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On the Effectiveness of Movement Prediction To
Reduce Energy Consumption in

Wireless Communication
Srijan Chakraborty Yu Dong David K. Y. Yau John C. S. Lui

Abstract— Node movement can be exploited to reduce the
energy consumption of wireless network communication. The
strategy consists in delaying communication until a mobile node
moves close to its target peer node, within an application-imposed
deadline. We evaluate the performance of various heuristics that,
based on the movement history of the mobile node, estimate an
optimal time (in the sense of least energy use) of communication
subject to the delay constraint. We evaluate the impact of
node movement model, length of movement history maintained,
allowable delay, single hop versus multiple hop communication,
and size of data transfer on the energy consumption. We also
present measurement results on an iPAQ pocket PC that quantify
energy consumption in executing the prediction algorithms. Our
results show that, with relatively simple and hence efficient
prediction heuristics, energy savings in communication can signif-
icantly outweigh the energy expenses in executing the prediction
algorithms. Moreover, it is possible to achieve robust system
performance across diverse node movement models.

Keywords: mobile computing, wireless networking, energy
management, movement prediction.

I. INTRODUCTION

Limited battery power of mobile devices, e.g., laptops,
handhelds, and sensors, is a major concern in wireless mobile
computing. A lot of research, representing both sofware and
hardware approaches, has been conducted to increase the
battery lifetime of these devices. Network communication,
in particular, can be quite energy-expensive and should be
targeted for possible saving. In this paper, we aim to reduce the
energy cost of communication by applications that are delay
tolerant. Specifically, our techniques will be most useful if sig-
nificant nodal movement is possible within a tolerable delay.
For example, consider a system that tracks and monitors the
body conditions of Tour de France cycling competition winner
Lance Armstrong during one of the Tour stages. One can use a
mobile device to monitor his heartbeat and blood sugar level
and periodically transmit the data back to his coaches and
supporting medical personnel. Note that the envisioned mobile
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monitoring system will have to be extremely light in weight
and hence have very limited battery. Energy efficiency of the
system is crucial. (On the other hand, the proposed solution
will be of limited value to real-time applications with low
delay constraints; e.g., a person walking while broadcasting
real-time video from her portable camcorder.)

Our strategy to conserve energy in wireless communi-
cation is based on the observation that the reduction in
physical distance between two communicating parties in a
wireless network often results in reduced energy use. In the
case of single hop communication, this is obvious if we
use transmission power control. Since transmission power is
roughly proportional to the square of the distance between
two communicating nodes, reduced distance implies reduced
transmission power requirement and, consequently, less energy
consumption.

However, a more general scenario is one where transmission
is multi-hop, especially in the case of ad hoc networks. In
this case, decrease in physical distance between two nodes
does not necessarily imply reduction in network distance (i.e.,
number of hops between the source and the destination). It
also depends on the network state and node density of the
network. However, if the network is not very sparse, it is then
likely that reduction in physical distance between two nodes
will result in reduced network distance also. Moreover, we can
expect the length of the individual hops to be smaller. Both
of the factors together can save communication cost in terms
of energy use.

This brings us to the problem of predicting when two
nodes will move closer to each other. We first consider the
situation where a set of mobile nodes in an ad hoc network
is communicating with a fixed node, henceforth mentioned as
the target. Later, we relax this assumption of a fixed target
and consider the case where all the nodes are mobile. Then,
if we predict that a mobile node will move closer to the
target, we can postpone communication until the future time
subject to an application imposed deadline. For the movement
prediction, we will first consider four basic heuristics based
on simple statistics about past movement. Then, we will
more formally approach our problem drawing analogy with
the secretary problem, and develop the prediction heuristics
accordingly. Our heuristics make use of the location history of
a mobile node. Location information is used in many routing
protocols [11], [19] to improve performance. Su et al. [17]
use mobility prediction, based on location information, to
improve the performance of their ad hoc routing protocol.
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Such location information can be obtained using the Global
Positioning System (GPS). We also investigate the issue of
buffer requirements due to postponement of messages at the
source nodes.

The amount of energy saving depends on various factors,
e.g., the heuristics used, mobility model of the mobile nodes,
length of movement history maintained, maximum allowable
delay, data transmission duration, single hop or multi-hop
transmission. We perform simulations to explore various com-
binations of these parameters and their performance in terms of
the amount of energy saved. Our results show that considerable
energy saving is possible with relatively simple and hence
efficient heuristics.

A. Organization of the paper

The balance of the paper is organized as follows. The
background of our work, including the system and mobility
models and four basic movement prediction heuristics, is
presented in Section II. Section III explains how we can use
solutions to the well known secretary problem to solve our
problem of network communication. Section IV introduces
heuristics informed by the secretary problem for determining
when to postpone a communication and when to communicate.
Extensive simulation results and measurement results on an
iPAQ pocket PC are presented in Section V to quantify the
performance of our heuristics. Related work in discussed in
Section VI. Section VII concludes.

II. BACKGROUND

This section presents the background of our work. The
system model and node mobility model are described. Four
basic heuristics that exploit simple statistics about a node’s
movement history are also introduced.

A. System Model and Assumptions

Our system model is the following. We consider the case
where mobile nodes in an ad hoc network are communicating
with a stationary host, which we call the target1. The entire
network is divided into virtual grids. We assume that each node
knows its position using GPS and consequently can associate
itself with a grid. We assume slotted time and that a node
remembers its movement history as the grid IDs visited in the
previous � time slots. We also assume that all nodes know the
position � of the target.

