since we only need to record up to qþ 1.

Counting total flows. The total number of flows n can
be rewritten as n¼EðnÞ¼Eð

P
tIðet¼ f1ÞÞ¼

P
tE Iðet¼ f1Þð Þ¼

Eð
P

t:v t¼0m=y0ðtÞÞ, where the last equation is due to substi-
tuting E Iðet ¼ f1Þð Þ by E Iðv t ¼ 0Þð Þ �m=y0ðtÞ and the linear-
ity of expectation. So the total flow count n can be
estimated unbiasedly by summing up m=y0ðtÞ’s for those
packets that see a counter value of zero, that is to say,
n̂ ¼

P
t:vt¼0m=y0ðtÞ is an unbiased estimator of n. This can

be treated as a special condition of Eq. (5) for q ¼ 0. Follow-
ing a standard procedure, we can also derive its variance asP

t:et¼f1
ðm=y0ðtÞ � 1Þ. If we use a single bit for each counter,

this estimator falls back to that of [37] but we build it upon
theorems of conditional probabilities.

We call this algorithm filter based, since the counter ar-
ray acts as a filter in the sense that, any packet sees a value
greater than q will be filtered and cannot cause any action.
Since a packet whose position inside a flow is after qþ 1
can only see a value greater than q, we know a flow f can
cause at most minðqþ 1; jjf jjÞ updates, where jjf jj is the num-
ber of packets in f. This property can nicely eliminate the
traffic bursts caused by large flows, which cannot handled
by simple flow sampling.

4.2. Tracking top users

We can use a counter Fs to count the number of (total or
small) flows for user s as follows: we record each arriving
packet in our filter, and if its user ID is s, we translate it into

X. Shi et al. / Computer Network
an update on its corresponding Fs by Eq. (5), and eventually
get the flow count of s. However, since the number of users
may be very large, we cannot afford one counter for each.
The top element algorithms introduced in Section 2.3 nat-
urally work with our filter, since the information provided
by our filter is an update on the flow count of a user and we
want to find users with the largest flow count. Only a small
number of counters are needed, while previous algorithms
that cannot get this flow update information have to keep a
record for each user.

For our purpose, we derive an algorithm based on the
theories proved in [26]. As show in Fig. 6, our tracker main-
tains a min heap P and a hash table H, both having c en-
tries. The potential top users and their flow counts are
stored in P, of which each entry has three fields: host ID
s, flow count Fs, and error bound errs on the count. The
heap is dynamically updated according to the flow counts
so the host smin with the minimal flow count can be effi-
ciently found. The hash table H is a quick index of P and
stores pairs like (s, is), where the key s is a host ID, and
the value is is the corresponding position of s in P. At most
c users and their flow counts are tracked, using Algorithm 1
(UpdateT). When a count update Ds is issued for user s, if s
is currently being tracked, its count Fs will be updated.
Otherwise, s will replace smin which has the minimal count
value, Fs will be updated, and an error bound will be set. A
small tracker can guarantee to track top spreaders if we as-
sume our filter reports an accurate flow count, as state in
the following theorem:

Theorem 3. using c ¼min jjSjj; dnTe
� �

counters, any host
with a total flow count of more than T is guaranteed to be
tracked, where jjSjj is the number of hosts and n is the total
number of flows. If the flow count of each host follows a
Zipfian distribution with parameter aða P 1Þ, then c can be
reduced to min jjSjj;O ðnT Þ

1
a

l m� �
; dnTe

� �
.

Proof. This result has been proved for unit arrival of ele-
ments regardless of their orders [26], which corresponds
to Ds ¼ 1 in our problem. Due to its independence of
update arriving orders, it can be generalized to any frac-
tional increment values (Ds ¼ y0ðtÞ=m) by changing the
unit scale, fractioning, and reordering. h

Algorithm 1. UpdateT(host s, flow count update Ds)
1
 if ðs exists in HÞ then

2
 set Fs ¼ Fs þ Ds and update P to be in order;

3
 update position is in H.

