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Abstract—We consider several distributed collaborative key
agreement and authentication protocols for dynamic peer groups.
There are several important characteristics which make this
problem different from traditional secure group communication.
They are (1) distributed nature in which there is no centralized
key server, (2) collaborative nature in which the group key
is contributory (i.e., each group member will collaboratively
contribute its part to the global group key), and (3) dynamic
nature in which existing members may leave the group while new
members may join. Instead of performing individual rekeying
operations, i.e., recomputing the group key after every join or
leave request, we discuss an interval-based approach of rekeying.
We consider three interval-based distributed rekeying algorithms,
or interval-based algorithms for short, for updating the group
key: (1) the Rebuild algorithm, (2) the Batch algorithm, and (3)
the Queue-batch algorithm. Performance of these three interval-
based algorithms under different settings, such as different join
and leave probabilities, is analyzed. We show that the interval-
based algorithms significantly outperform the individual rekeying
approach and that the Queue-batch algorithm performs the best
among the three interval-based algorithms. More importantly, the
Queue-batch algorithm can substantially reduce the computation
and communication workload in a highly dynamic environment.
We further enhance the interval-based algorithms in two aspects:
authentication and implementation. Authentication focuses on the
security improvement, while implementation realizes the interval-
based algorithms in real network settings. Our work provides a
fundamental understanding about establishing a group key via a
distributed and collaborative approach for a dynamic peer group.

I. INTRODUCTION

With the emergence of many group-oriented distributed
applications such as tele/video-conferencing and multi-player
games, there is a need for security services to provide group-
oriented communication privacy and data integrity. To provide
this form of group communication privacy, it is important
that members of the group can establish a common secret
key for encrypting group communication data. To illustrate
the utility of this type of applications, consider a group of
people in a peer-to-peer or ad-hoc network having a closed
and confidential meeting. Since they do not have a previously
agreed upon common secret key, communication between
group members is susceptible to eavesdropping. To solve the
problem, we need a secure distributed group key agreement
and authentication protocol so that people can establish and
authenticate a common group key for secure and private
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communication. Note that this type of key agreement protocols
is both distributed and contributory in nature: each member of
the group contributes its part to the overall group key.

It is important to point out that the type of distributed
group key agreement protocols we study is very different
from traditional centralized group key management protocols.
Centralized protocols rely on a centralized key server to
efficiently distribute the group key. An excellent body of work
on centralized key distribution protocols exists in [13], [15],
[20], [21]. In those approaches, group members are arranged
in a logical key hierarchy known as a key tree. Using the tree
topology, it is easy to distribute the group key to members
whenever there is any change in the group membership (e.g., a
new member joins or an existing member leaves the group). In
the distributed key agreement protocols we consider, however,
there is no centralized key server available. This arrangement
is justified in many situations — e.g., in peer-to-peer or ad-
hoc networks where centralized resources are not readily
available. Moreover, an advantage of distributed protocols over
the centralized protocols is the increase in system reliability,
because the group key is generated in a shared and contributory
fashion and there is no single-point-of-failure.

In the special case of a communication group having only
two members, these members can create a group key using
the Diffie-Hellman key exchange protocol [6]. In the protocol,
members X and Y use a cyclic group of prime order p with
the generator «. They can generate their secret components
ex and ey, respectively. Member X (resp., Y) can compute
its public key a®x (resp., a®¥) and send it to Y (resp., X).
Since both members know their own exponent, they can each
raise the other party’s public key to the exponent and produce
a common group key «°x€¥ . Using the common group key,
X and Y can encrypt their data to prevent eavesdropping by
intruders.

In this paper, we propose, based on the Tree-based Group
Diffie-Hellman protocol [11], several group key agreement
protocols for a dynamic communication group in which mem-
bers are located in a distributed fashion and can join and leave
the group at any time. The contributions of our work are:

« Instead of using individual rekeying operations, we pro-
pose three interval-based distributed rekeying algorithms,
or interval-based algorithms for short, to significantly
reduce the computation and communication costs of
maintaining the group key. The interval-based approach
provides rekeying efficiency for dynamic peer groups
while preserving both distributed (i.e., no centralized key
server is involved) and contributory (i.e., each member
contributes to the resulting group key) properties.

o We evaluate the performance of our interval-based algo-



rithms through both mathematical and simulation-based
analysis. In particular, we compare their performance
with that of a centralized key distribution approach.

« We propose an authenticated group key agreement proto-
col that can be incorporated into the interval-based algo-
rithms. We evaluate the performance of this authenticated
approach and prove its security properties.

o We implemented the SEcure Communication Library
(SEAL) that realizes the interval-based algorithms. The
library provides a programming interface for the devel-
opment of secure group-based applications.

The rest of the paper proceeds as follows. In Section I,
we overview the Tree-Based Group Diffie-Hellman protocol
that establishes a group key with more than two members in a
dynamic peer group. In Section Ill, we present three interval-
based algorithms that establish the group key for a dynamic
peer group. In Section 1V, we evaluate the interval-based
algorithms under dynamic joins and leaves. In Section V,
we describe an authenticated group key agreement protocol
and analyze its security properties. In Section VI, we provide
the implementation details of the interval-based algorithms.
Section VII reviews related work, and Section VIII concludes.

Il. TREE-BASED GROUP DIFFIE-HELLMAN PROTOCOL

To efficiently maintain the group key in a dynamic peer
group with more than two members, we use the Tree-Based
Group Diffie-Hellman (TGDH) protocol proposed in [11].
Each member maintains a set of keys, which are arranged in a
hierarchical binary tree. We assign a node ID v to every tree
node. For a given node v, we associate a secret (or private)
key K, and a blinded (or public) key BK,. All arithmetic
operations are performed in a cyclic group of prime order p
with the generator «. Therefore, the blinded key of node v
can be generated by

BK, = of'mod p. 1)

Each leaf node in the tree represents the individual secret
and blinded keys of a group member M;. Every member holds
all the secret keys along its key path starting from its associated
leaf node up to the root node. Therefore, the secret key held
by the root node is shared by all the members and is regarded
as the group key. Fig. 1 illustrates a possible key tree with
six members M7 to Mg. For example, member M holds the
keys at nodes 7, 3, 1, and 0. The secret key at node 0 is the
group key of this peer group.

Fig. 1. A key tree used in the Tree-Based Group Diffie-Hellman protocol.

The node ID of the root node is set to 0. Each non-leaf
node v consists of two child nodes whose node IDs are given
by 2v 4+ 1 and 2v 4 2. Based on the Diffie-Hellman protocol

[6], the secret key of a non-leaf node v can be generated by
the secret key of one child node of v and the blinded key of
another child node of v. Mathematically, we have

K, = (BKay1)*+ mod p
= (BKay12)"*"** mod p
afeiKania mog . @

Unlike the keys at non-leaf nodes, the secret key at a leaf
node is selected by its corresponding group member through
a secure pseudo random number generator.

Since the blinded keys are publicly known, every member
can compute the keys along its key path to the root node
based on its individual secret key. To illustrate, consider the
key tree in Fig. 1. Every member M, generates its own secret
key and all the secret keys along the path to the root node.
For example, member M, generates the secret key K7 and it
can request the blinded key BKg from My, BK, from M;,
and BK, from either My, M5, or Mg. Given M’s secret key
K~ and the blinded key BKg, M, can generate the secret key
K3 according to Eq. 2. Given the blinded key BK, and the
newly generated secret key K3, M; can generate the secret
key K, based on Eq. 2. Given the secret key K; and the
blinded key BK5, M; can generate the secret key K at the
root. From that point on, any communication in the group can
be encrypted based on the secret key (or group key) K.