B. Terminology

There are mainly three parameters used in our prediction
strategy: the history length � , maximum allowable delay � for
which a communication can be postponed, and a probability
threshold ����� , when our decision is probability-based. Other
than these parameters, we define the following terms. Let � be
the total number of grids in the network. 	 ��

���������������������������
is the sequence of � previous grid positions visited by the
mobile node � , where ��� is the  th grid ID and ��� is the most

1Later in the paper, we will relax the fixed target assumption.

recent grid ID visited in the sequence. A window !#"� �  %$'&�()�* 
+���,�����,�.-/���%���0�����,�.-�1�2/�3� (
)54  4 �'(6&7$ )

) of size & for
node � is a sequence of & grid IDs occurring consecutively in	 � . A window is thus a subsequence of 	 � . We also define8 "� �:9 * as the Euclidean distance between two grid positions  
and 9 . Lastly, for a statement Q, we define the truth function; "�< * as: ; "=< * 
 > ) � if < is true.? � if < is false.

C. Mobility Model

What heuristic we should use may depend on the mobility
model of the mobile nodes. A mobility model is a probabilistic
process that defines the movement pattern of a mobile node,
whereas a movement history is a trajectory or a sample path
of the movement model. The formal definitions of both are
given in [3].

If we assume a mobility model that follows the uniform
random distribution, then the uncertainty of future locations is
maximum. Consider the simple strategy where a mobile node
always postpones any network communication if its current
grid ID is not equal to � . Then in the next ��( )

time units,
the node communicates only if it is in the same grid ID as the
target. If it does not move to the same grid ID as the target
within the deadline, then it communicates at the � th time unit
without waiting any further. The following theorem establishes
the validity of the simple strategy:
Theorem 1: The expected energy saving is always positive
in the case of the uniform random mobility model using the
above mentioned strategy.
Proof: When the mobility model is uniform random, the
probability that a mobile node will be in a grid ID, say  
(
)@4  4 � ), at some time unit A is 1/N. Therefore, the

probability that a mobile node will not be in the grid ID � in
all the next � time units is " ) ( )%B � *DC . Let EF� be the cost
of network communication if the mobile node is in grid ID  ,
and EHGI be the expected cost of network communication if the
mobile node is not in grid ID � , where � is the target position.
Then,

E GI 
 JK�.L/��M �:NL I
)� E �3�

We postpone any network communication only when the
current grid ID is not equal to � . So when the current grid is� , applying our heuristic does not change the communication
cost. The expected cost of communication, when the current
location is not � , and when we do not consider postponing
any communication, is OQP 
 E GI
On the other hand, the expected cost of communication when
we apply our heuristic isOSR 

T ) (U" �V( )� * C%W E I $X" �Y( )� * C E GI
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Hence, the expected energy saving or gain isO�� 
 O P ( O R
 T ) (U" � ( )� * C W "�E GI ( E I *
Since E I is the minimum among all E � ’s, for  
 ) � � ��������� � ,
the second factor in the last equality is always positive. The
first factor is also positive. Therefore, the expected gain in
energy is always positive.

QED

However, the uniform random mobility model is not a
realistic mobility model, since it does not preclude jumps,
sharp stops and turns. In reality, mobile nodes show a more
regular and smoother movement pattern. Many mobility mod-
els have been proposed which try to mimic realistic user
movement patterns [9], [8], [4], [18], [20], [21]. As the
mobility pattern of a mobile node becomes more regular, a
good predictive algorithm should be able to predict the node’s
future movement with a higher level of confidence. For most
of our experiments, we use the random waypoint mobility
model, which is widely used in many ad hoc networking
experiments in the literature. The model is originally proposed
in [21] and later modified in [29] to ensure that the speed
of nodal movement will converge to a reasonable non-zero
steady-state value. In the model used for our experiments,
we have incorporated these modifications [29] (please see
Section V for the details). We have also devised an extension
to the random waypoint mobility model, which we call the
regular waypoint mobility model, that introduces a controlled
degree of regularity in the movement pattern. In both of these
mobility models, a mobile node starts at some random point
in the network, chooses its next destination, moves steadily
towards that destination, pauses for some time, again chooses
a next destination, and so on. The difference between the
regular and the random waypoint mobility models is in the
way the next destination is chosen. While in the random
waypoint model the next destination is chosen randomly, in
the case of the regular waypoint model, we use the following
Choose next destination algorithm.

First, for each mobile node we define two locations called
home and work and a parameter called regularity, denoted
by � (

?'4 � 4+)�?�?
). Each mobile node starts from its home

grid, and depending on the value of � , it oscillates between the
home and work grid positions. The regularity is the percentage
of time the mobile node sticks to its movement pattern of
home-work-home while choosing the next destination. When� 
 ?

, it means that the movement model is the standard
random waypoint model. On the other hand, if � 
 )%? ?

, the
mobile node always alternates between its home and work
grids without any diversions. Intermediate values of � give us
various degrees of diversions. Initially, when a mobile node
starts from home, it chooses the next destination as work with
a probability equal to � B,)%? ? . Once it reaches its work location,
it chooses home as its next destination with a probability equal
to � B,)�?�? and any other location with probability

) (�� B,)%? ? .
We also define a maximum time limit, called ������ 	� 8  �
  �A�� , by

which a node must choose either home or work as its next
destination, if � is non-zero. The values of periodicity and �
together decide how regular a movement pattern is. If we set
the value of periodicity to be more than or equal to the history
length, then the regularity of the movement pattern depends
only on the value of � .