4
 else

5
 find the host smin with the minimal count min;

6
 replace smin with s in P;

7
 set Fs ¼ minþ Ds , errs ¼ min, and update P;

8
 replace ðsmin; ismin Þ with ðs; isÞ in H.
Fig. 6. Tracking top users.
However for counting small flows of scanners, we may

have Ds ¼ Ui;qðtÞ < 0 when deducting some value from
the flow count. Under this condition, we cannot do a
straightforward substitution and get the result as using
c ¼min jjSjj; n0

T

	
� �
to catch top scanners having at least T

small flows, where the total flow count (n) is substituted
by the number of small flows (n0). Intuitively, consider such
a worst case scenario for catching singleton scanners
where there are two hosts X and Y. X has 10 singleton flows
while Y has 20 large flows, so n0 ¼ 10. T is set to 10 to catch
the scanner X, then c ¼ 1 if we do a simple substitution.
Host Y sends its 20 large flows in such a way that, it sends
the first packet of each of its 20 flows altogether and defers
its remaining packets till the end. The temporary singleton
flow count of Y can be raised to 20 and this kicks X out of
the tracker forever. However, if we still use
c ¼min jjSjj; n

T

	
� �
counters, even any other host can tem-

porarily get a large small flow count, this temporary count
will be no more than its total flow count, and top scanners
would not be kicked out. Although theoretically n can be
much large than n0, they are usually of the same order in
real traffic, since most flows are small flows.

s 54 (2010) 1375–1388 1383
4.3. A simple comparison with Algorithm A

The estimator (5) of our filter is simpler than the esti-
mator (2) of sketches, and its estimation error is expected
to be smaller (we will see this in the evaluation section).
The shortcoming of algorithm B lies in that, it needs log c
time (in the worst case) to update its heap in tracker T thus
cannot catch up with the wire-speed of 40 Gbps even using
SRAM. So flow sampling has to be used with the filter even
most packets have already been filtered out. 40 Gbps requires
a sampling rate of around 1/16, which although is much
higher than that of traditional sampling, will enlarge and
even dominate the filter estimation error. For a small
qðq 6 3Þ, algorithm A can effectively help reduce the error.

5. Online framework

5.1. Framework overview

As shown in Fig. 7, our framework is composed of the
three data structures we have proposed, and deals with
all their shortcomings. Filter F uses the filter based
algorithm B and translates packets into updates on flow
counts. Tracker T uses the information provided by F to
Fig. 7. Data structure for building blocks.

Table 2
statistics of the data for evaluation.

#flows #hosts top #s–f #s–h s–t

tr1 1.14 M 222 K 2810 647 K 152 K 2039
tr2 1.20 M 119 K 7316 730 K 78 K 7154
tr3 15.0 M 470 K 681 K 8.9 M 410 K 465 K
mix 1.06 M 100 K 83 K 672 K 67 K 60 K

1384 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
track the potential top users. Digester D uses the sketches
based algorithm A and maintains flow digest for those po-
tential top users being tracked by T. Finally the informa-
tion in T and D are combined for estimation. The idea
behind our framework is to dynamically track potential
top users by roughly estimating their flow counts, and main-
tain digest of only those potential top users for accurate esti-
mation, so that (1) much fewer flows will be digested in D

and the estimation by sketches will be nearly as accurate
as one sketch per user, (2) query on sketches is not per-
formed during update, (3) users’ IDs are kept in T, and
(4) filter and sampling estimation error can be tolerated.

We note that the idea of focusing on potential super/top
users also appears in [4] independently. However, their
two-stage filtering can neither deal with traffic bursts of
large flows nor be easily extended to support small flows.

Filter F is composed of m logdqþ 2e-bit counters, track-
er T has c entries, and digester D contains d sketches, each
of which is composed of w logdqþ 2e-bit counters. For
catching scanners, q is just the threshold for small flows,
and for catching spreaders, q ¼ 0. We use a hash function
hm to map a flow to a counter in F, three hash functions
hi to map a host to three sketches, and another hw to
map a flow to a counter in each sketch.