To provide both backward confidentiality (i.e., joined mem-
bers cannot access previous communication data) and for-
ward confidentiality (i.e., left members cannot access future
communication data), rekeying, which means renewing the
keys associated with the nodes of the key tree, is performed
whenever there is any group membership change including
any new member joining or any existing member leaving the
group. Let us first consider individual rekeying, meaning that
rekeying is performed after every single join or leave event.
Before the group membership is changed, a special member
called the sponsor is elected to be responsible for updating the
keys held by the new member (in the join case) or departed
member (in the leave case). We use the convention that the
rightmost member under the subtree rooted at the sibling of
the join and leave nodes will take the sponsor role. Note that
the existence of a sponsor does not violate the decentralized
requirement of the group key generation since the sponsor does
not add extra contribution to the group key.

Fig. 2.

Illustration of the rekeying operation after a single leave.

Fig. 2 depicts a member leave event. Suppose that member
M3 leaves the system. Node 11 is then promoted to node 5,
and nodes 2 and 0 become renewed nodes, defined as the non-
leaf nodes whose associated keys in the key tree are renewed.
Also, member M, becomes the sponsor. It renews the secret



keys K> and K, and broadcasts the blinded keys BK, and
BKj5 to all the members. Members M;, M,, and M3, upon
receiving the blinded key B K5, compute the new group key
K. Similarly, members Mg and M5, upon receiving BK,
can compute K5 and then the new group key Kj.

Fig. 3 illustrates a new member Mg that wishes to join
the group. Mg has to first determine the insertion node under
which Mg can be inserted. To add a node, say v’ (or tree, say
T") to the insertion node, a new node, say n/, is first created.
Then the subtree rooted at the insertion node becomes the
left child of the node »’, and the node v’ (or the root node
of the tree T”) becomes the right child of the node n’. The
node »n’ will replace the original location of the insertion node.
The insertion node is either the rightmost shallowest position
such that the join does not increase the tree height, or the
root node if the tree is initially well balanced (in this case,
the height of the resulting tree will be increased by 1). Fig. 3
illustrates this concept. The insertion node is node 5 and the
sponsor is M. Mg then broadcasts its blinded key B K15 upon
insertion. Given BK 5, M, renews K, K5, and K, and then
broadcasts the blinded keys BK; and BK, to all members
in the group. After receiving the blinded keys from A1y, all
remaining members can rekey all the nodes along their key
paths and compute the new group key Kj.

Fig. 3.

Illustration of the rekeying operation after a single join.

Based on the above leave and join events in Figs. 2 and 3,
we find that we can reduce one rekeying operation if we can
simply change the association of node 12 from M5 to Msg.
Interval-based rekeying is thus proposed such that rekeying
is performed on a batch of join and leave requests so as to
reduce the number of rekeying operations. Members carry
out rekeying operations at regular rekeying intervals. In the
following section, we describe the interval-based approach to
manage the rekeying operations.

I1l. INTERVAL-BASED DISTRIBUTED REKEYING
ALGORITHMS

We develop three interval-based distributed rekeying algo-
rithms (or interval-based algorithms for short), termed the
Rebuild algorithm, the Batch algorithm, and the Queue-batch
algorithm. Interval-based rekeying maintains the rekeying fre-
quency regardless of the dynamics of join and leave events,
with a tradeoff of weakening both backward and forward
confidentialities as a result of delaying the update of the group
key. The three interval-based algorithms are developed based
on the following assumptions:

« All members are trusted in the key establishment process.

o The group communication satisfies view synchrony [7],

[11] that defines reliable and ordered message delivery

under the same membership view. Intuitively, when a
member broadcasts a message under a membership view,
the message is delivered to same set of members viewed
by the sender. Note that this view-synchrony property is
essential not only for group key agreement, but also for
reliable multipoint-to-multipoint group communication in
which every member can be a sender [11].

« Rekeying operations of all members are synchronized to
be carried out at the beginning of every rekeying interval.

o When a new member sends a join request, it also includes
its individual blinded key.

« All members know the existing key tree structure and all
the blinded keys within the tree.

o To obtain the blinded keys of the renewed nodes, the
key paths of the sponsors should contain those renewed
nodes. Since the interval-based rekeying operations in-
volve nodes lying on more than one key paths, more
than one sponsors may be elected. Also, a renewed node
may be rekeyed by more than one sponsor. Therefore, we
assume that the sponsors can coordinate with one another
such that the blinded keys of all the renewed nodes are
broadcast only once.

We adopt the following notations in our description. Let
T denote the existing key tree. Assume that L > 0 existing
members M' = (M, .-, M}) wish to leave and J > 0 new
members M7 = (M{,---, M?) wish to join the group within
a rekeying interval.

A. Rebuild Algorithm

The motivation of the Rebuild algorithm is to minimize the
resulting tree height so that the rekeying operations for each
group member can be reduced. At the beginning of every
rekeying interval, we reconstruct the whole key tree with all
existing members that remain in the communication group,
together with the newly joining members. The resulting tree is
a left-complete tree, in which the depths of the leaf nodes differ
by at most one and those deeper leaf nodes are located at the
leftmost positions. The pseudo-code of the Rebuild algorithm
to be performed by every member is shown in Fig. 4.

Rebuild (T, M, J, M', L)

1. obtain all members from 7" and store them in M’;

2. remove the L leaving members in M from M’;

3. add the J new members in M7 to M’;

4. create a new binary tree 7”7 based on members in M’ and

/.

et T =T,
5. elect al members to be sponsors;
6. rekey renewed nodes and broadcast new blinded keys in T;

Fig. 4. Pseudo-code of the Rebuild algorithm.

Fig. 5 shows the scenario where members M,, Ms, and
M~ wish to leave and a new member Mg wishes to join the
communication group. Based on the algorithm, the resulting
key tree consists of five members and has all non-leaf nodes
renewed. Besides, the sponsors include all the five members.

Rebuild is suitable for some cases, such as when the mem-
bership events are so frequent that we can directly reconstruct



M joins
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Fig. 5. Example of the Rebuild algorithm.

Batch (T, M7, J, M', L)

1. if(L==0){/* pure join case */

2. create a new tree T’ based on new membersin M7:;

3. either add T” to the shallowest node of T' (which need not
be the leaf node) such that the merge will not increase the
height of the result tree, or add 7" to the root node of T if
the merge to any node of T" will increase the tree height;

4. telse{/* L >0 */

5 sort M! in an ascending order of the associated node
IDs of the members and store the results in M"* =
<M{YS> ) MZL’S>;

6. if (L>J)

7. if (J>0){

8. replace the departed nodes of (M1*, ... M%*)

with J joined nodes;

9.

10. remove remaining L — J leaving leaf nodes and pro-

mote their siblings;

11 }else{/* J >= L */

12. divide M7 into L subgroups G = (G4, ---,Gyr) such
that the fi rst J mod L subgroups (Gi, -+, G mod L)
contain [ | +1 new members and the rest contain | < |

new members;
13. create L subtrees (T7,---, Ty ) for the subgroups G;
14. replace the departed nodes of (M}*,--- MY )

with theroots of (T7,---, T ,.0q ) and the remaining
y departed nodes with the roots of remaining subtrees;
15.
16.
17. elect the members to be sponsors if they are new members, or
the rightmost members of the subtrees rooted at the siblings of
the departed nodes or replaced nodes in T';
18. if (sponsor) / * responsibility of the sponsor */
19.  rekey the renewed nodes and broadcast the new blinded keys;

Fig. 6. Pseudo-code of the Batch algorithm.

the whole key tree for simplicity, or when some members lose
the rekeying information and the simplest way of recovery is
to rebuild the key tree. We can explore the situations where
Rebuild is applicable.

B. Batch Algorithm

The Batch algorithm is based on the centralized approach
in [13], which is now applied to a distributed system without a
centralized key server. The pseudo-code of the Batch algorithm
is given in Fig. 6. Given the numbers of joins and leaves within
a rekeying interval, we attach new group members to different
leaf positions of the key tree in order to keep the key tree as
balanced as possible.

