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ABSTRACT
Given the globalized economy, how to process the heteroge-
neous web data so to extract customers’ purchase behavior
is crucial to manufacturers who want to enter or sustain in
a competitive market. To maximize the sales, manufactur-
ers not only need to decide what products to produce so
to meet diverse customers’ requirements, but at the same
time, compete with competitors’ products. In this paper,
we present a general framework for the following product
selection problems: (1) k-BSP problem, which is for a man-
ufacturer to enter a competitive market, and (2) k-BBP
problem, which is for a manufacturer to sustain in a com-
petitive market. We propose several product adoption mod-
els to describe the complex purchase behavior of customers,
and formally show that these problems are NP-hard in gen-
eral. To tackle these problems, we propose computationally
efficient greedy-based approximation algorithms. Based on
the submodularity analysis, we prove that our algorithms
can guarantee a (1−1/e)-approximation ratio as compared
to the optimal solutions. We perform large scale data analy-
sis to show the efficiency and accuracy of our framework. In
our experiments, we observe 1,300 to 250,000 times speedup
as compared to the exhaustive algorithms, and our solutions
can achieve on average 96% of solution quality as compared
to the optimal solutions. Finally, we apply our algorithms
on web dataset to show the impact of customers’ different
purchase behavior on the results of product selection.

Categories and Subject Descriptors
F2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems
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1. INTRODUCTION
In the modern globalized and fast evolving economy, con-

sumer markets are becoming very dynamic. This leads to
fierce competitions among manufacturers who compete for
potential customers. Manufacturers need to find effective
means to enter a new market, while existing manufacturers
in a market need to consider how to sustain so as to keep
up with the competition. To succeed in a market, manufac-
turers need to create better products over their competitors
by considering not only existing products in the market, but
also customers’ behavior, perception and preference.

The popularity of the Internet has revolutionalized cus-
tomers’ product adoption behavior and the way manufac-
turers introduce new products. Customers can now share
their opinions on products in the form of ratings or product
reviews through various web services, e.g., Amazon, TripAd-
visor. Potential customers can access these ratings or re-
views, and purchase products based on ratings, reviews and
their own preference, instead of solely relying on the sales
pitch from salesmen or traditional advertisements. Further-
more, manufacturers can use these ratings or reviews (i.e.,
heterogeneous web data) to gain a better understanding of
customers’ preference or requirement so to guide their man-
ufacturing decisions. This leads to new challenges on how
to effectively introduce new products into the market.

To introduce new products, a manufacturer normally has
a set of candidate products that they may produce [10, 13].
The key constraint is the production budget, say the man-
ufacturer can only afford to produce a subset of these can-
didate products. The goal of a manufacturer is to select
a subset of these candidate products that may bring the
highest profit by considering customers’ preferences or re-
quirements, as well as the competition of existing products
in the market.

In this work, we consider the scenario that each product
can be described by a finite number of attributes. Customer-
s’ requirement on each attribute can be obtained by means
of mining product ratings or reviews on the web. We call
this as the “product selection problem”, where a set of ex-
isting products, a set of candidate products, and customers’
requirement on each products’ attribute are available. Given
a production budget k≥1, the objective is to select k most
marketable products from the candidate products so that
the manufacturer can either enter or sustain in the market
with the largest sales.

The problem of selecting k most marketable products is
challenging. Firstly, many human factors may affect cus-



tomers’ product adoption behavior, which have a significant
impact on the selection result. However, there is a lack of
a formal model and analysis of product adoption behavior.
Secondly, finding the optimal k products to produce is com-
putationally expensive. For example, even for the simplest
product adoption model [10], is NP-hard. And the prob-
lem becomes more challenging when we have to consider the
complicated customers’ behavior in the real world market
[4]. The aim of this paper is to tackle these two challenges
by proposing formal models to analyze the impact of var-
ious factors on market entry or sustainability, and present
efficient algorithms on these generalized product selection
problems. To the best of our knowledge, this is the first pa-
per that provides formal models and analysis of such prob-
lems. Our contributions are:

• We formulate product selection problems for a new
manufacturer to enter a market (or the k-BSP prob-
lem), and how to sustain in a competitive market (or
the k-BBP problem).

• We propose three new and general product adoption
models to capture various human factors that may af-
fect customers’ behavior in adopting products.

• We formally prove these product selection problems
are NP-hard in general. We propose computationally
efficient approximation algorithms for the product se-
lection problems. By proving the submodularity prop-
erty, we show our algorithms can provide a high theo-
retical performance guarantee: (1−1/e)-approximation
as compared to the optimal solutions.

• We perform experiments using both synthetic data and
real-world web data (i.e., RateBeer.com) to validate our
framework and to examine factors that may affect the
product selection. The results of these experiments
show the efficiency and accuracy of our algorithms and
the significant impact of different adoption models.