Algorithm Choose next destination shows how we
choose the next destination for the regular waypoint model. In
the algorithm, previous time is the last time when either
home or work grid was chosen as the next destination.
The flag on the way to is either home or work, depending
on whether the last visited grid among home and work is
work or home, respectively.

Algorithm Choose_next_destination
if(current_time - previous_time > periodicity) {

if(on_the_way_to == work) {
next_destination = work;
on_the_way_to = home;

}
else {

next_destination = home;
on_the_way_to = work;

}

previous_time = current_time;
}
else {

random_number = generateRandomNumber
mod 100;

if(random_number < regularity) {
if(on_the_way_to == work) {

next_destination = work;
on_the_way_to = home;

}
else {

next_destination = home;
on_the_way_to = work;

}

previous_time = current_time;
}
else

next_destination = Random_destination
_other_than_home_or_work;

}

D. Power Saving Strategy

Consider the situation where a mobile node wants to com-
municate with the target. We have the movement history of the
node. Based on this history, we predict the future positions of
the mobile node and decide whether waiting for at most � time
slots will bring the node any closer to the target. If according
to our predicted information, there is a fairly good chance
that the mobile node will come closer to the target within �
time units, the mobile node will postpone the communication.
Then the node will wait for some appropriate time within the
next � time slots, when it moves closer to the target, to carry
out the communication. The node has to pick such a time slot
for communication based on some heuristic. If, by chance, the
node does not come any closer to the target in � ( ) time units,
the node will carry out the communication at the � th time unit
without waiting any further. In that case, if the mobile node is
further from the target than it was, it will likely end up using
more energy. This is the misprediction penalty.
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E. Choosing Parameters

The choice of various parameters affects the performance
of our heuristics. The value of � should be chosen such that
it incorporates the movement pattern of the mobile nodes.
If too small, it will not have enough information to predict
effectively. If too large, computational cost as well as time
will adversely affect the performance. The value of � is appli-
cation specific and should be chosen according to application
deadline constraints. When our decision is based on some
probability � , which quantifies the likelihood that the node
will move closer to the target, we need to set a threshold value�,��� such that we postpone the communication if ���U���=� , or
else we communicate immediately. The threshold value will
mainly depend on the heuristic we use to calculate � .

F. Heuristics

This section gives the essentials of four basic heuristics
based on simple statistics about a node’s movement history.

1) Binary distance (BD) heuristic: We calculate the prob-
ability � that a mobile node will be in grid ID � (recall
that � is the target’s grid location) within the next � time
units as follows:� 
 � ":!#"���$ ) � � $ � * contains � *
 " Number of windows in 	 � of size �

containing � *3B "��'( �H$ )%*

 " )�'( �H$ ) * �,2 C -/�K �.L/� ; ":!#"� �  �$ ��( )%*

contains � * �
where "�� ( ��$ )�* is the total number of windows in 	 � of
size � . If ��� ����� , we decide to postpone communication
with the target.

2) Binary Markov distance (BMD) heuristic: This
heuristic uses an order- � Markov model for calculating
the probability that a mobile node will be in grid ID� within the next � time units. The probability that��� -/� 
 � is calculated as:

� " � � -/� 
 � * 
 JK ��� JK ��� ����� JK ��	 � " � � -/� 
 ��

� � -/��2 R 
  � ��� � -�� 2 R 
  =� �%�����0��� � 
  R *

Using this, we calculate the probability � that a mobile
node will be in grid ID � within the next � time units. We
wait if ��� ����� , or else we communicate immediately.

3) Markov distance (MD) heuristic: The MD heuristic is
a variation of the previous heuristic based on the Markov
model. Let 
 be the set of all possible routes that can
be taken by the mobile node in the next � time units,
and let 
 � , where 
 ��� 
 , contain those routes in 

that have at least one location closer to the target than

the current distance. Then we calculate the probability
that a mobile node will move closer to the target as:

� 
 ������� � Probability of taking the route ��������
Probability of taking the route �

If this probability is greater than or equal to � ��� ,
communication is postponed. The same calculation can
be repeated at each of the next � ( )

time units,
with the deadline decreased by one after each decision
point. At any point in time, if ��� ����� , the mobile
node communicates with the target. If communication
is postponed for all the �Q( ) time units, it is performed
at the � th time unit.

4) Average distance (AD) heuristic: The AD heuristic
is based on the weighted average distance between a
mobile node and the target over all windows of size �
in the mobile node’s movement history. We calculate the
average as follows:

��� � � ��� � 
 " )
� �,2 C -/�1 L/�  1 *

��2 C -/�K
! L/�  !

)�
! - C 2 �K �.L ! 8 " � � � � * �

where  ! is the weight associated with window !#" 9 � 9 $�'( )%*
(
) 4 9 4 � (@� $ )

). If the current distance
between the mobile node and the target is greater than��� � � ��� � , then the mobile node decides to postpone the
communication, or else it communicates immediately.
If it decides to wait, then in the next ��( )

time units,
whenever the current distance becomes not greater than��� � � ��� � , communication is performed. If the node has
postponed communication up till the � th time unit, then
it performs communication at the � th time unit.