The Batch algorithm is illustrated with two examples. In
Fig. 7, we show the case where L > J > 0. Suppose Ma,

Ms, and M, leave and a new member Mg wishes to join.
The following steps are carried out: (i) Mg broadcasts its
join request, including its individual blinded key. (ii) The leaf
node 6 associated with M is replaced by the node of Msg,
and the leaf nodes 8 and 24 are removed. Nodes 7 and 23
are promoted to nodes 3 and 11, respectively. (iii) M7, My,
Mg, and Mg are elected to be the sponsors. M renews secret
keys K; and Ky, and M, renews K5, Ko, and K. M; then
broadcasts BK, and M, broadcasts BKy5 and BK5. Mg and
Mg, though having the sponsor role, do not need to broadcast
any blinded keys as M, has already broadcast this information.
(iv) Finally, every member computes the new group key based
on the received blinded keys.

-, MM, M [eave,
Y Mjoins

Fig. 7. Example 1 of the Batch algorithm where L > J > 0.

Fig. 8 illustrates the case where J > L > 0. Suppose
Mg, Mg, and Mg join, and M, and M- leave. The rekeying
process is: (i) Mg, Mg, and M, broadcast their join requests
together with their own individual blinded keys. (ii) Mg and
My form the subtree 77 and M, is the only member of T7.
The root of T} replaces node 6 and the root of T3 replaces
node 8. (iii) The sponsors are M1, Mg, Mg, My, and Miq. Mg
and M, first need to compute the secret key K, and either one
of them computes and broadcasts the new blinded key BKjg.
(iv) My (or M) renews K3 and K7, and broadcasts BK3
and BK;. Mg renews K, and broadcasts BK>. (v) Finally,
all the members can compute the new group key K.

Fig. 8.

Example 2 of the Batch algorithm where J > L > 0.

C. Queue-batch Algorithm

We find that the previous approaches perform all rekeying
steps at the beginning of every rekeying interval. This results
in high processing load during the update instance and thereby
delays the start of the secure group communication. Thus, we
propose a more effective algorithm which we call the Queue-
batch algorithm. Its intuition is to reduce the rekeying load by
pre-processing the joining members during the idle rekeying
interval.

The Queue-batch algorithm is divided into two phases,
namely the Queue-subtree phase and the Queue-merge phase.



The first phase occurs whenever a new member joins the
communication group during the rekeying interval. In this
case, we append this new member in a temporary key tree 7".
The second phase occurs at the beginning of every rekeying
interval and we merge the temporary tree 7’ (which contains
all newly joining members) to the existing key tree T'. The
pseudo-codes of the Queue-subtree phase and the Queue-
merge phase are illustrated in Figs. 9 and 10.

Queue-subtree (17")

1. if (a new member joins) {

2 if (T == NULL)/* no new nenbers in T */

3 create a new tree 7" with the only one new member;

4 else {/* there are new nmenbers in T */

5. fi nd the insertion node;

6. add the new member to 7”;

7 elect the rightmost member under the subtree rooted at
the sibling of the joining node to be the sponsor;

8 if (sponsor) / * sponsor’s responsibility */

9 rekey renewed nodes and broadcast new blinded keys;

10.

11

}
}

Fig. 9.

1

Pseudo-code of the Queue-subtree phase.

Queue-merge (T, T', M, L)

1. if(L==0){/* there is no |leave */

2. add T to either the shallowest node (which need not be the
leaf node) of T such that the merge will not increase the
resulting tree height, or the root node of T if the merge to
any locations will increase the resulting tree height;

telse {/* there are | eaves */
add T” to the highest leave position of the key tree T';
remove remaining L — 1 leaving leaf nodes and promote
their siblings;

No gkrw

elect members to be sponsors if they are the rightmost members
of the subtree rooted at the sibling nodes of the departed leaf
nodes in T, or they are the rightmost member of 7”;

8. if (sponsor) / * sponsor’s responsibility */

9. rekey renewed nodes and broadcast new blinded keys;

Fig. 10. Pseudo-code of the Queue-merge phase.

The Queue-batch algorithm is illustrated in Fig. 11, where
members Mg, My, and Mo wish to join the communication
group, while M, and M, wish to leave. Then the rekeying
process is as follows: (i) In the Queue-subtree phase, the three
new members My, My, and M;q first form a tree T7. Mg, in
this case, is elected to be the sponsor. (ii) In the Queue-merge
phase, the tree T" is added at the highest departed position,
which is at node 6. Also, the blinded key of the root node of
T’, which is BKg, is broadcast by Mjiq. (iii) The sponsors
My, Mg, and M, are elected. M, renews the secret key K
and broadcasts the blinded key BK;. Mg renews the secret
key K5 and broadcasts the blinded key BK5. (iv) Finally, all
members can compute the group key.

IV. PERFORMANCE EVALUATION

To reflect the latency of generating the latest group key
for data confidentiality, we evaluate the performance of the

Fig. 11.

Example of the Queue-merge phase.

interval-based algorithms in two aspects: mathematical analy-
sis and simulation-based experiments. The mathematical anal-
ysis considers the complexity of the algorithms under the
assumption that the key tree is completely balanced. Using
simulations, we then study their performance in a more general
setting. We also compare the performance of our interval-based
algorithms and a centralized key distribution approach.

A. Mathematical Analysis

We present the mathematical analysis of the three proposed
algorithms based on two performance measures, namely:

1) Number of exponentiation operations: This metric gives

a measure of the computation load of all members in
the communication group.

2) Number of renewed nodes: As defined in Section I, a
node is said to be renewed if it is a non-leaf node and its
associated keys are renewed. This metric measures the
communication cost since the new blinded keys of the
renewed nodes have to be broadcast to the whole group.

For simplicity, we assume the following in the analysis:

o The existing key tree is completely balanced prior to the
interval-based rekeying event.

o Every existing member has the same leave probability.

o The computation of the blinded group key of the root

node is counted in the blinded key computations. With
this assumption, the number of blinded key computations
simply equals the number of renewed nodes, provided
that the blinded key of each renewed node is broadcast
only once.

Let N be the number of members originally in the com-
munication group, L (where 0 < L < N) be the number
of members that wish to leave the group, and J > 0 be the
number of new members that want to join the group. Let T'
denote the existing tree which contains N members. The level
of a node v is I = [log,(v+1)], where v is the node ID, and
the maximum level of 7" is h. Based on the first assumption,
i.e., the key tree is initially balanced, we know that N = 2",
Also, let R,;, be the number of renewed nodes and &q,
be the number of exponentiations for the particular algorithm
alg. The performance measure £,;4 is composed of two parts:
Eqy and Ejjlg, which respectively represent the number of
exponentiations of calculating the secret keys (which is done
by all members) and that of calculating the blinded keys
(which is done by sponsors only). We have

galg ;lg + gablg' (3)
Also, we know the number of blinded key computations is
gzlz)lg = 7?/alg7 (4)



which is simply the mathematical interpretation of the last
assumption.

In the following subsections, we evaluate the number of
renewed nodes R, for the three interval-based algorithms.
The analysis of the number of secret key computations &,
can be found in the appendix.

1) Analysis of the Rebuild Algorithm: Given N, L and J,
we can obtain the exact expressions for the two performance
measures Rgepuitda and Erepuira- It is important to note that
the derived expressions below are valid even if the existing
key tree T' is not completely balanced originally.

The resulting number of membersis N* =N —-L+J > 0.
Thus, the number of renewed nodes is

0,
{3

2) Analysis of the Batch Algorithm: Since the actual per-
formance of the Batch algorithm depends on the membership
leave positions whenever L > 0, we consider only the expected
performance measures rather than the exact ones, although
the exact and expected results are the same when L = 0. Our
analysis adopts the convention that the combination (jf) equals
0ifn<0,r<0,0rn<r.