5.2. Update and query algorithm

The update algorithm is very simple as shown in
Algorithm 2 below. At the beginning of a measurement,
counters in F and D are initialized to zero, entries in T

are emptied, y1 � yq are initialized to zero, and y0 is set
to m, the size of the filter. For each arriving packet, if it is
from a potential top user (line 1),10 three sketches in D

are updated by simply incrementing a counter in each of
them (line 2–4). F is updated by incrementing its counter
at position hmðf Þ and adjusting two counters yi and yiþ1,
where i is the counter value at position hmðf Þ (line 6). Final-
ly, tracker T is updated by the UpdateT algorithm, with a
parameter Ui;q computed online as described earlier (line
7).

Algorithm 2. Update(host ID s, flow ID f)
10

oc
11
1

The threshold
casionally drop in

Guaranteed by
if (s in T) AND ðFs � errs P TDÞ then

2
 for i = 1 to 3

3
 if DhiðsÞ½hwðf Þ� 6 q

4
 DhiðsÞ½hwðf Þ� þ þ;

5
 if f should be sampled AND F½hmðf Þ� 6 q then

6
 i ¼ F½hmðf Þ�; F½hmðf Þ� þ þ; yi ��; yiþ1 þþ;
7
 UpdateT ðs;Ui;qÞ;
Since each flow f can cause at most qþ 1 updates,11 long
bursty traffic of large flows, alleviated by flow sampling, will
not cause much overhead on T. On the other hand, very few
memory accesses in F and D are needed and can be parallel-
TD in line 1 of Algorithm 2 is to prevent users who
the tracker from being digested.
the test in line 3 and 5 in Algorithm 2.
ized by moderate hardware. The data structures can fit in a
small piece of SRAM, and our framework is expected to work
with a link speed as high as 40 Gbps, as shown in the eval-
uation section.

The query algorithm works as follows. For q 6 3, use
algorithm A and digester D to estimate the flow counts
for the top-5k users12 in T and add TD=r to the results, sort,
and output the adjusted top-k users with their flow counts.
For q > 3, simply output the top-k users in T and their flow
counts (D can be omitted).

The multi-resolution method [14,17,31] is orthogonal
to our framework and they can be combined to handle a
very large traffic scale. On the other hand, it is also easy
to adapt our framework to count attack flows, since the
counter arrays in both algorithm A and B naturally support
set difference operation.
6. Evaluation

In this section, we evaluate our framework using both
real traces and synthetic data of different scale and skew-
ness. Trace1 was captured on an ISP backbone link on April
2008 and a more skewed trace2 was captured on Nov
2008, and each of them lasted about two minutes. The syn-
thetic data is generated using the Zipfian distribution,
where the frequency of hosts with k flows is proportional
to 1=k and the frequency of flows with k packets is propor-
tional to 1=k2, and is mixed with simulated DDoS attack
traces. We use them to compare our algorithms with some
existing methods. We also generate a much longer trace3
from an one hour netflow trace captured on the uplink of
a campus network on Jun 2007 to test the performance
of our algorithms. Table 2 lists the numbers of flows and
hosts, the number of flows of the top spreader, and the cor-
responding numbers for singleton flows and singleton
scanners. For example, in trace1, there are 1.14 M flows
of which 647 K are singleton flows, 222 K hosts of which
152 K spread singleton flows, and the top spreader spreads
2810 flows while the top singleton scanner spreads 2039
singleton flows. In these traces, the top most scanner and
around half of the top scanners are not among the top spread-
ers, thus cannot easily be caught.
6.1. Setting parameters

Firstly we assume that n, the total flow count, can be
predicated and use our trace1 as an example to discuss
the parameters in our framework.
12 The value 5 is a little arbitrary but 3–7 all work well.

Fig. 8. Recall and flow count estimation error of top-20 users under different settings.

X. Shi et al. / Computer Networks 54 (2010) 1375–1388 1385
The first parameter we can set is the number of
sketches d in digester D, and d ¼ 1024 is large enough
since d‘ ¼ 10243 is much larger than any reasonable user
count (recall Section 3.1). We set the tracker size c ¼ n=T ,
where T is the threshold that we think such a flow count
of a user is significant, as explained in Section 4.2. Indeed,
c can be much smaller for more skewed data.