III. APPLYING THE SECRETARY PROBLEM

We use the heuristics to decide whether to postpone a
communication until a future point in time or not. Once a node
decides to postpone the communication, the next problem is
to decide when within the next � time slots to communicate.
There is one obvious procedure: the mobile node simply
applies the same decision criterion for the next � ( ) time units
decreasing the deadline by one time unit at each decision step.
If it decides to postpone communication in all these � ( ) time
slots, it finally communicates at the � th time slot.

Alternatively, the node can take the following approach.
The problem of deciding when in the next � time units
to communicate is analogous to the well known secretary
problem. The secretary problem is the most common name
for the sequential evaluation and selection problem in which
one must make an irrevocable choice from a number of
applicants whose values are revealed only sequentially. The
simplest version of the secretary problem has the following
characteristics [22]:

1) There is only one position available for a secretary.

2) The number of candidates N for the post is known.

3) The applicants are interviewed sequentially in random
order, each order being equally likely.
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4) The decision-maker can rank all the applicants from best
to worst without ties.

5) The decision to reject or accept an applicant is solely
on the relative ranking of those applicants interviewed
so far.

6) An applicant once rejected cannot be later recalled.

7) The decision maker is satisfied with nothing but the very
best.

In our case, at each time slot the node has the choice
of either communicating with the target or postponing the
communication. As in the secretary problem, we are presented
with a sequence of choices one by one and once rejected a
choice cannot be later recalled. The secretary problem is a
well studied problem. It has many variations. One category
of variations is based on the degree of knowledge about the
population distribution from which candidates are drawn. In
this category there can be three possible types:

1) No information.

2) Partial information, and

3) Full information.

In the no information case, the assumption is that the func-
tional form of the distribution is completely unknown so that
our decision is based solely on the relative ranks of choices.
In the full information case, perfect information about the
distribution is known. So the scores of choices as well as
the relative ranks are also known. In the partial information
case, the scores are drawn from a partially known distribution
whose parameters are unknown a priori but can be estimated
as we proceed with the evaluation.

Many optimum and heuristic solutions for different varia-
tions of the problem have been proposed [7]. Our problem
is similar to the partial information secretary problem. We
do not have the perfect information about the population
distribution, which depends on the mobility model of the
mobile nodes. However, neither are we completely ignorant –
we have some information in the form of location history of a
mobile node. The rest of this section discusses some solutions
of the secretary problem and how we can apply those solutions
in our case with suitable modifications.

A. Best-choice( � ) Algorithm

One of the solutions for the secretary problem is given by
the Best-choice(r) algorithm. It says: reject the first � ( )
candidates. Then accept the next candidate whose relative rank
is 1 among the candidates seen till now. It can be shown
that Best-choice( �� ) is the best possible algorithm. This Best-
choice( �� ) algorithm accepts the best candidate with probability�
�
� ? � ����� . This particular case is well known as the 37% rule

[7]. However, we cannot apply this solution to our problem
directly. Our problem of network communication differs from
the secretary problem in several aspects. Unlike the secretary
problem, we have some information about the population
distribution (the distribution of distance, from a mobile node to
the target, as a variable) in the form of a history of previous
values (samples). We can also have ties, i.e., two distances

can be the same. In our case, we can consider the number
of candidates � as the number of time slots for which we
have history information plus the number of time slots we can
delay before communicating with the target. Since in most
of the cases, the amount of delay we can incur is much less
than 37% of the amount of history we have, we can adapt this
37% rule in our case as follows: We communicate at the first
chance when the distance between the communicating node
and the target is less than or equal to the least seen so far.
Section IV presents this more formally as our Least Distance
(LD) heuristic.

B. Single Threshold Selection Strategy

According to this strategy we select the first candidate
whose value exceeds a prespecified threshold value � . This so-
lution is applicable to the full information problem [23], where
perfect information is known about the population distribution,
from which the candidates are drawn. In our case, we do
not have perfect knowledge about the population distribution.
However, we can estimate some statistical parameter, e.g.,
average or median, from the history information we have.
Then based on the estimated parameter we can set a threshold
value such that we communicate as soon as we cross that
threshold. Section IV proposes a single threshold heuristic
based on average distance between a mobile node and the
target.

C. One-bounce Rule

The one-bounce rule states that we should keep checking
values as long as they go up. As soon as they go down we
stop postponing any more and take the current value [24]. A
direct analogy of this rule, that we apply to our problem, is
to postpone as long as the distance between the mobile host
and the target is decreasing, and communicate as soon as the
distance starts increasing. However, this strategy ignores the
history other than the last sample. Instead of using this strategy
as a separate heuristic, we use this idea in conjunction with
other heuristics as described in Section IV.

IV. HEURISTICS INFORMED BY THE SECRETARY PROBLEM

Informed by the secretary problem, we are able to refine
our basic heuristics to increase their effectiveness. Moreover,
a new heuristic based on the 37% rule solution of the secretary
problem can be devised. We present these further solutions in
this section. In addition, we show how the prediction heuristics
can be easily modified to effectively handle the more general
case of a moving target.