We first derive the expected number of renewed nodes.
Consider a node v at level . In a completely balanced tree,
node v has V/2! descendants. At a rekeying instance, node v
can be in one of the three distinct states: no-change, pruned,
and renewed. Node v can be in the “no-change” state if none
of its V/2! descendants wish to leave. Thus, the probability
of node v being in the “no-change” state is

if N* =0

Reebuita(N*) = otherwise

®)

(N—N/2’)
P[node v is no-change] = -~—%_ 2. (6)

(1)

Node v is pruned if all its descendants leave, or all descen-
dants of either its left or right subtree (but not both) leave.
In the latter case, node v is pruned because it is promoted to
its parent (see Section Il11-B). Thus, the expected number of
renewed nodes is

E[RBatch}
0, if J=0,L=N
N-nNy2l
P! [1 - %} +(J—L), otherwise. )
The equation exhibits different interpretations depending on
the values of J and L. If all members leave the group but no
new member joins, then the key tree disappears and hence
the number of renewed nodes is zero. Otherwise, we have
two possibilities. If J > L, then the first term represents the
expected number of (non-leaf) nodes in the original key tree
that are renewed, and the second term (J — L) refers to the
number of additional renewed nodes introduced to the key
tree. No nodes are pruned in this case since all leaving leaf
nodes are substituted by the joining ones. On the other hand, if
L > J, then the first term corresponds to the expected number
of (non-leaf) nodes that have at least one leaving descendant.
The correctness of the first term relies on the assumption that
the J newly joining members (if J > 0) randomly select L

leaving leaf nodes for replacement given that those leaving
leaf nodes are at the same level h in a completely balanced
tree. The second term then subtracts L — J for the number
of non-leaf nodes that are pruned, and hence the remaining
nodes are renewed nodes.

3) Analysis of the Queue-batch Algorithm: The main idea
of the Queue-batch algorithm exploits the idle rekeying in-
terval to pre-process some rekeying operations. When we
compare its performance with the Rebuild or Batch algorithms,
we only need to consider the rekeying operations occurring at
the beginning of every rekeying interval.

When J = 0, Queue-batch is equivalent to Batch in the
pure leave scenario. For J > 0, the number of renewed nodes
in Queue-batch during the Queue-merge phase is equivalent
to that of Batch when J = 1. Thus, the expected number of
renewed nodes is

E [RQueuefbatch]
0, if J=0, L=N

N-nNy2!
15?[1—( ~ >}—LJfJ:&0<L<N
- 6 ®
h1 (N—N/2l) )
1= 2 {1 - (Air) } — (L —1), otherwise.

4) Evaluation: We evaluate the metrics of our three
interval-based algorithms based on the mathematical models.
We start with a well-balanced key tree involving 512 members
and then calculate the metrics with different values of joins
and leaves (i.e., J and L).

Figs. 12 and 13 illustrate the average number of expo-
nentiations and the average number of renewed nodes under
different numbers of joining and leaving members. We observe
that Queue-batch outperforms the other two interval-based
algorithms in all cases. Specifically, we note that there is
a significant computation/communication reduction when the
peer group is very dynamic (i.e., high number of members that
wish to join or leave the communication group). We explain
this phenomenon in Section 1V-B.

B. Simulations

The previous subsection quantifies the performance mea-
sures by assuming that the existing key tree is completely
balanced. In this subsection, we perform a more extensive per-
formance study via simulations under different experimental
settings. Our simulations focus on three performance metrics:
(i) number of exponentiations, (ii) number of renewed nodes,
and (iii) number of rounds required to generate the group key.

In our simulations, we consider a finite population of
1024 users. Out of these 1024 users, there are 512 members
originally in a communication group at the beginning of each
experiment. We assume that potential members outside the
group have a tendency to join the group with a fixed join
probability. Similarly, members within the group have a fixed
leave probability of leaving the group. We let p; and p;, denote
the join and leave probabilities, respectively.

Experiment 1: (Comparison between individual rekeying
and interval-based rekeying algorithms) We first demon-
strate through simulations that interval-based rekeying outper-
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forms individual rekeying. Given a number of join and leave
requests, we consider a particular case where the individual
rekeying approach first processes one by one the join requests
followed by the leave requests. We then run the simulations
over 300 rekeying intervals and compute the average results.

Figs. 14 and 15 illustrate the performance measures under

different join and leave probabilities. We observe that the three
interval-based rekeying algorithms perform much better than
the individual rekeying method. The advantage is even more
prominent under high join and high leave probabilities. This
implies that the interval-based rekeying algorithms can reduce
the computation and communication costs of the a group is
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highly dynamic.

Experiment 2: (Average analysis at different fixed join
probabilities) In this experiment, we examine the case where
the key tree becomes unbalanced after many intervals of join
and leave events. We vary the join probability p; to be 0.25,
0.5, and 0.75. Then we evaluate the average performance mea-
sures of the three algorithms under various leave probabilities.

The results are illustrated in Figs. 16 and 17. We observe
that Queue-batch outperforms the other two algorithms in
terms of the costs of exponentiation and renewed nodes in
most cases. The exception is that Queue-batch needs more
exponentiations than Batch when the leave probability is low
(smaller than 0.2). The reason is that attaching the subtree
of new members to an existing tree with few leaves may
make the key tree unbalanced, leading to more computations
in subsequent rekeying intervals. Moreover, the performance
of Rebuild is the worst when p;, is low, but approaches that
of Batch when p;, is high (e.g., both algorithms have similar
average numbers of exponentiations and renewed nodes when
pz, is higher than 0.6 and 0.8, respectively). In most situations,
Queue-batch outperforms the other two algorithms at different
join and leave probabilities. This shows that the pre-processing
of the join requests in Queue-batch can significantly reduce the
computation and communication loads in rekeying.

Experiment 3: (Instantaneous analysis at different pairs
of join and leave probabilities) This experiment compares
the instantaneous performance measures of Batch and Queue-
batch over 300 rekeying intervals (we ignore Rebuild because
it performs the worst among the three algorithms). We consider
different pairs of p; and p;, that represent different mobility
characteristics of the peer group.

Fig. 18 illustrates the instantaneous numbers of exponenti-
ations at different pairs of p; and pr. We note that when the
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group has high join and leave probabilities, Queue-batch sig-
nificantly outperforms the Batch algorithm. Fig. 19 illustrates
the instantaneous numbers of renewed nodes. As compared to
the Batch algorithm, Queue-batch has a much lower cost in
terms of the number of renewed nodes when both join and
leave probabilities are high. This implies that Queue-batch
can reduce the communication cost significantly in a highly
dynamic environment.

Experiment 4: (Performance analysis of Queue-batch at
different reset intervals) Queue-batch does not reconstruct
the whole key tree as Rebuild during rekeying. Thus the key
tree may become unbalanced after some rekeying intervals. In
this experiment, we consider how Queue-batch performs if we
reconstruct the key tree using the Rebuild algorithm every T
rekeying intervals, where T'r is called the reset interval. This
approach keeps the tree balanced at the cost of executing the
Rebuild algorithm. We fixed p; = 0.5 and p;, = 0.25, 0.5, and
0.75, and ran the simulations over 1000 rekeying intervals.

Fig. 20 depicts that the performance of Queue-batch remains
approximately constant even at high reset intervals, meaning
that Queue-batch can still preserve its performance without
reconstructing the key tree after a long period of rekeying.
This shows the robustness of the Queue-batch algorithm in
maintaining a relatively balanced tree. This property is impor-
tant because it can reduce the average costs of exponentiations
and renewed nodes in the system.