The sampling rate used by filter F is upper bounded by
the update speed of our algorithms, whose bottleneck is
the log c update time of tracker T. A back-of-envelope cal-
culation shows r ¼ 1=16 is enough to handle tens of mil-
lions of flows under the 40 Gbps link speed when
T ¼ 1000, while a larger r up to 1 can be used on low speed
links. With r ¼ 1=16, the digesting threshold TD can be set
to a small number such as 2 or 3, which on one hand keeps
packets of users who are occasionally tracked by T from
being digested, while on the other hand keeps packets of
real top users digested as much as possible.

For filter F to be accurate, its size m should be on the
same order as rn, and for our traces with n � 220 and
r ¼ 1=16, m should be at least 216 (counters). The digester
sketch size w should be set to the same order as n=d, and
here we use 1000 (counters). To keep almost half of the
counters in F and D empty, m and w should be doubled
to be 217 and 2000, respectively.

We test our framework under different settings. The de-
fault parameters are: r ¼ 1=16;m ¼ 217; d ¼ 1024;w ¼
2048 and TD ¼ 2. For catching top spreaders we set
c ¼ 1024, and for top scanners we set c ¼ 2048, corre-
sponding to T ¼ 1000 and 500, respectively. The total
memory used is m � logdqþ 2e þ c � 20 � 8þ d �w�
logdqþ 2e bits, which is 292 KB, 584 KB, 584 KB and
856 KB for q ¼ 0;1;2 and 3, respectively. We vary one
parameter at a time, and calculate the recall (true positive)
of the top-20 users caught by our framework and the aver-
age absolute relative error of their flow counts estimation.

The results are depicted in Fig. 8. The default setting, as
shown in the horizontal center of each figure, uses limited
space but works quite well. The top-20 spreaders are al-
most always caught (at most one missed), and the estima-
tion error is less than 3%. Sometimes, at most two or three
top scanners are missed, but it is reasonable since the dif-
ference between the total (small) flow counts of spreaders
(scanners) ranked around 20 is only around 10, which is
fairly small compared with their flow counts of greater
than 1000. The estimation errors of scanners are all below
10%, and fall below 3% (except 5% for q ¼ 3) using memory
budget around 1MB. An interesting phenomenon is that,
results for q ¼ 2, that is catching the top scanners spread-
ing flows of one or two packets, is often as good as q ¼ 0
and even better than q ¼ 1, and we leave this to future
studies.

We can see that, for q 6 3, decreasing the sampling rate
(r), the filter size (m), and the digester threshold ðTDÞ have
little impact on the result, since the accuracy is guaranteed
by digester D, which does not use sampling and can toler-
ate moderate error of filter F. On the other hand, the track-
er size ðcÞ, the digester sketch count ðdÞ and size ðwÞ do
affect the result if they are too small, justifing our earlier
analysis and arguments.

In practice, n is hard to predicate accurately and we
usually have a pre-allocated memory budget. Following
the above arguments, the memory used by each module
should be 2r logdqþ 2e � n, 160

T � n, and 2 logdqþ 2e � n,
respectively, where r, q and T can be regarded as constants.
So we only need to allocate the memory to each module in
propotion. Furthermore, accompanied with a standard mul-
ti-resolution sampling method [15], traffic scale of orders
of magnitude larger can also be handled appropriately.

6.2. Catching top spreaders

For catching top spreaders, we compare our framework
with the ‘‘flow counting (FC) sketches + heap” based meth-
od and the filter based method (equipped with an addi-
tional small ‘‘tracker” to avoid storing all user ID’s, and
using a flow sampling rate r ¼ 1=16). The second method
is essentially the ‘‘filter + tracker” parts in our framework.
For our method, we set w ¼ 1024;2048;4096;8192;m
¼ 216 and set other parameters to their defaults. The mem-
ory used is 156 KB, 284 KB, 540 KB and 1052 KB, respec-
tively, and we let the other two methods use the same
amount of memory. Their recall and error on trace1 are
shown in the left two sub figures in Fig. 9, where the re-
sults of ‘‘filter + tracker” without sampling are also pre-
sented for comparison.