A. Directional and recursive average distance (DAD and
RAD) heuristics

The basic AD heuristic has been presented in Section II.
It has very little computational overhead compared with the
ones based on the Markov model. It also performs well
across various movement models. There can be a problem
with the basic AD heuristic. Once we decide to postpone a
communication, we compare the average distance each time
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with the current distance between the communicating mobile
node and the target. As long as the current distance is greater
than the average, we keep postponing the communication for� ( ) time slots. Finally, we communicate at the � th time slot,
if we have postponed at all the � ( ) time slots. Now, consider
the situation when a mobile node is moving away from the
target for all the � time slots. In this case, once we decide to
postpone the communication at the beginning, we will keep
postponing for the next � ( )

time slots, since the distance
between the mobile node and the target is increasing. In this
scenario, the AD heuristic always chooses the worst case and
communicates at the � th time slot.

To solve this problem we introduce a new heuristic, Direc-
tional Average Distance (DAD) heuristic, based on the AD
heuristic that includes the direction of movement of a mobile
node in the decision process. This heuristic is motivated by the
one-bounce rule mentioned in Section III. Before comparing
the current distance with the calculated average, we first check
whether the node is moving away from the target. We postpone
communication as long as the node is moving towards the
target and the current distance is greater than the average. At
any point of time, if we find that the node is moving away
from the target, we communicate immediately irrespective of
whether the current distance is less than the average or not.
In this modification, we assume that when a node is going
away from the target, it will not reverse its direction within the
next � or less time slots. However, this is not guaranteed. The
performance of DAD heuristic thus depends on the maximum
allowable delay � .

Another modification of the basic AD heuristic is possible.
Instead of calculating the average only once, we calculate the
average at each of the ��( )

time slots and we compare that
new average with the current distance. We call this variation
the recursive AD (RAD) heuristic.

B. Least Distance (LD) heuristic

As we will see in Section V, the LD heuristic is the
simplest and most effective heuristic presented in this paper.
The heuristic is based on the 37% rule as described in
Section III-A. According to the 37% rule, the first 37% of
the candidates are just evaluated, but not accepted. Then we
take the candidate whose relative rank is the first among the
candidates seen so far. In our case, we assume that, we have
already seen the first 37% or more of the candidates as the
location history. We first find the least distance

8 R �0� between
a mobile node and the target in the history of that node:8 R ��� 
��  =����� ���	� 8 " � � � *

Then, in each of the next � time slots we check if the current
distance

8
is less than or equal to

8 R ��� . At any time slot, if
we find

8 4 8 R ��� , we communicate immediately, else we
communicate at the � th time unit.

C. Heuristics in the case of Moving Target

Our assumption that there is a fixed target in the network
with which all the other mobile nodes communicate may not
present a realistic scenario for an ad hoc network. We now

relax this assumption and discuss how the heuristics can be
easily modified to effectively handle the case when both the
communicating peers are mobile. We assume that the sender
knows the synchronized location history of the destination
with respect to itself. This is possible in the case of a routing
protocol that periodically exchanges mobile node locations as
routing information [1].

The required modifications to the heuristics to accommodate
for a moving target are very simple: we just replace � , the
location of the fixed target, with the location history of the
moving target. Assume that a mobile node 
 with location
history 	�� 
 � � ��� � �%���%����� � wants to communicate with an-
other mobile node � with location history 	�
 
 ��� � ��� �%���%��� �%� .
The MD heuristic requires no change other than that 
 and
5� are now defined with respect to 	�
 instead of � .

The equation to calculate average distance for the AD
heuristic is changed to the following:

� � � � ��� � 
 " )
� �,2 C -/�1 L/�  1 *

��2 C -/�K
! L/�  !

)�
! - C 2 �K �.L ! 8 " � � � �%� * �

In case of the LD heuristic, the equation to calculate the
minimum distance changes to:

8 R ��� 
��  =� ��.L/� 8 " � � � �%� *
V. EXPERIMENTS

To evaluate the performance of our heuristics we perform
simulations and some measurement experiments on an iPAQ
pocket PC. We begin by describing our simulation setup
and results. We then present measurement results for energy
consumption due to CPU processing on the iPAQ. Finally, we
will conclude this section with a performance comparison of
the proposed heuristics and their variations.

A. Mobile network simulations

This section presents the simulation setup and experimental
results, which are classified according to the heuristic used.
Along with the percentage energy saving, we evaluate the
percentage decrease in average distance at the time of commu-
nication. The BD and BMD heuristics did not show significant
energy saving in our preliminary experiments. Because of
limited space, we do not further evaluate them in this paper;
interested readers are referred to our technical report for the
details. Here, we report simulation results for the MD, AD,
and LD heuristics. We also discuss the impact of movement
regularity, communication duration, and minimum speed of
nodal movement on the energy saving, and how postponing
communication will affect the communication delay and buffer
requirement at the source node.

1) Simulation setup: To evaluate the performance of our
heuristics, we use the ns-2 simulator [25] with the ad-hoc
routing extensions contributed by CMU [21]. For all our ns-2
experiments, we first generate a node movement file using the
CMU node-movement generation tool setdest. Then we use
the node movement file to generate two traffic pattern files –
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one using the standard protocol and the other after applying
our heuristics. We use DSR [26] as our routing protocol
and the standard two-ray-ground model as the propagation
model. In experimenting with a mobile target, a communi-
cating node can directly obtain location information about its
target by accessing the target’s node movement file. We have
not currently implemented the actual exchange of location
information between nodes through an enchanced routing
protocol as suggested in Section IV-C.