Experiment 5: (Analysis in terms of number of rounds)
We define a round as the period during which the group
members compute the secret keys as far up the key tree as
they can. At the end of each round, all sponsors have to
broadcast the blinded keys of the renewed nodes that have
their secret keys computed so that other members can proceed
with the secret key computations. In the analysis, we assume
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that rekeying is performed in lock-step, meaning that the two
steps of secret key computations and blinded key broadcasts
are carried out alternately.

Fig. 21 illustrates the average numbers of rounds required
for Batch and Queue-batch. At high leave probabilities, Queue-
batch saves three to four rounds as compared to Rebuild
and Batch. The savings are due to the preprocessing of join
requests at the Queue-subtree stage. A fewer number of rounds

is preferred as less message overhead is involved in processing
rekeying messages and storing message headers.

Discussion of the experimental results: The experiments
show that the interval-based algorithms outperform the indi-
vidual rekeying approach in terms of both computation and
communication costs and that Queue-batch performs the best
among the three interval-based algorithms. From both mathe-
matical analysis and simulations, Queue-batch performs much



better when the join and leave events occur very frequently.
It also demonstrates its robustness in keeping the key tree
balanced and its capability in minimizing the number of rounds
required to update the group key.

To understand why Queue-batch performs much better than
the other two algorithms when the group is highly dynamic,
we consider two cases: frequent joins and frequent leaves.
When the number of join events is high, Queue-batch benefits
significantly from the pre-processing of join events in the
Queue-subtree phase. In addition, when the number of leave
events is high, Queue-batch reduces the heights of the existing
tree nodes through node pruning. Batch, however, replaces the
leaving leaf nodes with the joining ones and hence preserves
the heights of tree nodes. This distinction implies that Queue-
batch requires fewer rekeying operations for the members
whose associated leaf nodes are promoted to shallow positions.
As a result, the performance gain of Queue-batch is more
significant in the presence of frequent membership events.

C. Centralized vs. Decentralized Group Key Management

In this subsection, we compare the performance of our
interval-based algorithms and a centralized key management
approach.

We consider the centralized logical key tree (LKT) ap-
proach [13] upon which our Batch algorithm is developed (see
Section 111-B). Similar to the interval-based algorithms, we
assume that the key tree in the LKT approach is a binary tree
and that the keys of the tree nodes are computed based on the
TGDH protocol [11]. Among the group members, we select a
group controller that centrally renews the group key at periodic
rekeying intervals. We assume that the group controller knows
the keys of all the nodes in the key tree and that a newly joining
member sends its individual secret key to the group controller
via a secure channel. At the beginning of a rekeying interval,
the group controller first rekeys all (non-leaf) renewed nodes
using the TGDH protocol. It then encrypts the updated secret
key of each renewed node with the respective secret keys of
the two child nodes via any symmetric encryption algorithm.
Afterward, it broadcasts the encrypted keys to the group. Every
member, upon receiving the encrypted keys, decrypts the keys
along its key path with the secret keys it holds.

We use Fig. 7 to illustrate the LKT approach. Suppose that
M; is the group controller. It first rekeys all renewed nodes
as in the TGDH protocol. It then broadcasts to the group
the following encrypted keys: {(Ko)1, (Ko)2, (K1)3, (K1)4,
(K2)5, (Kg)g, (K5)11, (K5)12}, where (Kz)y refers to the
secret key K; of parent node i encrypted by the secret key
K; of the child node j. For example, in order for member
M3 to obtain the group key Ky, it first decrypts (K1), with
K4, followed by (Kj)1 with Kj.

We assume that the group controller broadcasts the en-
crypted keys using the view-synchronous communication
model as in the interval-based algorithms. While the group
controller can broadcast the encrypted keys via the point-to-
multipoint multicast, such a communication model has two
limitations. First, if the underlying group communication is
multipoint-to-multipoint-based such that every member can
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LKT | Queue-batch
Number of exponentiations R 10R — 30R
Number of broadcast keys 2R R
Number of rounds 1 4—6

TABLE |
PERFORMANCE COMPARISON OF LKT AND QUEUE-BATCH.

be a sender, setting up an extra multicast channel will be
an overhead. Also, it is possible for the group controller
to leave the group. All other members have to detect the
group controller’s departure and install a new membership
view in order to select another group controller. The group
controller’s departure, however, cannot be detected with the
unilateral point-to-multipoint multicast [11]. We point out
that view synchrony is essential for reliable multipoint-to-
multipoint group communication regardless of which group
key management approach is being used [11].

The performance of the LKT approach can be quantified
as follows. Since the encryption of the updated secret keys
can be achieved with any inexpensive symmetric encryption
algorithm, the computation cost of the LKT approach is mainly
due to the exponentiation operations of renewing the secret
keys. Furthermore, since the group controller uses the view-
synchronous communication model as in the interval-based
algorithms, the communication costs of the LKT approach and
our interval-based algorithms mainly differ by the number of
keys (either encrypted or blinded) broadcast to the group and
the number of rounds required to generate the group key.

Table | compares the performance metrics of both LKT
and Queue-batch schemes, where R denotes the number
of renewed nodes, and the numbers of exponentiations and
rounds for Queue-batch are estimated based on the simulation
results in Section 1V-B. As compared to our interval-based
algorithms, the LKT approach requires fewer exponentiations
and only one round to update the group key. However, all
its exponentiations are carried out within the single group
controller, while our interval-based algorithms scatter the
computational load among all group members. In addition,
the LKT approach broadcasts two encrypted copies of the
updated secret key for each renewed node, while the interval-
based algorithms broadcast only the corresponding blinded
key. This implies that the interval-based algorithms save half of
the number of broadcast keys. More importantly, the interval-
based algorithms have better fault tolerance by eliminating
the single-point-of-failure problem inherent in the centralized
LKT approach. Issues of how the interval-based algorithms
can recover from node failures in actual implementation are
discussed in Section VI.

V. AUTHENTICATED TGDH

In this section, we propose the Authenticated Tree-Based
Group Diffie-Hellman (A-TGDH) protocol that provides key
authentication for our interval-based algorithms. The idea
is to couple the session-based group key with the certified
permanent private components of the group members. Each
member holds two types of keys: short-term secret and blinded



keys as well as long-term private and public keys. Short-
term keys are randomly generated when a member joins the
group and become expired when the member leaves, while
long-term keys remain permanent across many sessions and
are certified by a trusted CA. Our protocol seeks to satisfy
several requirements that are crucial for key establishment [3]:
(i) perfect forward secrecy (i.e., the compromise of long-term
keys does not degrade the secrecy of past short-term keys),
(ii) known-key security (i.e., the compromise of past short-
term keys does not degrade the secrecy of future short-term
keys), and (iii) key authentication (i.e., all group members are
assured that no outsiders can identify the group key). Also,
our protocol can be implemented in a way that satisfies key
confirmation (i.e., all group members are assured that every
other member holds the same group key).

A. Description of A-TGDH

We first define the notation. As stated in Section Il, every
node v in the key tree is associated with a secret key K, and
a blinded key BK,. We then construct the blinded key set
BK], which, in general, refers to a number of copies BK,’s
respectively encrypted by the long-term private component
of every descendant member of the sibling of node v (the
mathematical formulation of BK is presented below). The
set of the descendant members of node v is given by M.
The 4ith member, M;, holds a short-term secret key r,,, and the
corresponding blinded key «"*: mod p, as well as a long-term
private key x,,, and the corresponding public key a*»: mod p,
where all arithmetic operations are to be performed on the
cyclic group of prime order p with generator «. For brevity,
we omit the term “mod p” in the following description.

We assume that each member has acquired the certificates
of all other members and hence their long-term public keys
from a trusted CA prior to the key agreement process.

