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Abstract— We examine a proportional-delay model for In-
ternet differentiated services. Under this model, an ISP
can control the waiting time “spacings” between different
classes of traffic. Specifically, the ISP tries to ensure that
the average waiting time of class ¢ traffic relative to that of
class ¢ — 1 traffic is kept at a constant specified ratio. If the
waiting time ratio of class ¢ — 1 to class ¢ is greater than
one, the ISP can legitimately charge users of class i traf-
fic a higher tariff rate (compared to the rate for class ¢ — 1
traffic), since class i users consistently enjoy better perfor-
mance than class ¢ — 1 users. To realize such proportional-
delay differentiated services, we use the time-dependent pri-
ority scheduling algorithm. We formally characterize the
feasible regions in which given delay ratios can be achieved.
Moreover, a set of control parameters for obtaining the de-
sired delay ratios can be determined by an efficient iterative
algorithm. We also use an adaptive control algorithm to
maintain the correctness of these parameters in response to
changing system load. Experiments are carried out to illus-
trate the short-term, medium-term and long-term relative
waiting time performances for different service classes under
Poisson, Pareto, MMPP and mixed traffic workloads. We
also carry out experiments to evaluate the achieved end-to-
end accumulative waiting times for different classes of traffic
which traverse multiple hops under our service model.

1 Introduction

Nowadays, the Internet is being used for many different
user activities such as emails, software distribution, video

and audio entertainment, e-commerce, and real-time games.

Network applications that support these activities have di-
verse service requirements. For example, email requires re-
liable data delivery but can tolerate a relatively wide range
of packet delays, while video and audio applications can
tolerate a certain level of packet loss, but have stringent
end-to-end delay requirements. Although some of these ap-
plications are designed to be adaptive to available network
resources, they nevertheless expect different levels of ser-
vice from the network in order to have good performance.
Therefore, there is a growing need to provide an alternative
Internet service model to the conventional one-size-fits-all
best-effort service model.

One approach to solving this problem is the Integrated
Services (IntServ) model proposed by the IETF. IntServ is
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inherently reservation based — to achieve predictable per-
formance, an application is expected to reserve resources,
such as network bandwidth and buffers, using a protocol
like RSVP [12]. This raises two important deployment is-
sues. First, all the routers along an end-to-end network
path must be RSVP-capable in order to realize IntServ
benefits. Second, a router has to manage per-flow state
and perform per-flow processing. This makes it difficult
for IntServ to scale well to tens of thousands of network
flows. Although there are proposals for alleviating these
difficulties [5, 19], designing a scalable IntServ model is
still an open and challenging problem.

Recently, another service model known as Differentiated
Services (DS) is proposed by the IETF and has received
a lot of attention [15]. Under the DS model, traffic flows
are aggregated and identified as classes. Since the number
of DS traffic classes is expected to be far fewer than the
number of flows in IntServ, DS is much less susceptible to
the scalability problem. Rather than providing end-to-end
performance guarantees for individual flows like IntServ,
the DS service objective is to differentiate among classes
of traffic using per-hop packet forwarding behaviors. In
general, there are two approaches for delivering the DS
service model: absolute differentiated services and relative
differentiated services.

Under the absolute DS approach, the goal is to achieve
performance measures similar to those in the IntServ model,
but without keeping per-flow state within routers. Two
most prominent schemes for absolute DS are premium ser-
vices [16] and assured services [1]. In [13, 17], the authors
present some elegant mathematical models for analyzing
the performance of the absolute DS service model. In [20],
the authors illustrate that in order to provide service as-
surance with coarse spatial granularity and high network
utilization, some form of route pinning is required.

In [2], the authors propose a differentiated services model
which provides proportional performance spacings, rather
than absolute spacings. The goal is to give better perfor-
mance to class ¢ traffic, relative to class ¢ — 1 traffic, with a
“fixed” quality spacing. If the goal is consistently achieved,
then class ¢ users will see a better performance than class
i —1 users. In return, the ISP can legitimately charge class
i traffic a higher tariff rate than class ¢ — 1 traffic. In [2],
the authors propose two algorithms, called BPR and WTP,
respectively, for implementing proportional delay differen-
tiation. For WTP scheduling in particular, they show that
in order to achieve a delay ratio of r between two traffic



classes when the system is nearly 100% utilized, the cor-
responding control parameters should also be set to have
ratio r. As we will illustrate, however, the WTP control
parameters should in fact depend on the distribution of
traffic loads. We also formally illustrate the conditions un-
der which given delay ratios are feasible. Specifically, our
paper addresses the following questions:

e Given desired waiting time ratios for N traffic classes,
under what conditions (e.g., traffic load distribution
for the NV classes) can feasible WTP control parame-
ters be found so as to achieve the waiting time ratios?

e Given that the waiting time ratios are feasible, how
can one efficiently obtain WTP control parameter val-
ues that will achieve the waiting time ratios?

e Given the obtained control parameters, can we main-
tain the waiting time spacings at different time scales?

e Given that real traffic workloads are time-varying in
nature, how can we adapt to the time-varying traffic
and still be able to maintain the waiting time ratios?

The balance of the paper is organized as follows. In
Section 2, we review proportional differentiated services as
it is described in [2]. In Section 3, we characterize and
analyze the performance of a time-dependent-priority al-
gorithm (which is the same as the WTP algorithm[2]) in
achieving proportional delay differentiations. We discuss
the conditions under which feasible control parameters for
the TDP algorithm exist and how they can affect a given
set of quality spacings. We also present an efficient iterative
method for finding the values of these control parameters
when they exist. In Section 4, we present several dynamic
adjustment algorithms to handle time-varying traffic. In
Section 5, we present experimental results that illustrate
the performance of our methods. In particular, we compare
waiting time spacings achieved between different classes of
traffic using the control parameters in [2] versus using those
obtained by our proposed iterative method. We present
waiting time spacing results under different time scales,
different traffic arrival patterns and time varying traffic
patterns. Experiments are carried out to illustrate the
achieved end-to-end accumulative waiting times for differ-
ent classes of traffic under proportional-delay differentiated
services. Section 6 concludes.

2 Background

In this section, we review the proportional differentiation
service model proposed in [2]. The model has two objec-
tives. First, it should provide consistent service differenti-
ation between classes; i.e., a class with higher advertised
quality should consistently outperform a class with lower
advertised quality. Second, it should allow the quality spac-
ings between classes to be adjusted based on pricing and
other criteria. For example, it should be possible to con-
figure the average packet delay of a higher quality service
class to be, say, 80% of the delay of a lower quality class.
Further, the authors stipulate that these two goals should
be met even for “short” timescales.

In [2], the authors propose two scheduling algorithms for
approximating the proportional DS model for delay differ-
entiation under heavy-load conditions. The first one, called
the backlog-proportional rate (BPR) scheduler, is based on
GPS, but with the modification that the class service rates
are dynamically adjusted so that they are in proportion to
the corresponding ratios of measured class loads. Specif-
ically, let r;(t) be the service rate that is assigned to the
queue 7 at time ¢. If queue ¢ is empty at time ¢, r;(t) = 0.
For two backlogged queues, i and j, the service rate allo-
cation in BPR satisfies the proportionality constraint:

ri(t) _ bi ¢i()

ri(t)  bjg;(t)
where ¢;(t) is the backlog of queue i at time ¢, and b; is
a set of control variables where 0 < b; < by < ... < by.

When the system utilization tends to one, the ratios of
the b;’s tend to the target long-term waiting time ratios.
The service rate of each class during a busy period can be
calculated from the work-conservation constraint:

where R is the link capacity. The BPR algorithm exhibits
sawtooth-type delay variations over short timescales[2].