All the experiments use the random waypoint mobility
model modified according to the specifications in [29]. As
discussed in [29], the original random waypoint model may
produce unreliable simulation results because it fails to
maintain a meaningful steady-state average speed of nodal
movement. Instead, the average speed decreases over time,
and becomes zero as the simulation time goes to infinity.
To solve the problem, lower and upper bounds on the nodal
speed, denoted as 
D����� 8 R ��� and 
D����� 8 R � � respectively, are
introduced. With the modifications, the average nodal speed
at steady state can be shown to be about

��� � ��� 	�����2���� � �	� 	�

�� .

In our experiments, we set the maximum nodal speed

3� � � 8 R � � to be 10 m/s and the minimum nodal speed

3� � � 8 R ��� to be 1 m/s for both the random and regular
waypoint models. Nodes move in a 150 m by 150 m area at
speeds uniformly distributed between these bounds and with
zero pause time. We have 10 nodes moving in the network
and one node (the target) always fixed at the center.

Simulation traffic was generated by all the mobile nodes
acting as continuous bit-rate (CBR) sources. The packet size
was 1500 bytes and inter-packet interval was 0.005 seconds.
We give each mobile node enough initial energy to run each
simulation for 20,000 seconds. During these 20,000 seconds,
each mobile node communicates with the target 1000 times,
each time for a duration of 1 second. For all our heuristics, the
delay � is measured in periods of 10 seconds; i.e., a delay of
10 means a 100 second delay. The transmission and reception
energy values are chosen to reflect the values of a standard
WaveLAN network card.

Each experiment is repeated in five independent runs. A
reported data point is the average over the five runs. An error
bar marks one standard deviation above and one below the
average.

2) Experimental results for MD heuristic: Figure 1 presents
the experimental results for the MD heuristic for the random
and regular waypoint mobility models, for different � ��� values.
For these experiments, � 
 �

, and the value of � is 5. The
regularity in case of the regular waypoint mobility model is
80%.

The percentage energy saving for the MD heuristic with
the random waypoint model is up to 37.2%. In the case of
the regular waypoint mobility model, the MD heuristic may
achieve higher percentage energy saving in most cases. This
is expected because the MD heuristic is designed to learn
patterns in movement history. From these experimental results,
we observe that the amount of energy saving increases as
the value of � �=� decreases. This is because a high probability
threshold value may lose many opportunities for saving energy,
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Fig. 1. Percentage energy saving as a function of ����� for MD heuristic.
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Fig. 2. Percentage energy saving as a function of history length for MD
heuristic.

since we are being too conservative in trying to postpone
communication.

In the case of the Markov model, once the order of the
model is fixed, incorporating more history information does
not require extra space. Thus, we can increase the history
length to get better performance since, when the history length
is larger, a node can learn its movement pattern better, which
results in more energy saving. Figure 2 shows how energy
saving increases with the increase of the history length in the
case of the random waypoint mobility model. The value of �
for this set of experiments is 5.

3) Experimental results for AD heuristic: Figure 3 shows
the percentage energy saving with the AD heuristic for dif-
ferent values of � for both single hop and multi-hop trans-
missions. As we increase the value of � , a mobile node can
save more energy since it now has more opportunities (i.e., a
longer time) to move closer to the destination. From Figure 3,
we can see that the percentage energy saving increases rapidly
as we increase � initially. However, after some point it tends to
stabilize. Figure 4 presents the percentage decrease in average
distance for the same set of experiments.

As we can see from Figure 3, the percentage saving in
energy is much more in the case of single hop communication.
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Fig. 3. Percentage energy saving as a function of � for AD heuristic.
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Fig. 4. Percentage decrease in average distance as a function of � for AD
heuristic.

This is expected, because in the case of single hop communica-
tion, a smaller distance directly translates into reduced energy
use due to transmission power control. However, the amount
of saving in the case of multi-hop communication depends
on factors such as the network state and node density. Multi-
hop transmission is more realistic in the case of an ad-hoc
network. For experiments with single-hop communication, we
always use transmission power control; i.e., we calculate the
required transmission power level for a node such that the
target is just able to receive from this node. Here, notice
that enough transmission power does not necessarily guarantee
successful reception of the packet due to other factors, e.g.,
channel errors, may result in packet loss. For the multi-hop
transmission experiments, however, we do not use transmis-
sion power control since we do not assume a mobile node
always knows its distance from the neighbors. In the single hop
case, however, the target is fixed and its position is available
to all nodes. If transmission power control were included in
the multi-hop case, we would expect the energy saving to be
significantly larger. Hence, the reported energy savings in the
experiments for multi-hop communication are conservative.

Experimental results for the basic as well as the variations of
the AD heuristic are shown in Figure 5. For a smaller value

 35

 40

 45

 50

 55

 0  50  100  150  200  250  300  350

P
er

ce
nt

ag
e 

en
er

gy
 s

av
in

g 
(%

)

Maximum allowable delay (k)

Basic AD heuristic
RAD heuristic
DAD heuristic

Fig. 5. Percentage energy saving as a function of � for AD, RAD and DAD
heuristics.

of � (up to 35 periods), the DAD heuristic performs better
than the basic AD and RAD heuristics, while the basic and
RAD heuristics show similar performance. However, the DAD
heuristic tends to perform less well than the basic one as the
maximum allowable delay increases. This is because, as �
increases, it becomes more likely that, even if a mobile node
is moving away from the target at some point of time, it will
revert back towards the target at some future point of time.
In other words, in introducing the direction information, we
assume that once a mobile node starts moving away from the
target, it is not going to turn back before the deadline � . The
probability of this assumption being true decreases as the value
of � increases.