We can see that, the error of FC sketches (the 4th bar) is
high, especially when using limited memory (the recall can
be lower than 50%, and the flow count estimation error can
be above 50%), which justifies Lemma 2. Its relatively good

Fig. 9. Recall and flow count estimation error of top-20 users by different algorithms.

1386 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
accuracy in Zhao et al. [37] is due to a much larger number
of small sketches (d ¼ 16 K and w ¼ 64) for a small traffic
scale (100 K flows), and only spreaders having 15–200
flows were evaluated. We can also see that the 10% error
of filter with sampling (the 3rd bar) is dominated by sam-
pling and hardly drops with more memory.13 Using less
than 300 KB memory, the estimation error of our framework
(the 1st bar) drops quickly to below 3%, which is several
times smaller than that of filter with sampling and an order
of magnitude better than FC sketches. A deeper analysis
shows that less than 1/10 flows leave information in our di-
gester, so the error is effectively reduced, since the expected
number of interfering flows drops to one tenth. For trace2
and synthetic data, the first two methods work better since
the top users have much more flows, but are still much
worse than our framework. We note that, filter without
sampling (the 2nd bar) performs even better, indicating that,
on relatively low speed links (e.g., 1 Gbps) we can simply use
‘‘filter + tracker” without sampling or with a very high sam-
pling rate.14

6.3. Catching top scanner

For catching top scanners, we use the same parameters
as above and the memory used varies from 328 KB to
2120 KB. Since no previous work directly solves this prob-
lem, we compare with an appliance of the Distinct-Count
(DC) sketch [17]. Its first level is a multi-resolution sam-
pling, and the second level uses r parallel hash tables with
s buckets each. We use r ¼ 3 as in the original work, and to
guarantee an ð�; dÞ estimation, s should be set to at least
Hðn logðN=dÞ=ðT�2ÞÞ to ensure that enough samples can
be collected, where n and n are the total flow and packet
counts, and T is the threshold to be considered as signifi-
cant. Each bucket in the hash tables is composed of xþ 1
specially designed counters where x is the number of bits
in a flow ID, so that when flows without hash collision
are collected as samples, their flow ID’s can be recovered
13 For comparison, using the same memory budget, the latest special
sampling method [4] will produce an estimation error around 20%.

14 For comparison, methods like Snort can only handle around 40 Mbps
without sampling [28].
from the xþ 1 counters. For each arrival, rðxþ 1Þ counters
need to be updated. For a typical setting of
�¼1=3;d¼0:1;T¼1000;n¼106;N¼10�220 and x¼100,
120 million counters are needed in each table. So we allo-
cate 10 times memory as used by our framework to each
component of the DC sketch. We also compare with the
method of ‘‘filter + tracker” with or without flow sampling.
Their results on trace1 are depicted in the six sub figures in
the right panel of Fig. 9, where the memory used by the DC
sketch should be multiplied by 10.

We can see that the DC sketch (the 4th bar) does not
perform well, since it is only appropriate for finding signif-
icant anomaly in highly skewed data, e.g., following a Zipfi-
an distribution with parameter a > 1 in their experiments,
where n=T can be very small. For less skewed data, such as
the small flow count of each host, it cannot find enough
collision-free samples unless using a huge number of buck-
ets. Instead, we dig out information hidden in collisions.
Using around 1 MB memory, the estimation error of our
framework (the 1st bar) is less than 3% for q ¼ 1 and 2,
and less than 6% for q ¼ 3. Very few scanners are missed
due to very small differences in flow counts, similar to that
in catching spreaders. Filter with sampling (the 3rd bar) is
beaten, since its error is still mainly due to sampling and
barely decreases with more memory. For q > 3, since algo-
rithm A does not help much, we only use ‘‘filter + tracker”
and increase the memory linearly with logdqþ 2e due to a
larger counter size, and the performance only slowly de-
grades. Again, filter without sampling (the 2nd bar) per-
forms the best (error < 1% using 1 MB memory), and can
be used on low speed links. The results on other data are
similar and they justify the usefulness of both algorithm
A and B.
6.4. Varying traffic skewness

The accuracy of our framework on traffic of different
skewness is shown in Fig. 10, where the same parameters
as in Sections 6.2 and 6.3 are used. We can see, even with-
out carefully tuning the parameters, our framework per-
forms quite well on all traces when using only around
1 MB memory, and a little better on more skewed data,

Fig. 10. Recall and flow count estimation error of top-20 users on different traffic.