The second algorithm, called the waiting-time priority
(WTP) scheduler, is based on Kleinrock’s Time-Dependent-
Priorities (TDP) algorithm [8]. Specifically, the priority of
a packet from flow ¢ at time ¢ is proportional to the wait-
ing time of that packet at time ¢, where the proportionality
constant, denoted by s; (using the notation in [2]), is a ser-
vice parameter for flow 7. In other words, the priority of a
packet in the queue 7 at time ¢ is

pi(t) = wi(t)s;

where w;(t) is the waiting time of the packet at time ¢.
Using simulations, the authors [2] show that, under heavy
system load, the relative average delay experienced by two
flows, say ¢ and j, in a WTP server has value close to s;/s;,
for monitoring timescales as short as a few tens of packet
transmission times. Hence, WTP approzimates the propor-
tional delay differentiation model under heavy-load condi-
tions (e.g., when the system utilization is close to 1). The
reason it is an approximation is that, on the one hand, it is
known that consistent quality spacing cannot be achieved
over timescales that are arbitrarily short. On the other
hand, no conditions are given in [2] to assess feasibility
given a certain value of the monitoring timescale. Hence,
the notion of “short” timescales remains imprecise.

Given the lack of a complete characterization of the pro-
portional DS model, we set out to further evaluate its the-
oretical and physical properties. Our objectives are (1) to
further contribute to the understanding of feasibility con-
ditions for achieving proportional-delay differentiated ser-
vices, and (2) when it is feasible, to derive the values of
the control parameters that can achieve given target delay



spacings. We mainly focus on the WTP algorithm, which
is shown to be highly effective in [2]. We use an analyt-
ical approach to characterize the feasibility for achieving
proportional delays. We found that, independent of the
timescale parameter, system utilization impacts feasibility.
Further, we show that when system utilization varies (i.e.,
traffic intensities are time-varying in practice), the per-flow
WTP control parameters should be dynamically adjusted
to maintain the target delay differentiations when feasible.

3 Characterization & Performance
Analysis

In this section, we summarize some results of time depen-
dent priority (TDP) scheduling. We first characterize a
necessary and sufficient condition for a given delay spacing
to be feasible under TDP for two traffic classes. We then
extend the characterization of TDP to N classes. We also
present an iterative method for obtaining the values of the
feasible control parameters.

In general, TDP is a non-preemptive packet scheduling
algorithm which provides a set of control variables b;,1 <
i < N where 0 < b; < by <--- < by. The control variable
b; dictates the dynamic instantaneous priority of class 4
packets. Specifically, if the k-th packet of the class i arrives
at the queue at time 74, then its priority at time ¢ (for
t > 11,), denoted by ¢¥(t), is

att) = (t—m)bi. 1)

Figure 1 illustrates a two-class TDP. Assume that the first
packet of class 1 arrives at time 0 and the first packet of
class 2 arrives at time ¢;, and both packets remain in the
system until time ¢3. During the time interval (¢1, 2], the
class 1 packet will have a higher priority than the class 2
packet. But since the control parameter by is larger than
b1, after time ¢ > t2, the class 2 packet will have a higher
priority. Let N;(t) denote the number of class i packets

sl ope b,

qi(t) and gi(t)

sl ope b,

i nstantaneous priority
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Figure 1: A two-class TDP where b; < bs.
waiting in the queue at time t. If the server is ready to

transmit a packet at time ¢, it only needs to consider the
priority of the packets at the head of the queue for each

class. It is because for the same class, the earlier arrival
packets always have a higher priority than the later arrival
packets. Let us define g;(t) as the priority of the packet at
the head of the class i queue. When the server is ready to
transmit a packet, it chooses a packet from class i* where

i“(t) = arg {a:(t)} 2)

i=1. NN(t)>O

Ties for the highest priority are broken by serving the
packet that has been waiting the longest in the system.
If there is no packet in the system, then the server will be
idle and it will be activated by a newly arriving packet.
Note that in the TDP scheduler, a class ¢ packet increases
in priority at a faster rate (b;) than packets of any class
Jj <i.

We can obtain the expected long term waiting time of
each class of traffic under the TDP scheduling algorithm.
Assuming that the arrival process of class ¢ traffic is Pois-
son with an average rate of )\;, and the services times of
class ¢ packets have a general distribution with the first
and second moments given by Z; and z?, respectively, the
system utilization, denoted by p, of a TDP server is equal
to Zf;l pi where p; = NT;. In [8], the author derives
a closed-form expression for the average long-term wait-
ing time for class ¢ packets. The closed-form expression is
given as

[Wo/(1 = p)] =S4} peWi[L — (b /b))
1= 3N . pell = (0i/bw)]

W; = i=1,.,N
o 3)
where Wy = %Ef\; Xiz? is the expected residual service
time. It is interesting to note that the above expression
was derived by assuming that packet service times are ex-
ponentially distributed. In [14], the authors illustrate that
the closed-form expression in Equation (3) is also valid for
any general service time distribution.

One attractive feature about the TDP scheduler is that
if one wants to maintain certain proportional differentia-
tion of waiting times between different classes of traffic,
one can simply adjust the control parameters b;’ s so as to
achieve the desired waiting time spacings. Let rf ; be the
target long term average waiting time ratio between class
i and class j traffic, and r{; be the achieved long term av-
erage waiting time ratio between class ¢ and class j traffic
(e, ry; = VV‘ZJ ). The goal of proportional-delay differen-
tlated services is to make the achieved long term waiting
time ratio equal to the target long term waiting time ratio;
i.e., to achieve r{; = rf,. In [2], the authors study the
proportlonal average delay behavior of the TDP scheduler
and show that when the system utilization tends to 100%,
ri; = rf,j can be achieved by setting the control parame-
ters equal to the inverse of the target ratio. However, the
authors only consider the asymptotic case of 100% utiliza-
tion. In practice, a router is not under 100% loading at all
times. Thus, we investigate other loadings as well. In this
paper, we address the following important questions:

1. Given the waiting time ratio requirements for all classes



7t (where i = 1,2,..., N — 1), under what condi-
tions of p;’s does a solution for b;’s exist?

2. Given p;, the traffic loads of all classes, how to obtain
the b; values so that the achieved waiting time ratios
¢4, are equal to the target ratios rf;, ,?

To understand the problem, we start with a simple case
of two traffic classes. We then go on to solve the general
problem of N traffic classes.

3.1 Two-class Proportional DS

Theorem 1 For two classes of traffic, let r{,z be the target
ratio of the average waiting time of class 1 traffic to that
of class 2 traffic. Then, r{, = rf,2 is feasible if and only if
the system utilization p satisfies:

1
71,2

Proof: First, p < 1 is required so that the system is stable.

Let us first show the only if part (ie., if r{, = r{ ,, then

1— -+ < p < 1). According to Equation (3), packets of
1,2

the two classes have average waiting times of
Wo/(1—
", Wo/(1=p)]

1 — pa[l — (b1/b2)]
[(Wo/(1 = p)] — prWi[Ll — (b1/b2)].

By substituting W7 into W, we have
1= p[l = (b1/b2)]
1= p2[l — (b1 /b2)]
The achieved ratio of the long term average waiting time
between class one and class two is given as
oW1
B2TWy 1= p[l = (b /)]

Wy =

Wa = [Wo/(1 - p)]

(4)

If the target ratio is achieved, that is, r{, = r{ ,, then

¢ 1
2T o= (b1 /b))

After rearranging the above equation, we have

b 1
1— —
by — by ( 7“{,2) ©)

b
o > L Therefore,

Since 0 < by < ba, this implies that
p > 1— 1

3
T1,2

Next, we consider the if part (i.e., if 1 — 7~ < p < 1, then
1,2

iy =rly). fp>1-— i , then we can let

by 1
1— —
() ®

where b; and by are some constants such that 0 < b; < bs.
By substituting it into Equation (3), we get r{, =1t ,. W

p =

Remarks: The implication of the above theorem is that
in order to achieve the target ratio r{’z, we need to have a
sufficient amount of traffic and enough packets which are
backlogged in the system. For example, if the requirement
is 7} , = 10, then the system has to be at least 90% utilized
so as to achieve the desired waiting time spacing. In other
words, if the system utilization is less than 90%, then we
cannot achieve r{ , = 10.

We make two observations from the above theorem. First,
the ratio of the average waiting times does not solely de-
pend on by /by, but rather, depends on the system utiliza-
tion also. Only when the utilization tends to one (p — 1)
will the control parameters bs /by = r{,2 achieve the desired
waiting time spacing. Second, if the system utilization is
known, we can adjust b; and by such that the achieved
waiting time ratio will be equal to our target value r? ,.
Let us present how to choose the proper values for b;’s.

Corollary 1 Ifb; =1,by = p/(p—l-{-r%); and 1_% <
1,2 1,2

p <1, thenr{,=r},.