4) Experimental results for LD heuristic: This heuristic
works very well and gives considerable energy savings. First,
we present simulation results for this heuristic with the random
waypoint mobility model as a function of the history length in
Table I. The results show that, up to a certain point, increase in
the history length improves performance. After that the amount
of energy saving becomes stable. Also, the decrease in average
distance is more significant than the energy saving, because
our heuristics are designed to decrease this average distance
at the time of communication.

Figure 6 shows how the LD heuristic performs with varying
delay � both for single hop and multi-hop transmissions. As
expected, with increased delay, the amount of energy saving
increases. Figure 6 shows the same trend as the one with the
AD heuristic. The rate of increase in percentage energy saving
is high initially as we increase the value of � , but this rate
gradually stabilizes. Figure 7 presents the percentage decrease
in average distance for the same set of experiments. In Figure
7, we may find that when the value of � increases up to 40,
the percentage decrease in average distance may reach 99%,
which means that LD heuristic is always able to predict a
closest position to the target when � is large enough.

5) Impact of Regularity: In the regular waypoint model,
the regularity of the nodal movement can be controlled by
the regularity parameter � . We study the impact of � on
the heuristics in this section. Figure 8 and Figure 9 show
the percentage energy saving and the percentage decrease in
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History Length � Percentage decrease in Percentage energy Absolute energy
average distance saving saving (Joule)

10 77.65 52.9 4702
20 92.10 56 4970
40 97.99 57.7 5127
60 98.64 58 5155
80 98.73 58 5156
100 98.73 58 5156
120 98.73 58 5155

TABLE I

ENERGY SAVING USING THE LD HEURISTIC AS A FUNCTION OF HISTORY LENGTH.
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Fig. 6. Percentage energy saving as a function of � for LD heuristic.

 50

 60

 70

 80

 90

 100

 110

 0  50  100  150  200  250  300  350

P
er

ce
nt

ag
e 

di
cr

ea
se

 in
 a

ve
ra

ge
 d

is
ta

nc
e 

(%
)

Maximum allowable delay (k)

LD error bar
LD average

Fig. 7. Percentage decrease in average distance as a function of � for LD
heuristic.

average distance, respectively, as we vary the regularity in
the case of the regular waypoint mobility model. In Figure
8, when the regularity increases, the percentage decrease in
average distance decreases for AD and LD. The first reason
is that the AD and LD heuristics are not designed to learn
patterns in the movement history of a mobile node for use
in the prediction. The second reason is that the more regular
the node movement is, the more likely a node will have less
chance to move close to the target, if the route between its
home and work positions are far from the target. Similarly, the
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Fig. 8. Percentage decrease in average distance as a function of regularity
for MD, AD and LD heuristics.

percentage energy savings for AD and LD decrease slightly
when the regularity increases, as shown in Figure 9.

For the MD heuristic, as the regularity increases, the
percentage decrease in average distance also increases. This
is because the Markov model in MD is designed learn the
patterns in the movement history. Hence, with increasing
regularity in the regular waypoint model, the MD heuristic
performs better. However, the percentage energy saving for the
MD heuristic begins to decrease when the regularity becomes
larger than 80, although the average distance continues to
decrease. This is because the heuristic is explicitly designed
to reduce the average distance at the time of communication,
while other factors may affect the actual energy consumption –
e.g., the duration of communication, which is discussed below.

6) Impact of communication duration: The duration of
communication affects the performance of our heuristics. The
heuristics are designed to find a good time to start the commu-
nication, when the distance between the mobile node and the
target is less. However, if the duration of the communication
is very long, the mobile node may move away from the target
while the communication is still going on. In this scenario, our
heuristic may not choose the best time to communicate over
the entire duration, and the energy saving may be smaller as
a result. Table II shows the effect of communication duration
on the amount of energy saving.

7) Impact of minimum speed in random waypoint model:
We show how different minimum speeds of nodal movement in
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Transmission duration (sec) Percentage energy saving
Single-hop Multi-hop

0.12 11.14 22.40
0.25 28.50 22.86
0.5 37.13 23.49
1 39.89 24.70
2 35.88 24.81

TABLE II

PERCENTAGE ENERGY SAVING USING MODIFIED AD HEURISTIC AS A FUNCTION OF TRANSMISSION DURATION.
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Fig. 9. Percentage energy saving as a function of regularity for MD, AD
and LD heuristics.
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Fig. 10. Percentage energy saving as a function of � for LD heuristics.

the random waypoint model may impact the percentage energy
saving for the LD heuristic. The results are shown in Figure 10.
From the figure, notice that increasing the minimum speed can
somewhat reduce the performance of the LD heuristic. This is
because at higher speeds, even if LD can predict a good time
to start a communication, it becomes more likely for the node
to move away from the target during the communication.