X. Shi et al. / Computer Networks 54 (2010) 1375–1388 1387
since the top users spread more flows so that the estima-
tion errors are reduced. We also note that, for highly
skewed data, the sketches in digester D may be filled up
and cannot be used for estimation, then the corresponding
count in T will be used. On the other hand, even for highly
skewed data, the other methods cannot perform as well as
our framework.
6.5. Update and query speed

In Table 3, we list the update speed and query speed of
the three different methods under different memory bud-
gets, where the experiments were conducted on a single
core of an Intel Core 2 1.86 G machine. The results are for
q ¼ 1 and trace1, while results for other q’s and traces
are similar. The update speed of the FC sketches based
method is less than 100 Kpps and decreases with more
memory since sketches need to be combined, and is close
to previous results [19]. A query can be answered immedi-
ately since top users are stored in a heap. The DC sketch
updates a constant number of counters for each arrival
and achieves a constant update speed of around 200 Kpps,
which is ten times faster than previous results [17] on an
Intel PIII machine, and can support around 100 queries
per second. An advanced DC sketch [17] with the same up-
date speed can answer queries immediately, but has a pen-
alty of doubled memory usage. Our framework, which only
updates very few counters for each arrival, can achieve a
constant update speed around 8 Mpps without any optimi-
zation nor special hardware, and is fast enough to support
monitoring the bi-directional traffic on one 2.5 Gbps full-
Table 3
Performance of different algorithms.

Update speed (M/s) Query speed (K/s)

Mem (KB) 584 1096 2120 584 1096 2120
Our fw 7.9 7.9 7.9 1.6 1.0 0.5
FC sketches 0.07 0.04 0.02 – – –
DC sketch 0.2 0.2 0.2 0.1 0.1 0.1
duplex link in the worst case. Around 1000 queries can
be answered in one second when using 1 MB memory,
and are enough for most practical applications.15 Testing
on the much longer trace3 with memory budget varying
from 1 MB to 10 MB gets the same update speed. Since
the latency of the DDR2 memory we use is around
100 ns, our framework is expected to handle 40 Gbps
(125 Mpps under 40 Byte packets) by using SRAM of 5 ns
latency.

7. Conclusion

We propose a framework to catch a general types of top
users. Our framework is based on combining sampling and
streaming, as well as deterministic and randomized algo-
rithms, which help each other to meet speed and resource
requirements while maintaining good accuracy. Our
framework addresses challenges of traffic scale, skewness
and speed, uses very little resource, and achieves good
accuracy even under the worst case. We believe it can be
used in many practical online applications such as network
monitoring and stream database.

Acknowledgement

Supported by Hong Kong RGC Grant NSFC-RGC
N_CUHK414/06.

References

[1] N. Alon, Y. Matias, M. Szegedy, The space complexity of
approximating the frequency moments, J. Comput. Syst. Sci. 58 (1)
(1999) 137–147.

[2] G. Armitage, Optimising online fps game server discovery through
clustering servers by origin autonomous system, in: NOSSDAV ’08,
2008, pp. 3–8.

[3] B.H. Bloom, Space/time trade-offs in hash coding with allowable
errors, Commun. ACM 13 (7) (1970) 422–426.

[4] J. Cao, Y. Jin, A. Chen, T. Bu, Z. Zhang, Identifying high cardinality
internet hosts, in: INFOCOM ’09, 2009.
15 The query speed actually decreases almost linearly with increased
memory.

1388 X. Shi et al. / Computer Networks 54 (2010) 1375–1388
[5] M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in
data streams, in: ICALP ’02, 2002, pp. 693–703.