Proof: By substituting by =1, by =p/(p—1+ T} ) into
1,2

Equation (3), we can achieve r{, =74 ,. |

Corollary 2 If1— T} < p <1, then any by and by such
1,2

,

that by /by = (p— 1 + =2
1

; a — nt
: )/ p can achieve r{ o =17 ,.

Proof: First, we need some results for the TDP system.
In [8], the author states that for two TDP systems A and
B wherein the control parameters for system 4 are {b;}
and the control parameters for system B are {b;}. If we
maintain the following relationship

i _ ,b" fori=1,2,...,N,

bit1

then W; in A will be equal to Wz' in B. In other words,
the average waiting time of a TDP system depends not on
the ezact value of the control parameters b;’s but rather,
depends on the ratios of b;’s.

If 1 — - < p < 1, from Corollary 1, by = 1 , by =

T
T1,2

pllp—-1 +T%) can achieve r¢, = rt,. As TDP system
1,2 b bl

depends on the ratios of b;’s only, any b} and b}, such that

b o
b pllp—1+ )

T1,2

p—1+ 2
,2

t
"1
p

can achieve r{ 5 = r{ ,. |

In conclusion, to satisfy a specified system performance
requirement % ,, we need to measure the system utilization
and set the parameters b; and by accordingly. The traffic
loading measurement and dynamic adjustment of the con-
trol parameters {b;}’s will be discussed in detail in Section
4. Then the achieved long term average waiting time ratio



of class one traffic to class two traffic will be equal to the
target value of r{,z, provided that p is within the feasibility
region (1 —1/r] ,,1].

3.2 N-class Proportional DS

For the general case of N classes, the problem becomes
very complicated because to find the values of the control
parameters {b;}’s, we need to solve Equation (3), which is
a system of IV non-linear equations. Nevertheless, we can
calculate W; by using the conservation law principle, pro-
vided that the configuration of the system (p; and W) is
known. The conservation law [8] states that if a scheduling
discipline is independent of the service time of jobs, then
the weighted average of the waiting times of all classes is
invariant, and it is equal to the average waiting time of an
M/G/1 system. Mathematically, the relationship is

N
: Wi
> lw = = )
- P p
Let usdefine s; =1y, 75,1 ;4o Ty _; - If we can achieve

re; = r”, then s; = W; /W, so we can express all W;’s
in terms of W and s;. That is W; = s;Wy for all i =
1,2,..., N —1. Substituting this expression of W; in Equa-

tion (7), we have

N
W, 1
o - = ZpisiWN-
- P P

We can express W; in terms of s;, p;, and Wy, which are:

) PWo

N —1
T, (;pisi> fori=1,2...,N. (8)

From the above equations, we observe that if r{; = 7} ; is

achieved, the only unknown in Equation (3) is the vector
b = [b1,ba,---,bn]. Now, putting all b;’s in Equation (3)
on the left hand side, we have

(3,55 () -

k= z+1

Wi =

W i—1
0 —Zpka— <1— Z pk)
k=i+1
Letting
o i1
AG) = Z X :ZPkabk§
k= z+1 =
R(i) = (1— > pk>
k=i+1
we have
A@bi- 29— ke i=1,2,...,N. (10)

Now, we have a system of non-linear equations for solving
the b;’s. Since all the b;’s have to be positive, there should
be a condition for p; and s; such that {b;}’s are positive.
The result is expressed in the following theorem.

Theorem 2 A necessary condition to have positive solu-
tions of the b;’s is R(1) > 0 and R(N) <0

Proof: Since b; > 0fori=1,2,...,N, we have A(i) > 0
and B(i) > 0. However, R(i) can be positive or negative.
Let us consider three cases.

Case 1: For i = 1, we have B(1) = 0, which implies that
k(1)

b=

Since b; > 0, this in turn implies that R(1) > 0
Case 2: For 1 < i < N, we use the result from Equation
(10) and get

A(i)b? — R(i) b; — B(i) = 0.

Since we want {b;}’s to be positive, we have

b — (i) + /R(i)? + 4A(1) B(i)
' 2A(i) '

Because R(i)* + 4A()B(i) > R(i)?, therefore |R(i)| <
V/R(i)? + 4A(i) B(i). Hence we have

R(i) + |R(1)|

In summary, for 1 < i < N, b; is always greater than zero
even when R(7) is negative.
Case 3: For i = N, we have A(N) = 0, which implies that

B(N)

I 76

Since by > 0 and B(N) > 0, we conclude R(N) <0. &

Remarks: The implication of the above theorem is that
a necessary condition for a feasible region (e.g., a region
wherein a positive solution of b;’s exist) is R(1) > 0 and
R(N) < 0. If the system configuration (p;, s;) falls outside
of this region, it is possible that there exist no positive
values of the b;’s for which the TDP scheduler can obtain
the target waiting time ratios.

The first condition R(1) > 0 implies

N
> 1 _Zpi
i=2

where Wy /(1 — p) is the average waiting time of the ag-
gregate traffic. If we want a large waiting time differen-
tiation, Wi has to be larger than W;,i = 2,..., N. Since
Wy > Wy > ... > Wy, this implies the fraction on the left
hand side of Equation (11) has to be small. Thus, Zf\;Q pi
should be close to one to make the inequality hold. The
physical meaning is that to have a large waiting time dif-
ferentiation, there should be a sufficient amount of higher

Wo/(1=p)

7 (1)



class packets to keep the system busy so that the lower
class packets are delayed adequately.
The second condition is R(N) < 0, which implies

N-1
< Z piW; + Wi

i=1

Wo
1-p

(12)

By the conservation law, Wy /(1 — p) = SN, EWi. If we
put it back into Equation (12), we have

N N-1
S Pwi < S pWit Wi
z:lp i=1
N-1
0 < pi ( Wi(l-p)). (13
i=1

Since Wy > W > --- > Wi, to make the right hand side
of Equation (13) positive, one way is for p to be large (i.e.,
tend to 1). If p tends to 1, the value of the left hand side in
Equation (12) will be large. To make the inequality hold,
the value of the right hand side in Equation (12) should be
larger. Since Wy > Wy > --- > Wy and the major part
of Zf;l piW; + Wy is the weighted average of the mean
waiting time of the first N — 1 classes, to attain a large
value, p; should be large, especially for the lower traffic
classes. The physical meaning is that in order to have a
large waiting time differentiation, the server has to delay
packets of the lower classes so as to have large waiting
times W;,i = 1,..., N — 1. If their traffic loading is high,
many of them will be backlogged and their waiting time will
increase. Last but not least, another important implication
of the above necessary conditions is that even though the
system utilization p remains unchanged, it is still possible
that certain distributions of p;’s will not lead to a positive
solution of b;’s. In such cases, the system cannot achieve
the target waiting time ratios.

We now present an efficient algorithm for computing the
values of b;’s, provided that the necessary condition is sat-
isfied. In general, we have to find a solution for the set of
non-linear equations in Equation (9). To achieve this, the
following iterative algorithm is proposed. The iterative al-
gorithm is based on the Gauss-Seidel iteration method [9],
which has a well-known condition for convergence.

First, let ¢; be the functional evaluation operator for b,

where b; = ¢;(b1,ba,...,by) for i =1,2,..., N where
BO+ZON: for i # N,
¢i(b,ba, ..., by) = (14)
b:B(i .
—R(SV)) fori =N,
and for ¢ =1,..., N, we have:
filb) = A(i)b; — B(i)/bi — R(i) (15)

The iterative algorithm is:

Procedure: Iterative Algorithm

Input: X\;, 7;, z? fori =1,..,N.
/*average arrival rate of class i traffic,

1°t, 2" moments of service times */
Output: b = [by,bs,...,bn].
1. begin
2. k=0 bgo):%forizl,...,N; /* initialize */
3. /* test for c:)nvergence */
4. while (XN, |fi(®®] > €) and

%k < MAX_ITERATION_.COUNT )

5 begin /* update the value of bgk) */
6 for (i=1;i<=N;i=1i+1)
7. R = g, (b p{EHL | plREL) k) Ry,
8 k=k+1;
9 end
10. end

In line 2, we initialize the starting point of the iterative
algorithm. The functional evaluation operator f;(-) in line
4 is the set of Equations (15). That is, for the k** iteration
control parameters bgk), we test whether these control pa-
rameters can satisfy Equation (15) or not. If the absolute
aggregated error is less than a pre-defined error thresh-
old, then we obtain the correct control parameters. For
completeness, we show the convergence condition of our
algorithm in [11].