The A-TGDH protocol is based on the two-party, two-
pass authenticated key-agreement (AK) protocol in [17]. Given
two parties, say M; and M,, the two-pass AK protocol
works as follows: M; sends o"™1 to M, and M, sends
a™:2 to M;. M; computes (a®Mz)"M1 . (@Mp)"MiFEM,
= MMMy M Ty MO0y Analogous operations are per-
formed by M,. The agreed session key is then given by K =
QM1 T Mg TT My TMy T My T My

The two-pass AK protocol offers a number of advantages. It
involves only two passes and thus saves communication cost.
It achieves key authentication and known-key security [17]. If
it is incorporated with key confirmation, then it gives perfect
forward secrecy as well [4].

We next extend the two-party, two-pass AK protocol to our
proposed A-TGDH protocol. In A-TGDH, we associate a node
v with K, and BK, as follows:
case 1) If node v is a non-leaf node with child nodes 2v + 1
and 2v + 2 (assume v # 0 since we need not broadcast the
blinded group key):

K, = o mod p, where

k= Koyt1Koyt2 + Koyt Z Ty, + Koygo Z xn; (9)
M;eM o, o MieM 5,11
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{afverm; mod p: M; € M, 1}
if node v isthe left child of its parent

BK| = (10)

{a®vemi mod p: M; € M,_1}
if node v istheright child of its parent.
case 2) If node v is a leaf node associated with member M;:

11)
(12)

K, =1y,
BK] = {a"™i mod p}.

Thus, if a given node v needs to be renewed, a sponsor can
simply broadcast BK, according to one of our interval-based
algorithms. Also, any member can still include its short-term
blinded key (i.e., the blinded key of its corresponding leaf
node) in its join request.

To illustrate how A-TGDH works, we consider a possible
key tree formed after the rekeying process as shown in Fig. 22.
Nodes 0, 1, and 2 are renewed nodes. Also, M; and M5 are
chosen to be the sponsors. Hence, the members perform the
following steps:

M(s Ms)

Fig. 22. Example of authenticated key agreement involving 4 members.

o Since the blinded keys of leaf nodes are o™, for
i = 1,2,3 and 4, the secret keys of nodes 1 and 2
are computed as Ky = M M2 T Iy My gng
Ky = a"™M3TMy TrMzTMy T My T Mg

e The sponsor M; broadcasts a®1*s and of1®Ms, and
the sponsor M5 broadcasts a2 and of2®Mm2,

e M and M, can retrieve o2 from o271 and 2%z |
respectively. Similarly, M3 and M, can retrieve o,
Therefore, the members can compute the resulting group
key as Ky = aFE1 K2+ K (a2, )+ Ka (ea +oa,)

Using the same experimental setting as in Section 1V-B,

we compare the non-authenticated and authenticated Queue-
batch algorithms for a population of size 1024 with a fixed
join probability p; =0.25. Fig. 23 plots the average number
of exponentiations of computing K., and BK, as well as the
average number of blinded key copies BK, broadcast to the
group for all renewed nodes v. It shows that the authenticated
version requires about twice the exponentiations and more
than 10 times the blinded key copies as compared to the non-
authenticated one. Thus, the use of authentication is subject
to the trade-off between security and performance.

B. Key Confirmation

Key confirmation should be enforced to guarantee all group
members are actually holding the same group key. Providing
complete key confirmation requires every member to demon-
strate its knowledge of the group key to all other members.
One way to achieve this is to ask every member to broadcast
the one-way function result of every newly generated group
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key. However, this involves many broadcasts and is not scal-
able. In another approach proposed in [9], each member only
needs to prove its knowledge of the group key to its neighbors,
provided that all members are arranged in a ring. However,
such an approach is vulnerable to the collusion attack [9].

We suggest two feasible implementation approaches that
support a moderate level of key confirmation. In the first
approach, we divide a group into several subgroups such
that members only confirm the group key with others within
the same subgroup via broadcast. The subgroup size and the
number of subgroups are chosen depending on the desired
level of security. In an alternative approach, we appoint a
sponsor to broadcast the blinded group key so that every
other member can verify if its computed blinded group key
is identical to the one it receives. If a member finds that the
keys are different, then it will report the error. This approach
is similar to that in [3] except that it is applied to our tree-
based setting. Our implementation chooses the latter approach.
Section VI discusses the implementation details.

C. Security Analysis

A-TGDH satisfies our stated security goals with the
following assumptions. Since key confirmation is essential
for achieving perfect forward secrecy [4], we assume that
it has been implemented as described in Section V-B. Also,
we assume that there exists only a passive adversary E
that monitors the flow of blinded key messages. We further
assume that E cannot solve the Diffie-Hellman problem [6]
(i.e., given only «, p, o™ mod p, and oY mod p, it is infeasible
for £ to compute o™ mod p) and the discrete logarithm
problem (i.e., given only «, p, and o mod p, it is infeasible
for E to compute x). The following proof is based on [3], [14].

Theorem: A-TGDH satisfies perfect forward secrecy, known-
key security, and key authentication.
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Proof Sketch:

1) Perfect forward secrecy. We want to prove that the
authenticated short-term keys of all non-leaf nodes remain
secret even the long-term keys are compromised. We prove
this property by induction on the levels of the tree which has
the lowest level h.

o Basis. Consider a non-leaf node v, at level h — 1
whose children are both leaf nodes associated with
members M;; and M;,. Given the long-term private
keys xnr,, and zys,,, the adversary E cannot compute
Kvo — OZT']M“TJW,LQ"FTJM“x]MiQJF""AIiQx]\J“’ since Computing
o™iz without the knowledge of 7y, Or raz,, IS
infeasible.

« Induction hypothesis. Suppose the keys of nodes 2v + 1
and 2v + 2 at some level [, where 0 < [ < h — 1, remain
secret despite the compromise of long-term keys.

« Induction step. Consider the node v at level [ —1. Given
only the long-term private keys, we cannot deduce Ks,11
and Ks,42 (by hypothesis). This implies K, cannot be
computed as it contains the component af2v+1 52042,

Thus, by induction, E cannot compute the secret keys (in-
cluding the group key) of any one of the non-leaf nodes given
only the long-term private keys. Perfect forward secrecy is
achieved.

The remaining properties can also be proved by induction,
although we omit the inductive proofs for brevity.

2) Known-key security. It should be noted that the authen-
ticated group key K, consists of a secret random component
equivalent to the group key of the non-authenticated TGDH.
If E compromises this authenticated group key Ky, then it
cannot compute the past group keys whose corresponding
secret random components are composed of the short-term
secrets ryy,’s offered by different combinations of members,
and doing so will require E to solve the Diffie-Hellman
problem. If any two past group keys refer to the same set
of members, then they are still different since each member
M; renews rj;, when it re-joins the group.

3) Key authentication. To determine K, for a non-leaf
node v, whose children are both leaf nodes corresponding
to members M;, and M,,, the adversary E has to know
o™i "> However, E only observes a1 and o2 . Thus,
it is infeasible for E to solve the Diffie-Hellman problem for
a"™ii™i; - On the other hand, to determine K, for a non-
leaf node v which contains at least one non-leaf child node,
say node 2v + 1, E has to know ofzv+1520+2 However, E
cannot identify K5,,; from the blinded key messages due to
the intractability of the discrete logarithm problem (i.e., given
only af€2e+12:; and o , it is infeasible to compute Ko, 1).
Therefore, A-TGDH provides key authentication. |

V1. IMPLEMENTATION

We implemented the SEcure Communication Library
(SEAL) to realize the interval-based algorithms described in
Section 111 and to offer a programming interface for the devel-
opment of a secure group-based application. In the application,
a group member first invokes SEAL_i ni t to initialize a SEAL
session object that holds all necessary components of the



library. Using SEAL j oi n, it joins a group and presents its
certificate obtained from a certificate authority to the entire
group for identification. It can then send and receive encrypted
data messages with SEAL _send and SEAL _r ecv, respectively,
or read the membership status with SEAL r ead_nenber shi p.
It leaves the group with SEAL | eave. It can later either re-
join another or the same group, or terminate by destroying the
SEAL session object with SEAL dest r oy. Fig. 24 depicts the
flowchart of using the library.

| SEAL_init '—’ISEALJoin '—;
A

SEAL_send
SEAL_recv

SEAL_read_membership

ISEAL_destroy |<—|SEAL_Ieave|<—‘

Fig. 24. Flowchart of using SEAL in secure group-based applications.