[6] A. Chen, J. Cao, T. Bu, A simple and efficient estimation method for
stream expression cardinalities, in: VLDB ’07, 2007, pp. 171–182.

[7] Netflow, <www.cisco.com/web/go/netflow>.
[8] Netflow Performance Analysis, <www.cisco.com/en/US/tech/tk812/

tech_white_papers_list.html>.
[9] G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking

most frequent items dynamically, ACM Trans. Database Syst. 30 (1)
(2005) 249–278.

[10] M. Datar, S. Muthukrishnan, Estimating rarity and similarity over
data stream windows, in: ESA ’02, 2002, pp. 323–334.

[11] N. Duffield, C. Lund, M. Thorup, Properties and prediction of flow
statistics from sampled packet streams, in: IMW ’02, 2002, pp. 159–
171.

[12] N. Duffield, C. Lund, M. Thorup, Estimating flow distributions from
sampled flow statistics, IEEE/ACM Trans. Netw. 13 (5) (2005) 933–
946.

[13] M. Durand, P. Flajolet, Loglog counting of large cardinalities, in: ESA
’03, 2003.

[14] C. Estan, G. Varghese, New directions in traffic measurement and
accounting: focusing on the elephants, ignoring the mice, ACM
Trans. Comput. Syst. 21 (3) (2003) 270–313.

[15] C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active
flows on high-speed links, IEEE/ACM Trans. Netw. 14 (5) (2006)
925–937.

[16] P. Flajolet, Éric Fusy, O. Gandouet, F. Meunier, Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm, in: AofA
’07, 2007.

[17] S. Ganguly, M. Garofalakis, R. Rastogi, K. Sabnani, Streaming
algorithms for robust, real-time detection of ddos attacks, in:
ICDCS ’07, 2007.

[18] P. Indyk, Stable distributions, pseudorandom generators,
embeddings and data stream computation, J. ACM 53 (3) (2006)
307–323.

[19] K. Ishibashi, T. Mori, R. Kawahara, Y. Hirokawa, A. Kobayashi, K.
Yamamoto, H. Sakamoto, Estimating top n hosts in cardinality using
small memory resources, in: ICDEW ’06, 2006, p. 29.

[20] N. Kamiyama, T. Mori, R. Kawahara, Simple and adaptive
identification of superspreaders by flow sampling, in: INFOCOM
’07, 2007, pp. 2481–2485.

[21] A. Kumar, M. Sung, J. Xu, J. Wang, Data streaming algorithms for
efficient and accurate estimation of flow size distribution,
SIGMETRICS Perform. Eval. Rev. 32 (1) (2004) 177–188.

[22] A. Lall, V. Sekar, M. Ogihara, J. Xu, H. Zhang, Data streaming
algorithms for estimating entropy of network traffic, in: SIGMETRICS
’06, ACM, New York, NY, USA, 2006, pp. 145–156.

[23] J.C. Louis, Outpost24 tcp vulnerability, <www.outpost24.com/news/
news-2008-10-02.html>.

[24] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, A. Kabbani,
Counter braids: a novel counter architecture for per-flow
measurement, in: SIGMETRICS ’08, 2008, pp. 121–132.

[25] G.S. Manku, R. Motwani, Approximate frequency counts over data
streams, in: VLDB ’02, 2002, pp. 346–357.

[26] A. Metwally, D. Agrawal, A.E. Abbadi, An integrated efficient solution
for computing frequent and top-k elements in data streams, ACM
Trans. Database Syst. 31 (3) (2006) 1095–1133.

[27] S. Muthukrishnan, Data Streams: Algorithms and Applications, Now
Publishers Inc., 2005.

[28] N. Paulauskas, J. Skudutis, Investigation of the intrusion detection
system snort performance, Electron. Elect. Eng. 7 (87) (2008) 15–18.

[29] B. Ribeiro, T. Ye, D. Towsley, A resource-minimalist flow size
histogram estimator, in: IMC ’08, 2008, pp. 285–290.