4 Dynamic Adjustment & Related
Issues

From Corollary 1 and Theorem 2, it is clear that the values
of the control parameters to support a given quality spac-
ing are a function of traffic loadings. These traffic loadings
are not constant in a realistic system. To maintain a given
quality spacing, it is thus necessary to monitor changes in
system conditions and to adapt the control parameters ac-
cordingly. (Other researchers have also looked at adapting
network control parameters based on past measurements
of network utilization, in different contexts than ours. For
example, adapting admission control criteria for predictive
service using past measurements of network traffic is dis-
cussed in [7]; adapting the ECN marking probabilities of
packets — for router congestion control — based on the to-
tal traffic arrival rate at a router is proposed in [18].) In
this section, we present efficient dynamic measurement al-
gorithms for tracking the loads of different traffic classes.
Assuming that the traffic conditions evolve slowly in
practice, we can predict present traffic arrival rates by a
history of past arrival rates. Specifically, we monitor the
number of packet arrivals over definite time windows. To
estimate the present arrival rate of a flow given these past
samples, we experimented with two possible strategies:

e Jumping window. We use a jumping window of
size W (in seconds). At the end of each window, the



number of packet arrivals for a flow during the win-
dow divided by W gives a new arrival rate estimate
for the flow. Estimates for all flows are fed to the it-
erative algorithm to give new control parameters, b;’s,
for use in the current window. The window size W
provides controlled tradeoff between system stability
and responsiveness. This is because a larger W incor-
porates more history into the estimation, giving esti-
mates that are more robust against transient condi-
tions. A smaller W, on the other hand, allows quicker
adaptations based on more instantaneous measures of
system behavior. The jumping window algorithm is
specified in Figure 2.

e Exponential averaging. Instead of using a jumping
window of size W, this algorithm is based on the ex-
ponential averaging technique proposed by Jacobson
and Karels [6] for estimating TCP round trip times,
which includes second-order statistics for added ro-
bustness. In the algorithm specification in Figure 3,
delta, sigma and zeta are input parameters. Of
these, delta and sigma (between 0 and 1) control, in-
dependently of the measurement window, how much
the new estimate for the arrival rate and its variance,
respectively, is weighted by previous history. As the
parameters become smaller, more history is admitted.
This contributes to system stability at the expense of
responsiveness.

Initially:
arrival_rate_i = 0.0; /* estimate for flow i traffic */
At the end of each measurement window:
counter_i = # of class i pkt arrivals within the window;
W = window size (in seconds);

arrival_rate_i := counter_i / W;

Figure 2: jumping window algorithm

In each strategy, we set initial control parameters such
that their ratios are inverses of the corresponding target
spacing ratios; i.e., b;/b; = 1/r;;,Vi,j. Adaptations are
then made periodically, with period W. Besides giving a
more eagerly reacting system, a smaller W clearly adds to
the operation cost of a router, in that the iterative algo-
rithm has to run with higher frequency. We also consider
a very efficient baseline approach in which after the initial
control parameters are determined, they remain unchanged
thereafter (i.e., W is oo and there is no adaptation). We
call it the static control approach.

In Section 5, we evaluate the performance of our adap-
tation strategies, when compared with the use of static
control parameters. For dynamic operating environments,
such as described by an MMPP with significantly varying
flow arrival rates between states, we show that adaptation
can be generally beneficial and allow target quality spac-
ings to be maintained. Further issues regarding the stabil-
ity, robustness, and responsiveness of the jumping window

Note that delta, sigma and zeta are input parameters. We set
delta = 1/8.

sigma = 1/4.

zeta = 2.0;
Initially:

arrival_rate_i = 0.0;

diff = 0.0;

dev = 0.0;

At the end of each measurement window:

counter_i = # of class i pkt arrivals within the window;
W = window size (in seconds);
/* to calculate */
diff = counter_i / W - arrival_rate_i;
n_arrival_rate = (1.0 - delta) * arrival_rate_i +
delta * counter_i / W;
n_dev = (1.0 - sigma) * dev + sigma * |diff];
/* set new estimate of the deviation of arrival rate */
dev = n_dev;

/* compute new estimate of arrival rate. This will */
/* be used as input to find the control vector b. */

arrival_rate_i = max(n_arrival_rate + zeta * dev, 0);

Figure 3: exponential averaging algorithm

and exponential averaging algorithms are also discussed.

5 Experimental Results

In this section, we present the results of our experiments
(further experiments are also be found in [11]). We classify
the experiments into four types, A, B, C, and D, for which
the goals are:

Type A (comparisons with [2]): Illustrate the effective-
ness of our iterative algorithm, as compared to the results
in [2], in finding the values of the WTP control parame-
ters. We compare both long term and short term achieved
waiting time ratios between different classes of traffic.
Type B (non-Poisson traffic): Illustrate the insensitiv-
ity of our iterative algorithm for non-Poisson traffic. To
do so, we study achievable waiting time spacings when the
input traffic is Pareto, MMPP, or mixed (i.e., combination
of Poisson, MMPP and Pareto traffic).

Type C (dynamic adjustment algorithms): Illustrate
the effectiveness of our dynamic adjustment algorithms.
We study the quality of the achieved waiting time spac-
ings under varying traffic intensities and see how well our
dynamic algorithms can adjust the WTP control parame-
ters under changing operating conditions. We study both
long and short term waiting time ratios achieved under het-
erogeneous input traffic models (i.e., Pareto, MMPP and
Poisson).

Type D (end-to-end accumulative waiting time ): Il-
lustrate the achieved end-to-end accumulative waiting times
for different traffic classes, when the traffic traverses multi-
ple network nodes. We investigate the achieved end-to-end
accumulative waiting times under different traffic scenar-



ios, such as different router loads and cross traffic patterns.

5.1 Type A: Comparisons with [2]

In this subsection, we report results from several experi-
ments. In the first experiment, we compare performance
results using the control parameters taken from [2] versus
control parameters obtained using our iterative algorithm.
We investigate long-term and short-term average waiting
time spacings under various system utilizations.

Experiment A.1 (Comparisons with [2]): We con-
sider three classes of traffic. The arrival process of class %
(1 =1,2,3) is Poisson with a rate of ;. The packet length
distribution is the same for all classes where 40% of the
packets are 40 bytes, 50% are 550 bytes, and 10% are 1500
bytes. The output link capacity is 441 bytes/unit time,
where the time unit can be normalized to achieve an arbi-
trary link speed. In each run of the experiment, we gener-
ate at least 50,000 packet arrivals for each class. Then, we
average the waiting times for each class and compare the
achieved waiting time ratios with the target ratios. In part
one of the experiment, we set A\; = 0.35, A2 = 0.3, A3 = 0.3
(since the service time requirement is normalized to one,
the system utilization is p = 0.95) and consider the target
waiting time spacing of r;,, = 4.0. Table 1 illustrates
the achievable spacings, using the control parameters in
[2] and our proposed method. We observe that the

it is feasible to achieve given waiting time spacings, and if
S0, the correct values of the control parameters.
Experiment A.2 (Long-term waiting time spacing):
In the first part of the experiment, we want to test whether
we can achieve the target waiting time ratios under dif-
ferent system utilizations. We consider three classes of
traffic. All arrival processes are Poisson. For a low sys-
tem utilization case (p = 0.2), the arrival rates are Ay =
0.05,A2 = 0.1, A3 = 0.05. For a medium utilization case
(p = 0.6), the arrival rates are A; = 0.2, A2 = 0.2, A3 = 0.2.
For a high utilization case (p = 0.9), the arrival rates are
A1 = 0.3, = 0.3, A3 = 0.3. The packet length distribu-
tion is similar to the one in Experiment A.1. The experi-
mental results are summarized in Tables 3 to 4. As we can
observe, our iterative algorithm is very efficient (less than
20 iterations of the algorithm are needed) in finding the
correct control parameter values.