SEAL is built upon the Spread toolkit [2], which provides
view-synchronous message delivery. Every member connects
to a Spread daemon, which maintains an active TCP con-
nection to all other Spread daemons and keeps track of
the current membership status of the communication group.
When a member joins or leaves the group, the associated
Spread daemon notifies other daemons to flush the remaining
messages to the original membership view and to block the
transmission of new messages until all Spread daemons and
existing group members install the updated membership view.
Similarly, if a Spread daemon fails, the associated members
are removed from the membership view by the remaining
Spread daemons. Therefore, every existing group member
always holds the latest membership view. Also, all messages
are originated from the sender and delivered to all members
under the same membership view, or equivalently between
two consecutive membership events. To ensure the ordered
delivery, the Spread daemons append a timestamp to every
transmitted message.

SEAL addresses the assumptions made in Section Ill.
Given the agreed-upon membership view provided by Spread
daemons, all group members select the one that stays the
longest in the group as the leader, which is responsible for
synchronizing the rekeying operations. The leader periodically
broadcasts a rekeying message to notify other members to start
the rekeying operation. To enable new members to construct
the current key tree, each rekeying message includes the
existing key tree as well as the join and leave requests in the
last rekeying interval. Note that the leader is not a centralized
key server that generates the group key, so the contributory
requirement of our proposed algorithms still holds. Upon
receiving the rekeying message, each member updates its own
key tree and checks whether it is a sponsor. Any member that
becomes the sponsor will broadcast the updated blinded keys
based on the sponsor-coordination algorithm, which ensures
that each updated blinded key is broadcast only once and that
no extra communication is involved in the coordination among
the sponsors. Each member then caches any received blinded
keys and computes the new secret keys along its key path.
Finally, one of the sponsors will broadcast the blinded group
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key. Every other member then verifies the blinded group key
with the one it has computed (see Section V-B). If this key
confirmation process succeeds, then the rekeying operation is
finished.

We point out that the leader and sponsors can leave the
group during a rekeying operation, and their departures can
make the rekeying operation fail to complete. In SEAL, if
the communication group detects a change of the membership
view before the completion of the rekeying operation (i.e., the
group key is not yet confirmed), it first elects a new leader
(if necessary), and the leader will broadcast another rekeying
message immediately to restart the rekeying operation. Any
renewed nodes whose blinded keys have not yet been broad-
cast remain renewed in the new rekeying operation. Such a
self-stabilizing property [11] is realized in SEAL.

Here, we implicitly assume that the Spread daemons always
provide trusted membership views. Maintaining an authenti-
cated membership view involves the change of implementation
in Spread and is not the focus of this paper. We pose this
problem as future work.

We experimented the performance of the interval-based
algorithms based on SEAL under various join and leave
dynamics. When there are 40 group members connected via
eight Spread daemons in a local area network, the rekeying
time generally takes less than one second. We refer readers to
reference [12] for further discussion.

VIl. RELATED WORK

To achieve secure group communication, Wallner et al. [20]
and Wong et al. [21] propose the key tree approach that
associates keys in a hierarchical tree and rekeys at each join
or leave event. Li et al. [13] and Yang et al. [22] then apply
the periodic rekeying concept in Kronos [15] to the key tree
setting. All the key-tree-based approaches [13], [20], [21], [22]
require a centralized key server for key generation.

References [5], [10], [11], [18] extend the Diffie-Hellman
protocol [6] to group key agreement schemes for secure
communications in a decentralized network. Burmester and
Desmedt [5] propose a computation-efficient protocol at the
expense of high communication overhead. Steiner et al. [18]
propose Cliques, in which every member introduces its key
component into the result generated by its preceding member
and passes the new result to its following member. Cliques is
efficient in rekeying for leave or partition events, but imposes
a high workload on the last member in the chain. Kim et al.
[11] propose TGDH, which arranges keys in a tree structure
(see Section 1l for details). The setting of TGDH is similar to
that of the One-Way Function Tree (OFT) scheme [16] except
that TGDH uses Diffie-Hellman instead of one-way functions
for the group key generation. Kim et al. [10] also suggest a
variant of TGDH called STR which minimizes the communi-
cation overhead by trading off the computation complexity.
All the above schemes are decentralized and hence avoid
the single-point-of-failure problem in the centralized case,
though they introduce high message traffic due to distributed
communication. References [10], [11], [18] consider rekeying
at single join, single leave, merge, or partition events. Our



work considers a more general case that consists of a batch
of join and leave events.

Comparison between the centralized and decentralized
rekeying is studied by Amir et al. [1] and Waldvogel et al.
[19]. In particular, Amir et al. [1] suggest a centralized key
distribution scheme based on Cliques [18] and compare the
performance of both schemes. In contrast, our work compares
the centralized and decentralized key management schemes
adapted from a key tree setting.

Rather than emphasize the rekeying efficiency, references
[3], [9], [14] focus on the security issues and develop authen-
ticated group key agreement schemes based on the Burmester-
Desmedt model, Cliques, and TGDH, respectively. For in-
stance, the AGKA-G protocol [14] is an extension of the
two-party Gilinther scheme [8] to the TGDH protocol. Our
A-TGDH protocol is an authenticated version of our interval-
based algorithms.

VIIl. CONCLUSION

We consider several distributed collaborative key agreement
protocols for dynamic peer groups. The key agreement setting
is performed in which there is no centralized key server to
maintain or distribute the group key. We show that one can
use the TGDH protocol to achieve such distributive and collab-
orative key agreement. To reduce the rekeying complexity, we
propose to use an interval-based approach to carry out rekeying
for multiple join and leave requests at the same time, with
a trade-off between security and performance. In particular,
we show that the Queue-batch algorithm can significantly
reduce both computation and communication costs when there
exist highly frequent membership events. We also address
both authentication and implementation regarding the key
agreement protocols.

REFERENCES

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz, J. Stanton, and
G. Tsudik. Secure Group Communication Using Robust Contributory
Key Agreement. IEEE Transactions on Parallel and Distributed Systems,
15(5):468-480, May 2004.

[2] Y. Amir and J. Stanton. The Spread Wide Area Group Communication
System. CNDS-98-4, Johns Hopkins University, 1998.

[3] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key
Agreement and Friends. In Proc. of 5th ACM Conference on Computer
and Communications, Nov 1998.

[4] S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman Key
Agreement Protocols. In Proc. of the 5th Annual Workshop on Selected
Areas in Cryptography, 1998.

[5] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key
Distribution System. Advances in Cryptology - EUROCRYPT *94, 1995.

[6] W. Diffie and M. Hellman. New Directions in Cryptography. |IEEE
Transactions on Information Theory, 22(6):644-654, 1976.

[7]1 A. Fekete, N. Lynch, and A. Shvartsman. Specifying and Using a
Partionable Group Communication Service. In ACM Symposium on
Principles of Distributed Computing (PODC), Aug 1997.

[8] C. G. Gunther. An ldentity-Based Key Exchange Protocol. In EURO-
CRYPT, 1989.

[9]1 M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement.