[30] X. Shi, D.-M. Chiu, J.C.S. Lui, An online framework for catching top
spreaders and top scanners. TR, available at <http://
personal.ie.cuhk.edu.hk/~sxg007/framework/TR.pdf>.

[31] S. Singh, C. Estan, G. Varghese, S. Savage, Automated worm
fingerprinting, in: OSDI’04, USENIX Association, Berkeley, CA, USA,
2004, pp. 4–4.

[32] Snort, <www.snort.org>.
[33] P. Truong, F. Guillemin, Estimating Local Cardinalities in a

Multidimensional Multiset, LNCS, 2007, pp. 172–175.
[34] S. Venkataraman, D. Song, P.B. Gibbons, A. Blum, New streaming
algorithms for fast detection of superspreaders, in: SNDSS ’05, 2005,
pp. 149–166.

[35] K.-Y. Whang, B.T. Vander-Zanden, H.M. Taylor, A linear-time
probabilistic counting algorithm for database applications, ACM
Trans. Database Syst. 15 (2) (1990) 208–229.

[36] H.C. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, J. Xu, A data
streaming algorithm for estimating entropies of od flows, in: IMC
’07, ACM, New York, NY, USA, 2007, pp. 279–290.

[37] Q. Zhao, A. Kumar, J. Xu, Joint data streaming and sampling
techniques for detection of super sources and destinations, in: IMC
’05, 2005.

[38] Q.G. Zhao, A. Kumar, J. Wang, J. Xu, Data streaming algorithms for
accurate and efficient measurement of traffic and flow matrices, in:
SIGMETRICS ’05, 2005, pp. 350–361.

Xingang Shi received the B.Sc. degree from
Tsinghua University, and is currently a Ph.D.
student in the Department of Information
Engineering at the Chinese University of Hong
Kong. His research interests include network
measurement, streaming algorithms and
routing protocols.
Dah-Ming Chiu received the B.Sc. degree from
Imperial College London and the Ph.D. degree
from Harvard University in 1975 and 1980.
After twenty years in industry (Bell Labs, DEC
and Sun), he is now a professor in the
Department of Information Engineering in
CUHK. His research interest includes Internet,
wireless networks and P2P networking. He is
an editor for IEEE/ACM Transactions on Net-
working, and TPC member for various IEEE
conferences including Infocom, ICNP and
IWQoS.
John C.S. Lui received his Ph.D. in Computer
Science from UCLA. He later joined the
Department of Computer Science and Engi-
neering at the Chinese University of Hong
Kong. His research interests include theoretic/
applied topics in data networks, distributed
multimedia systems, network security and
mathematical optimization and performance
evaluation theory. John was the TPC co-chair
of ACM Sigmetrics 2005 and the general co-
chair of the International Conference on Net-
work Protocols 2006. His personal interests

include films and general reading.

http://www.cisco.com/web/go/netflow
http://www.cisco.com/en/US/tech/tk812/tech_white_papers_list.html
http://www.cisco.com/en/US/tech/tk812/tech_white_papers_list.html
http://www.outpost24.com/news/news-2008-10-02.html
http://www.outpost24.com/news/news-2008-10-02.html
http://personal.ie.cuhk.edu.hk/~sxg007/framework/TR.pdf
http://personal.ie.cuhk.edu.hk/~sxg007/framework/TR.pdf
http://www.snort.org

	An online framework for catching top spreaders and scanners
	Introduction
	Problem formulation
	Our contribution

	Related work
	Sampling and streaming
	Estimating flow statistics
	Finding frequent or top elements
	Catching top users

	Algorithm A – sketches based
	Composing FC sketches for spreaders
	Sketch for counting small flows
	Composing sketches for scanners
	Shortcomings of sketches based algorithms

	Algorithm B – filter based
	Counting small flows
	Tracking top users
	A simple comparison with Algorithm A

	Online framework
	Framework overview
	Update and query algorithm

	Evaluation
	Setting parameters
	Catching top spreaders
	Catching top scanner
	Varying traffic skewness
	Update and query speed

	Conclusion
	Acknowledgement
	References