Method control 12 TS 3
used parameters
2] by = 1,bp = 4,b3 = 16 | 3.366 | 3.030
our b1 =1,b2 = 5.11
approach b3 = 35.937 3.990 | 3.890
Table 1: Comparison between achievable waiting time

spacing (where r};,; = 4.0 and \; = 0.35, Ay = A3 = 0.3).

G .1 I.1 T.1

rh 1.1 1.1 1.1
[b1,b2,b3] | [1,2-03,4.17] | [1,1.18,1.4] | 1,1.11,1.24]
# of loops 5 11 12

™, 1.10 1.09 1.10

TS 3 1.12 1.09 1.10

Table 3: Long-term average waiting time spacings with

rt ;41 = 1.1 under different system utilizations.

(I o | p=02 | p=0.6 p=0.9 [
o 2.0 2.0 2.0
rha 2.0 2.0 2.0
[b1,b2,b3] outside outside [1,2.32,5.554]
feasible region | feasible region
# of loops e e 20
e, _ — 2.01
g, _ — 1.99

Method control o | ™93
used parameters

[2] b=11,2,4] 1.39 | 1.36

our approach | can’t pass feasibility test — —

Table 2: Determination of non-achievable waiting time
spacing (where r},,; = 2.0 and \; = Ay = A3 = 0.2).

proposed control parameters in [2] cannot achieve the tar-
get spacings even at high system loading. However, our
proposed algorithm can find the appropriate values of the
control parameters such that the target waiting time ra-
tios can be achieved. In the second part of the experiment,
we set the arrival rates as A\; = 0.2, A2 = 0.2, 3 = 0.2 (or
p=0.6) and r},,, = 2.0. Table 2 illustrates the achievable
spacings. As shown, our algorithm can determine that it
is mot possible to achieve the target waiting time spacings
(r} 41 = 2) for the given load distribution. Indeed, using
the proposed control parameter values in [2], we can only
achieve spacing values around 1.3. These experiments illus-
trate that our iterative algorithm can determine whether

Table 4: Long-term average waiting time spacings with
7 ;11 = 2.0 under different system utilizations.

In the second part of the experiment, we vary the num-
ber of traffic classes, and see how robust our algorithm is
in finding the appropriate control parameter values. In ex-
periment A, we consider four classes, whose traffic arrival
rates are A = 0.2,0.2,0.25,0.25, respectively. In experi-
ment B, we consider five classes, whose traffic arrival rates
are A = 0.1,0.1,0.1,0.3,0.3, respectively. In experiment
C, we consider six classes, whose traffic arrival rates are
A=0.1,0.1,0.1,0.1,0.25,0.25, respectively. In experiment
D, we consider seven classes, whose traffic arrival rates are
A =0.1,0.05,0.05,0.05,0.05,0.3,0.3, respectively. The re-
sults are shown in Table 5. In all the cases, our iterative
algorithm is highly efficient (requiring between 12 and 39
iterations) in obtaining the control parameter values for
given target waiting time spacings.

Lastly, we evaluate system performance under different
class load distributions. We consider three classes of traf-
fic with target spacings of r},,; = 1.1. In all the cases
considered, the system utilization is p = 0.9. The results



Exp. | # of control achieved spacing
loops parameters (b) (r¢i41)

A 38 [1.0, 1.113, 9, =L11,73 5 = 1.09

1.239, 1.380] rg,4 =1.11.
B 12 [1.0, 1.115, ¢, = 110,75 3 = 1.10
1.242, 1.383, 1.539] | 7%, = 1.10, r% ; = 1.10
C 39 [1.0, 1.116, ¢, = 1.10,7§ 3 = 1.09
1.244, 1.385, 8, = 111,15 = 1.10

1.543, 1.719] ré o =110
D 13 [1.0, 1.117, 78, = 1.10,73 , = 1.10
1.247, 1.391, 8, =1.10,7¢ 5 = 1.10
1.551, 1.728, 1.926] | 7%, = 1.10,7¢, = 1.10

Table 5: Long-term waiting time spacings as we vary the
number of traffic classes (r}; , = 1.1).

are shown in Table 6. Our algorithm achieves waiting time
spacings remarkably close to 1.1 across the different traffic
distributions. From the experiments in this subsection, we
conclude that our proposed algorithm can robustly deter-
mine accurate control parameter values under a variety of
operating conditions (i.e., different system utilizations, dif-
ferent numbers of traffic classes, and different traffic load
distributions).

load # of b 7“1’,2 Tg,s
distribution (%) | loops

33.3-33.3-33.3 11 1, 1.113, 1.238 1.10 | 1.10
30-20-50 9 1, 1.113, 1.238 1.10 | 1.10
20-30-50 6 1, 1.113, 1.238 1.10 | 1.10
10-45-45 4 1, 1.113, 1.238 1.10 | 1.11
45-10-45 51 1, 1.113, 1.239 1.10 | 1.10
45-45-10 36 1, 1.113, 1.238 1.10 | 1.10

Table 6: Waiting time spacings for three classes of traffic
under different traffic loading distributions (target r} ;,, =
1.1 and p = 0.9).

Experiment A.3 (Short-term waiting time spacing):
Besides long-term analysis, we also study the short-term
behavior of our packet scheduling algorithm. In these ex-
periments, we want to find out the ratios of the average
waiting times between successive classes within a fized time
interval (or what we call the monitoring window). We mea-
sure the average waiting times of all the packets that get
served within a monitoring window. The length of the
monitoring window is varied to be 100, 1000, 3000 and
10,000 p-units, where a p-unit is the average packet trans-
mission (or service) time. Figures 4 is the histogram for
the achieved short-term waiting time ratios under differ-
ent system utilizations, target waiting time spacings and
monitoring window sizes. The x-axis in a histogram shows
the whole range of possible waiting time ratios (the end
partitions are less than 0.2 and greater than 2.2, respec-
tively). As an example, Figure 4(d) is the histogram for
the waiting time spacings under p = 0.6 and 0.9, target
ratios 7 ;,, = 1.1 and monitoring window size of 10,000
p-units. From Figures 4, we make two observations:

1. The short-term waiting time ratios approach asymp-
totically the target waiting time ratios as we increase
the monitoring window size, i.e., the larger the moni-

toring window size, the higher the chance of achieving
the target waiting time ratios over a short time scale.
As the length of the monitoring window size increases
to infinity (which corresponds to the steady state wait-
ing time ratios), the target waiting time ratios rii 1
can be exactly achieved.

2. the higher the system utilization, the short-term wait-
ing time ratios approach the target waiting time ratios
7% 41 at a faster rate than with lower system utiliza-
tion.

Note that if the system is highly utilized, then the achiev-
able waiting time ratios can be kept close to our target
spacings even in short timescales. As can be observed from
these figures, most of the waiting time ratios fall within
our target spacings. Moreover, the variance of the ratios is
small. However, if the system utilization is low, the vari-
ance of the waiting time spacings is large. For really short
time scales (e.g., monitoring window size of 100 p-units),
only a small percentage of the data points lies within our
target region. The reason is that when the system utiliza-
tion is low, the scheduler needs a longer time to serve suffi-
cient packets so that the per-class waiting times can reach
the equilibrium values. This makes the target waiting time
ratios difficult to achieve over a short monitoring window.
When the system utilization is high, sufficient packets can
arrive, even within a small monitoring window, so that the
waiting times of traffic within the monitoring window will
be close to the equilibrium values.
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Figure 4: Achieved short-term waiting time ratios, target
ratio r} ;. = 1.5, system utilization p = 0.6 or p = 0.9




5.2 Type B: Non-Poisson Traffic

Realistic traffic may not be Poisson, and a robust packet
scheduler should not depend on modeling assumptions. In
[3], the authors study a scheduling approach in which the
delay ratios between service classes are dynamically mon-
itored to affect the scheduling decision. However, the ap-
proach can cause large delay ratio deviations in short time
scales. Although the WTP scheduler does not depend
on modeling assumptions, its control parameters are com-
puted based on M/G/1 queuing analysis. Therefore, in this
subsection, we consider non-Poisson input traffic. We eval-
uate the effectiveness of our iterative algorithm in finding
WTP control parameter values to meet target waiting time
ratios. For all the experiments in this subsection, we con-
sider three classes of traffic. The load is evenly distributed
among the three classes. The packet length distribution is
the same for all the classes, where 40% of the packets are
40 bytes, 50% are 550 bytes, and 10% are 1500 bytes. The
output link capacity is 441 bytes/unit time, where the time
unit can be normalized to achieve an arbitrary link speed.
Experiment B.1 (Pareto traffic): We consider three
Pareto traffic arrival processes. The packet inter-arrival
times for each class are Pareto distributed with the shape
parameter equal to 1.9. We vary the system utilization
from 0.5 to 0.95 and compare the achieved long term wait-
ing time ratios between our iterative algorithm and the
method in [2]. We consider two target waiting time spac-
ings, r},,, = 1.2 and r},;,; = 1.5. Figure 5 presents the
comparisons. From these figures, we observe that using
our iterative algorithm: (1) the long term achieved wait-
ing time ratios are significantly closer to the target waiting
time ratios, as compared to the approach in [2], and (2) we
can successfully obtain the control parameter values even
when the traffic arrivals are non-Poisson.
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Figure 5: Pareto input traffic: achieved waiting time ratio
vs. system utilization.