In Advances in Cryptology ASIACRYPT ’96, pages 36-49. LNCS 1163,

Springer-Verlag, 1996.

Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient Group

Key Agreement. In Proceedings of the 17th International Information

Security Conference IFIP SEC’01, Nov 2001.

Y. Kim, A. Perrig, and G. Tsudik. Tree-Based Group Key Agreement.

ACM Trans. on Information and System Security, 7(1):60-96, Feb 2004.

[10]

[11]

14

[12] P. Lee. Distributed and Collaborative Key Agreement Protocols with
Authentication and Implementation for Dynamic Peer Groups. MPhil
Thesis, The Chinese University of Hong Kong, June 2003.

X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch Rekeying for
Secure Group Communications. In Proc. of Tenth International World
Wide Web Conference (WWW10), May 2001.

A. Perrig. Efficient Collaborative Key Management Protocols for Secure
Autonomous Group Communication. In International Workshop on
Cryptographic Techniques and E-Commerce (CrypTEC ’99), July 1999.
S. Setia, S. Koussih, and S. Jajodia. Kronos: A Scalable Group Re-
Keying Approach for Secure Multicast. In Proc. of IEEE Symposium
on Security and Privacy, May 2000.

A. T. Sherman and D. A. McGrew. Key Establishment in Large Dynamic
Groups Using One-Way Function Trees. IEEE Trans. Software Eng.,
29(5):444-458, May 2003.

B. Song and K. Kim. Two-Pass Authenticated Key Agreement Protocol
with Key Confirmation. In Proc. of IndoCrypt, volume LNCS vol. 1977,
pages 237-249, Dec 2000.

M. Steiner, G. Tsudik, and M. Waidner. Key Agreement in Dynamic
Peer Groups. IEEE Transactions on Parallel and Distributed Systems,
11(8):769-780, Aug 2000.

M. Wialdvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The
VersaKey Framework: Versatile Group Key Management. IEEE Journal
on Selected Areas in Communications, 17(9):1614-1631, Sep 1999.

D. M. Wallner, E. J. Harder, and R. C. Agee. Key Management for
Multicast: Issues and Architectures. Internet draft draft-wallner-key-
arch-00.txt, Internet Engineering Task Force, Jul 1997.

C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Communications
Using Key Graphs. IEEE/ACM Trans. on Networking, 8(1):16-30, Feb
2000.

Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable Group
Rekeying: A Performance Analysis. Proc. of ACM SIGCOMM, August
2001.

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

APPENDIX
MATHEMATICAL ANALYSIS OF THE NUMBER OF SECRET
KEY COMPUTATIONS

In Section IV-A, we quantitatively evaluate the the number
of renewed nodes for our interval-based algorithms. In this
appendix, we provide the mathematical analysis of the number
of the secret key computations. We let £, denote the number
of the secret key computations, where alg denotes one of our
three interval-based algorithms.

A. Rebuild Algorithm

For the performance measure &£,.,,,.4(N*), where N* =
N — L + J denotes the resulting number of group members,
we find that when N* < 1, Erepuita(N*) = 0. If N* €
(2h'=1 2""] for B’ > 1 where h/ = |log,(N* —1)] + 1, then
we have

Ehebuita(N™) = (number of members at level h') x b’/
+ (number of members at level ' — 1) x (' —1)
= 2 (V" 28D (llog, (N* — 1)) + 1)
(V=N =218 (N D)) [log, (N* — 1))
= N*|logy(N* — 1) | +2N*—2(les2(N"=DJ+1) = (13)

B. Batch Algorithm

We evaluate the expected number of secret key computa-
tions involved in the Batch algorithm by breaking down the
analysis into five cases. We let £pgten, be the number of secret
key computations of the Batch algorithm under condition c.

Case 1: J > L = 0 (pure join). Since the original key tree
T is completely balanced before the rekeying operation, the



subtree T” of the newly joined members will be inserted at
the root of the existing tree T". Thus, the (exact) number of
secret key computations is given by

g%atch,J>L:0 = gls?ebuild(']) + (N =+ J)

The first term corresponds to the exponentiation cost of
creating a tree for the J new members. The term (N + J)
is the secret key computations of the new root node in the
resulting tree performed by the N +J members. Note that the
value is deterministic, so the average representation is omitted.

Case 2: L > J = 0 (pure leave). Consider a node v at
level [. We first derive the probability of renewing a node
in terms of the number of departed descendants. When there
is no node promotion, node v is renewed if at least one but
not all descendants of node v leave the communication group.
With node promotion, we have to exclude the counting of
the renewed nodes that are pruned due to the departure of all
descendants of their left or right subtrees. The probability is
thus given by

(14)

P[node v is renewed] =

_N _ 1 _
=) (z)
N/2'-1 21+1 —1

= Z pl - 2 Z p2 (15)
=1

where p; (i) is the probability that ¢ members under node v

leave and p (i) is the probability that all descendants under

the left (or right) subtree of node v leave and 7 members under

the right (or left) subtree of node v leave.

Let M, (1) be the expected number of members involved in
the secret key computations of node v. By considering how
many members remain under node v, the expected number of
secret key computations is thus equal to

Z2M

21+1

]pl -2 Z {yﬂ —z} p2(i).(16)

Case 3: J = L > 0. Similar to case 2, by considering the
number of members which compute the secret key of node
v at level [, we compute the expected number of secret key
computations as

ElEEaten,1>7=0] ), where

N/2 -
M, ()= T?Vl

i=1

o1 N2 N members under
) 1
E[(g%atch,J:L>0 Z 2l Z i |: i|
1=0 =1

node v leave
h—1 N—N/2
= [1-— E———ﬁ%——l] )
(2)
Case 4: J > L > 0. Here, the L leaving leaf nodes are
replaced by the roots of the subtrees T7/’s consisting of in total
J new members, where 1 < i < L. Among the L subtrees, the

first J mod L subtrees consist of || + 1 new members and
require £5,.,:14(L £ | +1) secret key computations, and the rest

17
=0
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require 5,041 £]) secret key computations. Let J' = L,
and hence the expected number of secret key computations is

E[EISBatch,J>L>O]

S S J
= E[€Raten, 1 =1>0) + (J mod L)gRebuild(LZJ +1)

J
+(L — J mod L)xgpia(l 7)) ~ Lh+ T (18)

Note that the second to the last term is to subtract the secret
key computations of the leaf node which is now replaced by
the root node of the L subtrees. The last term refers to the
extra computations required by new members to obtain the
keys along the key path of the original tree 7.

Case 5: L > J > 0. Similar to the analysis in case 2, we
first compute the renewed probability of a node v at level I,
which is equal to the renewed probability of node v when no
node promotion is performed, subtracting the probability of
node v considered to be renewed without node promotion but
pruned with node promotion. Then, the expected number of
secret key computations can be expressed as the sum of the
products of the renewed probability of each node v in the key
tree times the number of its descendants. We refer readers to
[12] for the mathematical results.

C. Queue-batch Algorithm

The expected number of secret key computations for Queue-
batch is given by

[Eéueue—batch]
N+ J,
E[E;Batch,L>J:0}7

if J>0and L=0
if J=0and L > 0(19)

[g;atch,J:1 and L>0] —d+ dJ’ if J’ L>0.

For J > 0 and L > 0, we assume that the new subtree
is attached to a node at some level d. We first decrement
d from E[€5,, ., 7—1 and >0l 10 exclude the secret key
computations of the leaf node which is now replaced by the
root node of the new subtree. We then add d.J to account for
the secret key computations done by these new J members.

The value d is the level of the highest node that has
all its descendants leaving the group. Instead of computing
the expected value of d, we can find an upper bound value
for d, which occurs when the leaving leaf nodes are evenly
distributed in the key tree. Thus, d is given by

d:{g%ﬂN—LM+l if N> L

it N =L (20)