8) Actual delay and buffer requirement: When using our
power saving strategy, due to postponed sending of messages,
queues may build up at each of the mobile nodes acting as a
source. During our simulations we measure the actual delay
for each of the transmissions. This actual delay along with
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Fig. 11. Maximum allowable delay as compared to the actual observed delay
for AD and LD heuristics.

the message arrival rate at a source node gives us the buffer
requirement for that node. Figure 11 shows the actual delay
observed as compared to the maximum allowable delay � for
both the LD and AD heuristics. The figure clearly shows
that the actual delay increases very slowly as compared to� and almost flattens after certain time. At the same time,
increase in the value of � up to certain point gives us increased
energy saving as shown in Figures 3 and 6. Thus higher
energy saving can be achieved by increasing the value of �
(i.e., the allowable delay) without increasing the actual delay
significantly. Since the actual delay observed, i.e., the waiting
time for the messages in the queue, is bounded, the total
number of messages in a queue, i.e., the queue size, is also
bounded for an arbitrary but bounded message arrival rate.

B. Measurement results on iPAQ

The prediction algorithms run on the mobile nodes. The
required CPU processing incurs an energy cost. Our prediction
strategy will effectively reduce energy consumption of the
mobile device only if the computational cost, in terms of
energy, is less than the energy saving in network communi-
cation. Table III shows the energy consumption due to CPU
processing of our heuristics on a Compaq’s iPAQ 3650 running
Linux. A digital multimeter is used to measure the electrical
current drawn by the iPAQ. To get an accurate measurement
of the current actually consumed by the handheld device, we
disconnect the batteries from the iPAQ and use an external
DC power supply. A Windows terminal is connected to the
multimeter. We run a program in the Windows terminal written
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Fig. 12. Performance comparison among the heuristics.

using Agilent SICL (Standard Instrument Control Library) to
store the DC current readings taken by the multimeter in a
file while we run a prediction algorithm on the iPAQ. These
current values, together with the voltage information and the
time taken to execute a prediction algorithm, are used to
calculate the energy consumption in executing the prediction
algorithm.

We run each prediction algorithm 1000 times (same as the
number of communications between a mobile node and the
target during our simulations) and then multiply that with 10
to reflect the total energy usage by 10 nodes (recall that we
used 10 nodes in our simulations) due to CPU processing. So
these values can be directly compared with the energy savings
shown in all the previous experiments.

The experimental results clearly show that the energy con-
sumption in executing different prediction algorithms (of the
order

)�?��
) are negligible compared to the energy saving in

network communication (of the order
)%?����

).

C. Summary comparison of the heuristics

Let us present a summary of the results for the MD, AD,
DAD, RAD, and LD heuristics, and compare their effective-
ness. The MD heuristic, though sophisticated and complex,
does not achieve effective energy saving. In comparison,
both the LD and AD heuristics are quite simple and highly
CPU efficient. However, they can achieve power savings of
more than 60% compared with immediate communication.
Moreover, the LD and AD heuristics are robust in the sense
that it shows significant power savings for both the random and
regular waypoint mobility models. The bar graph in Figure 12
shows the relative performance of the heuristics presented in
Section IV, for the random waypoint mobility model, multi-
hop communication, � 
 )�?

, and � 
 � ?
. Other parameters

for the different heuristics are chosen to best represent their
performance. For the MD heuristic, ���=� 
 ? � )%? and � 
 �

.
Lastly, we summarize the properties of all our heuristics in

Table IV.

VI. RELATED WORK

The problem of limited battery life in mobile handheld
devices has drawn the attention of the research community

for many years now. Many hardware as well as software
approaches have been proposed to cope with the problem. In
software, the design criteria for operating system as well as
various networking protocols should include energy efficiency
along with other traditional performance metrics. Network
communication is one of the major energy consumer in
case of handheld devices and a lot of research has gone
into optimizing networking protocols for energy efficiency.
On-demand routing [16], [10], [15] has been shown to be
more energy efficient compared to traditional pro-active table
driven routing. This is because a lot of overhead is incurred
in exchanging routing information periodically in case of a
pro-active network, whereas in on-demand routing, routing
information is exchanged only when necessary. Much previous
work on mobility prediction [2][3][6][12][13][14] has focused
on resource reservation and quick handoff management be-
tween base stations to provide QoS support for cell-network-
based mobile wireless users (e.g., with bandwidth reservation
and guarantees). The authors in [11], [19], [1] propose the
use of location information to reduce energy consumption in
routing. Su et al [17] uses location information to estimate
the expiration time of the link between two adjacent mobile
nodes. Based on this prediction, they reconstruct routes before
they expire. Grossglauser and Tse [28] consider a mechanism
where packet delivery is delayed (although routed through an
Their objective, however, is to improve the capacity, instead of
reducing the energy use, of ad hoc wireless networks. Das and
Bhattacharya [3] propose an information theoretic approach
to track mobile users in a Personal Communication Service
(PCS) network environment. We also use location information
of the mobile nodes in our energy saving strategy, but in a
different context.

VII. CONCLUSION

Wireless networking is rapidly emerging as the future
communication technology. Ad hoc networks are becoming
increasingly popular because its deployment is very fast and
easy. However, the components of an ad hoc network are
mostly battery-powered handheld devices. Limited battery life
thus is an important issue in ad hoc networking. Our strategy
presented in this paper can conserve energy of the mobile
nodes, thus increasing the network lifetime. Our strategy
predicts a good time for communication to take place, based
on the location information of the mobile nodes, and postpones
communication until that point. We consider the case of both
a fixed target and a moving target. As we have seen in
the simulation results, variations in the transmission duration
affect the amount of energy saving. It would be instructive
to find effective prediction strategies that take into account
the transmission duration while predicting a good time for
communication. Another issue to explore further is the optimal
way to divide the whole network into grids.
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