Experiment B.2 (Mixed traffic): In this experiment,

10

we consider three vastly different input traffic sources. Class
1 traffic is generated based on a Poisson process with rate
A, class 2 traffic is generated based on a Pareto distribu-
tion with shape parameter a = 1.9, and class 3 is gener-
ated based on a two-state MMPP[4]. Specifically, the two-
state MMPP has four parameters A;, Aa, 1 and po, where
A1 and Ay are the conditional traffic arrival rates, and p;
and pe are the conditional transitional rates given that the
Markov chain is in states 1 and 2, respectively. These four
parameters are computed based on five values: the mean
arrival rate of the overall process m;, the variance of the
arrival rate ms, the third moment of the arrival rate mg,
the time interval At, and the lag-1 autocorrelation coeffi-
cient ¢. Note that At and ¢ can control the length of the
resident time in a state of the Markov Chain. For simplic-
ity, we set m3 = 0 and ¢ = 1/e in all our experiments. The
parameters are related as follows:

At .

T=—£L; = mnzg; n=1+3[—-V4+4] (16)
AL =my 4 /5 A =my — \/mam; (17)
1= m; M2 = ﬁ (18)

The experiment setting in this case is similar to the set-
ting of Experiment B.1. Here, we set rf;,, = 1.2, my =
0.01,m3 = 0 and 7 = 500. Each class of traffic contributes
the same amount of system load. The results are summa-
rized in Figures 6. From these figures, observe that both
our iterative algorithm and the approach in [2] are not ef-
fective in achieving the target waiting time ratios. How-
ever, as we will show in the following section, we can obtain
much better results using a dynamic adjustment algorithm
to find the control parameter values. We will give a more
detailed explanation of this phenomenon in the section.
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Figure 6: Achieved waiting time ratio against system uti-
lization for heterogeneous traffic classes.

5.3 Type C: Dynamic Adjustment Algo-
rithms

In this subsection, we consider the use of a dynamic adjust-
ment algorithm to monitor changing traffic loads and dy-
namically adjust the control parameter values in response
to the changes. Our goal is to evaluate the effectiveness of
such an approach.



We first give an outline of the experiments carried out.
In the first experiment, we aim to demonstrate that some
form of dynamic adjustment is needed when system utiliza-
tion can vary significantly. In a second set of experiments,
we study the performance of different dynamic adjustment
algorithms under Poisson arrivals. (Further results showing
how the adaptation window size can impact performance
are found in [11].) We also carry out similar experiments
for Pareto and MMPP traffic arrivals. Lastly, we conduct
experiments to study the short-term behavior of dynamic
adjustment. For the experiments described below, we con-
sider three classes of traffic. The load is evenly distributed
among the three classes. The packet length distribution is
the same for all classes, where 40% of the packets are 40
bytes, 50% are 550 bytes, and 10% are 1500 bytes. The
output link capacity is 441 bytes/unit time.

Experiment C.1 (Necessity of dynamic adjustment):

In this experiment, we illustrate that it is necessary to use
some form of dynamic adjustment to cope with system load
changes. There are three independent classes of arrivals.
Each of them is Poisson distributed. Initially, the arrival
rates of the three classes are 0.2, 0.2 and 0.2, respectively.
At time 100,000 p-unit, the arrival rates of the three classes
increase to 0.3, 0.3 and 0.3, respectively. This implies that
the system utilization changes from 0.6 to 0.9 at time unit
100,000. The target ratio r%,,, is 1.5 and the adaptation
window (i.e., how often we update load estimates and ad-
just control parameter values) is chosen to be 100 p-units.
We compare the performance of the jumping window algo-
rithm with that using static control, as defined in Section 4.
The results are shown in Figure 7. In the figure, the x-axis
is the time line while the y-axis is the ratio of the average
waiting times. A data point is an average packet wait-
ing time measured over the last 500 time units. The graph
shows that dynamic adjustment using the jumping window
algorithm can maintain the target waiting time ratios (e.g.,
7t ;11 = 1.5) even when the system utilization changes sig-
nificantly. By monitoring per-class traffic arrival rates, any
increase in system utilization can be detected in time. The
control parameters are then adjusted to new values consis-
tent with the new utilization. In contrast, static control
cannot maintain the target waiting time ratios when the
utilization changes.
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Figure 7: Achieved waiting time ratio when traffic loading
changes at time 100000

Experiment C.2 (Comparisons of dynamic adjust-

ment algorithms under Poisson traffic): In this exper-
iment, we want to compare the effectiveness of the dynamic
adjustment algorithms proposed in Section 4. We use three
independent classes of Poisson arrivals, and run the adjust-
ment algorithms (i.e., jumping window, exponential aver-
aging, and static control) under different system utiliza-
tions. The adaptation window is chosen to be 100 p-units.
We also compare the results with the method in [2], in
which the parameters are statically chosen as proportional
to the target spacings (e.g., by = 1, b; = b1 xr_, ;). Fig-
ure 8 illustrates the result where 7, , = 1.5, while Table
7 illustrates the the result where 1} , = 1.5 and 7} 5 = 2.0.
We have the following observations:

1. Dynamic adjustment is effective. By using jumping
window, the waiting time ratio can be kept close to
our target ratios under various utilizations, while the
method in [2] cannot achieve the targets most of the
time.

2. Exponential averaging fails to keep the waiting time
ratios close to 1.5, according to the choice of the input
parameters in Fig. 3. The reason is that a correct
choice of the delta and sigma parameters of expo-
nential averaging (Fig. 3) should also depend on the
arrival distributions of the different classes of traffic.
When the arrival rate fluctuates more, the weight of
previous history in parameter estimation should also
be increased. Therefore, exponential averaging re-
quires another control algorithm to tune the weight-
ings dynamically, giving rise to another parameter tun-
ing problem. It makes the adjustment problem more
difficult and convoluted. On the other hand, jumping
window appears more straightforward to tune and is
able to maintain the waiting time ratios very well in
this experiment (this observation is also supported in
our later experiments). Therefore, we believe that for
our purposes, the simpler jumping window algorithm
can be as effective as the more sophisticated exponen-
tial averaging approach.
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Figure 8: Waiting time ratio vs. system utilization for dif-
ferent dynamic adjustment algorithms, three Poisson traf-
fic sources, 7 ;, | = 1.5, and adaptation window of size 100
p-units

Experiment C.3 (Comparisons of dynamic adjust-
ment algorithms under Pareto traffic): The experi-
ment setting is the same as Experiment C.2, except that



method used Tf,i+1 p=0.70 ] p=0.80 [ p=10.90
jumping window T‘i,z =15 1.50 1.50 1.52
jumping window Té 3=2.0 1.93 1.99 2.05
2] ri,=15] 128 1.3 142
[2] rde =20 1.50 1.63 1.78

Table 7: Achieved long term waiting time ratios, for Pois-
son arrivals under different system utilizations, r} , = 1.5
and the r§ ; = 2.0

the arrival processes for the three input traffic classes are
Pareto-distributed. The packet inter-arrival times for each
class are generated by a Pareto distribution with the shape
parameter equal to 1.9. This experiment serves to evaluate
algorithm performance under long-range dependent traf-
fic. We experiment with the jumping window, exponential
averaging and static control algorithms under system uti-
lizations ranging from 0.5 to 0.95. We also compare the
results with the method in [2]. The target waiting time
ratios are r};,, = 1.5 and the adaptation window is cho-
sen to be 100 p-units. The results are shown in Figure 9.

From these figures, we conclude that: (1) Traffic moni-
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Figure 9: Waiting time ratio vs. system utilization for
different dynamic adjustment, three Pareto traffic sources,
7% ;41 = 1.5, adaptation window is 100 p-units

toring and parameter adjustment are needed, (2) jumping
window dynamic adjustment is effective in maintaining the
target waiting time spacings even for long-range dependent
traffic, and (3) exponential averaging with the choice of in-
put parameters shown in Fig. 3 is considerably less effective
than the simpler jumping window algorithm.

Experiment C.4 (robustness of jumping window al-
gorithm under different target waiting time ratios,
variances of arrival rates, and adaptation window
sizes for MMPP traffic): Since the jumping window
algorithm has shown the best performance, we use it to
study the achieved waiting time ratios for different target
ratios r} ; 1, and different variances of MMPP arrival rates.
We have three classes of MMPP traffic, whose parame-
ters are 7 = 100,m2 = 0.05 and m3 = 0 (please refer to
Equation(16) and Equation(17) for setting MMPP traffic
parameters). The average system utilization is kept at 0.6.
Figure 10 illustrates the results. It shows that the jumping
window algorithm can maintain the target waiting time ra-
tios under a variety of operating conditions. However, by
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comparing Figures 10(a) (variance 0.001) and 10(b) (vari-
ance 0.05), notice that with a higher variance of input traf-
fic, incorporating too much history with a large adaptation
window size can result in suboptimal performance. With
small variance of input (Figure 10(a)) traffic, algorithm
performance is largely insensitive to the adaptation win-
dow size.
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Achieved Waiting Time Ratio
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variance of MMPP arrival rates

variance of MMPP arrival rates
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(¢) 7§ ;41 = 1.2, variance=0.001, {41 = 1.5, variance=0.05,
vs. adaptation window sizes vs. adaptation window sizes

10000

Figure 10: Achieved waiting time for MMPP traffic under
p = 0.6 and various conditions

Experiment C.5 (Achieved short-term waiting time
ratios using jumping window): The objective of these
experiments is to study the short-term behavior of our
packet scheduling algorithm using the jumping window dy-
namic adjustment algorithm. We measure the ratios of the
average waiting times between successive classes in consec-
utive time intervals. (The average is calculated over the
waiting times of all packets that get served within a spec-
ified adaptation window.) The length of the adaptation
window is varied to be 50, 100, 500, and 1000 p-units. The
adaptation window size we use in the experiment is 100
p-units, the system utilization is 0.6, and the target wait-
ing time ratios are rf;,; = 1.5. As seen from Figures
11 and 12, our iterative algorithm in Section 3, when used
with the jumping window dynamic adjustment algorithm,
can achieve the target waiting time ratios better than the
approach in [2]. (Corresponding results for MMPP traffic
can be found in [11].) That is, as we increase the moni-
toring window size, our short-term waiting time ratios will
approach the target value of 1.5. On the other hand, the
algorithm in [2] appears to approach a value different from
the target. Another observation is that we can more ac-
curately achieve the target waiting time ratios as we in-
crease the monitoring window size. In fact, the achieved
average waiting time ratios should approach asymptotically
the target ratios as the monitoring window size approaches
infinity.

Besides the histograms, we present the sample mean and
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under Poisson arrivals, p = 0.6 and target waiting time
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i =15

the modified variance of the waiting times under different
monitoring windows. We provide results from experiments
under both medium and high system utilizations (p = 0.6
and 0.9, respectively) . The sample mean and the modified
variance are defined as follows. We take the average wait-
ing time ratio obtained in each time monitoring window
as a sample. By averaging the samples over the number
of monitoring windows measured, the sample mean is ob-
tained. Formally, we have:

Sample mean = ZX,-/N (19)

13

where X; is the sample average waiting time ratio at the
it" monitoring window and N is the total number of mon-
itoring windows. Let r be the target waiting time ratio (in
this case r = 1.5). The modified variance is defined as:

> (Xi—r)*/N

Note that the modified variance can measure the deviation
of the sample mean from the target waiting time ratio. As
can be seen from Tables 8 and 9, our proposed jumping
window dynamic adjustment algorithm is more accurate in
achieving the target waiting time ratios, for Poisson ar-
rivals. Corresponding results for Pareto and MMPP ar-
rivals support the conclusion, and can be found in [11].

modified variance

(20)

( Monitoring window size (p-unit) [ 100 | 500 [ 1000 ]
Sample mean for jumping window 2 1.57 1.50
Modified variance for jumping window | 368 | 0.117 | 0.067
Sample mean for [2]’s method 1.63 [ 1.25 1.23
Modified variance for [2]’s method 282 | 0.124 | 0.102

Table 8: Poisson arrivals with utilization=0.6, waiting time
target ratio=1.5

( Monitoring window size (p-unit) | 100 | 500 [ 1000 ]|
Sample mean for jumping window 1.5 1.5 1.51
Modified variance for jumping window | 0.112 | 0.029 | 0.017
Sample mean for [2]’s method 1.4 1.41 1.41
Modified variance for [2]’s method 0.103 | 0.028 | 0.019

Table 9: Poisson arrivals with utilization=0.9, waiting time
target ratio rf;,; = 1.5

5.4 Type D: End-to-end Accumulative Wait-
ing Time

In this subsection, we illustrate the end-to-end accumu-
lative waiting time performance for a sequence of nodes
employing the adaptive WTP scheduling algorithm. We
carry out three sets of experiments. The first one consists
of three heterogeneous nodes and three classes of end-to-
end traffic. The second one consists of three homogeneous
nodes, two classes of end-to-end traffic, and a class of cross
traffic at each link. The third one consists of three het-
erogeneous nodes, two classes of end-to-end traffic, and a
heterogeneous class of cross traffic going through each link.
Experiment D.1 (Heterogeneous nodes): The simula-
tion setup is as follows. There are three nodes connected in
series (Figure 13), and three classes of traffic going through
nodes 1, 2, and 3, before arriving at a common destination.
Each class is a Poisson source with the same arrival rate
A/3. The packet length distribution is the same for all
the classes, where 40% of the packets are 40 bytes, 50%
are 550 bytes, and 10% are 1500 bytes. The link capaci-
ties of 1-2, 2-3 and 3-destination are 441 bytes/unit time,
551 bytes/unit time and 735 bytes/unit time, respectively®.

1Since our algorithm controls only the queuing delay at each node, we
do not model the link propagation delay in our experiments.



(The time unit can be normalized to achieve an arbitrary
link speed.) Hence, the capacities of 2-3 and 3-destination
are 25% and 67%, respectively, higher than that of 1-2. We
run different simulations with A ranging from 0.80 to 0.95.
At each node, the jumping window adjustment algorithm
is used, and the adjustment window size is 100 p-units.
In a simulation, each traffic class generates at least 50,000
packets. We measure the achieved long term waiting time
ratios between consecutive classes at each node, and their
achieved long term end-to-end accumulative waiting time
ratios. The target waiting time ratios r},,, are 1.5. The
results are summarized in Table 10.

Poi sson H1=1 H,=1/0.80 M3=1/1. 60
class 1 (A 3) >
class 2 (A 3) ( ) ( ) ( )
class 3 (A 3)

Node 1 Node 2 Node 3

Figure 13: The multiple-node traffic in Experiment D.1

Achieved waiting time total traffic arrival rate A
ratio ’I"ZH_I A= A=[2A=1] x=
0.80 | 0.85 | 0.90 | 0.95
Node 1 (W1 /W) 1.51 | 1.51 | 1.51 | 1.56
Node 2 (W1/W2) 1.65 | 1.66 | 1.60 | 1.63
Node 3 (W1 /W) 1.67 | 1.72 | 1.67 | 1.72
Node 1 (Wa/W3) 1.49 | 1.50 | 1.53 | 1.54
Node 2 (Wa/W3) 1.55 | 1.54 | 1.57 | 1.54
Node 3 (W2 /W3) 1.50 | 1.51 | 1.57 | 1.59
end-to-end accumulative
waiting time (Wi /W>) | 1.55 | 1.56 | 1.54 | 1.57
end-to-end accumulative
waiting time (W2/W3) | 1.50 | 1.51 | 1.54 | 1.54

Table 10: Multiple node waiting-time ratios with different
link capacities under Poisson arrivals and target waiting-
time ratios 7} ; = 1.5.

Experiment D.2 (Homogeneous nodes with cross
traffic): The simulation setup is as follows. There are

Node 1 Node 3

( )

(M 3) Cass 3 \ ( } (
lclassli /\03551\ ,\Classl~

(M 3) (M3) (M 3)

Poi sson Cross traffic

Node 2

Poi sson arrivals
(M 3) Gass 2

Figure 14: Multiple-node delay differentiations in the pres-
ence of cross traffic (Experiment D.2).

three nodes connected in series (Figure 14). Two classes of
traffic (class 2 and class 3), each Poisson with arrival rate
A/3, go through nodes 1, 2, and 3, in that order, before
arriving at a common destination. In addition, a class 1
Poisson source of cross traffic, also of rate \/3, traverses
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each link. The packet length distribution is the same as
in Experiment D.1, and the capacity of each link is 441
bytes/unit time. We run different simulations with A rang-
ing from 0.5 to 0.95. We measure the achieved long-term
waiting time ratio between class 2 and class 3 traffic at
each node, and their achieved long-term end-to-end accu-
mulative waiting time ratio. The target waiting-time ratios
r% ;41 are 1.5. The results are summarized in Table 11.

Achieved waiting time total traffic arrival rate A

rautiorf,i_i_1 A= A= A= = =

0.50 | 0.60 | 0.70 | 0.80 | 0.90

Node 1 (Wa/W3) 143 | 1.49 | 1.50 | 1.50 | 1.52

Node 2 (Wa/W3) 142 | 142 | 1.42 | 1.42 | 1.45

Node 3 (Wa/Ws3) 141 | 140 | 1.42 | 142 | 146
end-to-end accumulative

waiting time (W2 /W3) 142 | 1.44 | 1.44 | 1.45 | 1.49

Table 11: Multiple-node waiting-time ratios with cross
traffic under Poisson arrivals; target waiting-time ratios
arert, ., =1.5.

Experiment D.3 (Heterogeneous nodes with het-
erogeneous cross traffic): The simulation setup is as

Poi i val pu=10 u=2.0 u=1/0.7
0l sson arrivals
Node 1 Node 2 Node 3
Cass 2
A, =025 ( ( \
Cass 3
Ay =025 ><><'
Cass 1 Cass 1 Cass 1
A, =0.25 A, =045 A, =035

Poi sson Cross traffic

Figure 15: Multiple heterogeneous node delay differentia-
tion in the presence of heterogeneous cross traffic (Experi-
ment D.3).

follows. There are three nodes connected in series (Fig-
ure 15). Two classes of end-to-end traffic (classes one and
two), each Poisson with rate 0.25, go through nodes 1, 2
and 3, in that order, and arrive at a common destination.
In addition, class one Poisson sources of cross traffic tra-
verse links 1-2, 2-3 and 3-destination with rates 0.25, 0.45
and 0.35, respectively. The packet length distribution is
the same as in the previous experiment, while the link ca-
pacities of 1-2, 2-3, and 3-destination are 441 bytes/unit
time, 882 bytes/unit time, and 630 bytes/unit time, re-
spectively. The target waiting time ratios are r§’3 = 1.2
and r5; = 1.5. At each node, the jumping window al-
gorithm is used, with the adjustment window size being
100 p-units. In a simulation, each traffic source generates
at least 50,000 packet arrivals. We measure the achieved
long-term waiting time ratio between class 2 and class 3
at each node, and also the achieved long-term end-to-end
accumulative waiting time ratio between the two classes.
The results (with statistics reset after an initial 500 p-unit
warmup period) are summarized in Table 12.



achieved waiting time target target
ratio 7§ , (r s =12) | (r}4=1.5)
node 1 Wy /W3 7“2‘,3 =1.19 7“21’3 =1.50
node 2 Wy /W3 7"313 =1.22 7"33 =1.43
node 3 Wy /W3 Tg’3 =1.21 Tg’3 = 1.48
end-to-end accumulative
waiting time (W/W3) 1.20 1.49

Table 12: Achieved multiple-node waiting time ratios with
heterogeneous cross traffic under Poisson arrivals (Experi-
ment D.3)

Observations:

There are two major observations from the above experi-
ments: (1) the achieved long-term waiting time ratios are
close to the target waiting time ratios (r};,; = 1.5), and
(2) the end-to-end accumulative waiting time ratios are
also very close to the target waiting time ratios (provided
that the flows traverse a same sequence of WTP nodes,
as in our experiments). The observation holds even when
the links traversed have possibly cross traffic and heteroge-
neous service capacities. Note that the waiting time ratios
at nodes 2 and 3 are not as accurate as that at node 1,
because the traffic pattern is distorted after going through
node 1. Thus, the traffic arrivals at nodes 2 and 3 may no
longer be Poisson, which causes minor deviations from the
target waiting time ratios.

5.5 Summary of Experimental Results

We provide a summary of our experimental results:

e Our proposed iterative algorithm can efficiently de-
termine whether it is feasible to achieve given target
waiting time spacings.

e When it is feasible, our proposed iterative algorithm
can accurately determine control parameter values such
that the achieved waiting time ratios are equal or very
close to the target waiting time ratios.

e Although the theoretical result is based on the as-
sumption that the input traffic is Poisson, our results
show that even when the input traffic is non-Poisson
(e.g., Pareto, MMPP or mixed traffic), the proposed
iterative algorithm can still efficiently and accurately
determine the control parameter values so as to achieve
the given target waiting time ratios.

e QOur proposed jumping window dynamic adjustment
algorithm can effectively adapt to changes in input
traffic intensity and update the control parameters ac-
cordingly. Therefore, the achieved waiting time ratios
remain close to the target waiting time ratios.

e For short-term waiting time ratio performance, we can
achieve the target waiting time ratios over time scales
greater than about 1000 p-units.

e If two end-to-end flows traverse a same sequence of
nodes each providing proportional-delay differentiated
services, their achieved end-to-end accumulative wait-
ing time ratio can be very close to the target waiting
time ratio.
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6 Conclusion

In this paper, we consider a WTP scheduler to achieve
proportional-delay differentiated services. The scheduler
tries to ensure that the average waiting time of class 4 traf-
fic relative to that of class i—1 traffic is consistently a speci-
fiable ratio. This way, an ISP can legitimately charge users
of class i traffic a higher tariff rate (compared to the rate
of class i — 1 traffic) because class 4 users consistently enjoy
better performance than class i — 1 users.

For two-class WTP, we obtain a necessary and sufficient
condition for a given delay spacing to be feasible. For the
general N —class WTP, we present a set of necessary condi-
tions, and give their physical meanings. Using these condi-
tions, we can easily determine if a given delay-proportional
differentiation can be achieved or not. We also present an
efficient iterative algorithm for finding values of the WTP
control parameters that will realize a set of specified wait-
ing time spacings, provided that these parameters exist.
Since the arrival rates of flows are time varying, we present
a dynamic measurement and adaptation technique so that
the system can track the arrival rates of each flow and ad-
just values of the control parameters so as to maintain the
target waiting time spacings.

Experiments are carried out to illustrate that using our
control parameter values, we can obtain waiting time spac-
ings that are closer to the given target waiting time ratios,
when compared with the results in [2]. We also show that
the achieved waiting time ratios are close to the target wait-
ing time ratios under short, medium and long timescales
for different traffic arrival patterns. We show that by using
the dynamic adjustment approach and the iterative algo-
rithm, we can provide proportional waiting time differenti-
ated services under different time scales and under different
input arrival processes. Lastly, we demonstrate that useful
delay ratios can be obtained even when traffic has to tra-
verse multiple nodes in the network. Future work include,
for N > 2 classes, how router can efficiently solve the sys-
tems of non-linear equations every time the load conditions
change.
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