This is the outline of this paper. In Section 2, we present
three general product adoption models to describe the cus-
tomers’ behavior. We also define the expected sales of prod-
ucts and formulate product selection problems for both mar-
ket entry (k-BSP) and sustainability (k-BBP). In Section 3,
we present efficient exact algorithms for the case that k=1
and prove that finding the exact solutions is NP-hard when
k>1. In Section 4, we present approximation algorithms for
the market entry and sustainability problems, and show they
are not only computationally efficient but also with theoret-
ical performance guarantee. In Section 5 and 6, we present
experimental results on synthetic data and web data respec-
tively. Related work is given in Section 7, and Section 8
concludes.

2. MATHEMATICAL MODELS &
PROBLEM FORMULATION

In this section, we first present the model of a market.
Then we describe various product adoption models (i.e., how
customers decide which products to purchase) and the ex-
pected sales of a set of products given the current market
condition (e.g., available products and customers). Final-
ly, we formulate the market entry and market sustainability
problems.

2.1 Model for a market
We consider a market which consists of l customers C =
{c1, c2, . . . , cl} and there arem existing products PE ={p1, p2,
. . . , pm}. Let M represent a manufacturer and let PM ⊆PE

denote all the existing products produced by M which are
in the market. The remaining products in the market, de-
noted by PC = PE \PM , are from competitors of M , or
PE =PM∪PC , and PM∩PC =∅. Suppose the manufacturer
M wants to produce some new products that will maximize
its utility and it needs to take into account the current mar-
ket condition. Manufacturer M has a budget constraint and
it can only select k≥1 products from n candidate new prod-
ucts to produce, we denote these candidate new products as
PN = {pm+1, pm+2, . . . , pm+n}. Note that all the products
in PN are new to the market, i.e., PN ∩ PE = ∅. Formally,
when PN is given, the manufacturer M needs to select k
most marketable products out from PN .

2.2 Models for Product Adoption
Each product in PE∪PN is associated with d attributes

denoted by A = {A1, A2, . . . , Ad}. Each attribute is rep-
resented by a non-negative real number and higher value
implies higher quality. We can use Ai to represent vari-
ous attributes, e.g., durability, attractiveness, or inverse of
price. The qualities of a product can be described by a d-
dimensional vector. Specifically, the qualities of the product
pj are described by the vector qj = (qj [1], qj [2], . . . , qj [d])
where qj [t] ∈ [0,∞) indicates the quality of pj on the at-
tribute At, ∀t = 1, . . . , d. Similarly, the requirements of a
customer can also be described by a d-dimensional vector.
Let ri =(ri[1], ri[2], . . . , ri[d]) denote the requirement vector
of customer ci, where ri[t] ∈ [0,∞) indicates the minimum
requirement on attribute At, i.e., customer ci requires that
the product’s quality on At is at least ri[t], or she will not
adopt that product.

A customer may adopt a product only if the product sat-
isfies her requirements. We say that a product satisfies a
customer’s requirements if and only if the product meets the
requirements of that customer on all attributes. Formally,
we define the following.

Definition 1 (Product satisfiability). Consider a cus-
tomer ci and a product pj. We say the product pj satisfies
the requirements of the customer ci if and only if qj [t] ≥ ri[t],
∀t=1, . . . , d. We denote this relationship by pj % ci, and pj
is said to be a satisfactory product of ci. In other words, ci
is a potential customer of pj.

To illustrate, consider that each product has two attributes
(d=2), and the value of each attribute ranges from 0 to 10.
Let’s say we have two existing products PE = {p1, p2}, t-
wo candidate products PN = {p3, p4} and three customers
C = {c1, c2, c3}. The qualities of the products and the re-
quirements of the customers are depicted in Figure 1, where
the horizontal axis represents the attribute A1 and the ver-
tical axis represents the attribute A2. The satisfactory rela-
tionship is shown on the right of Figure 1. For example, the
product p1 has two potential customers c1 and c2, while the
customer c3 has one satisfactory product p4.

Customers may adopt more than one product. To model
this possibility, we let wi, wi∈R+, be the purchasing capaci-
ty of customer ci. We assume that if ci has some satisfactory
products in the market, then ci will use up all wi units on
these products, otherwise 0 units will be adopted.
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Figure 1: An illustration for product
satisfiability and adoption

It is important to note that if ci only has one satisfactory
product, say pj , then ci will adopt wi units of pj , and if
ci has multiple satisfactory products, then these wi units of
purchased products will be a combination of all satisfactory
products. Because customers may have different behavior in
adopting different satisfactory products, let us present three
models to describe some representative product adoption
behavior: persistent adoption model, opportunistic adoption
model, and mixed adoption model.

• Persistent Adoption Model

Customers may prefer some products over others. A cus-
tomer’s preference over a product can be described by the
probability that the customer will adopt that product. High-
er probability implies higher preference. Let Pr(i, j|P) de-
note the probability that a customer ci adopts the product
pj when a set P of products are available in the market.
Note that any change on other products may change the
value of the probability Pr(i, j|P), since other products may
become more (or less) attracted to the customer. The rela-
tive preference of the customer ci over the products pj and
pj′ can be expressed by the ratio Pr(i, j|P)/Pr(i, j′|P). We
say a customer’s preference is persistent if given any two
products, that customer’s relative preference over these two
products remains the same even when there are changes a-
mong available products in the market. Concretely, suppose
a customer prefers the product pj over the product pj′ , then
she will always prefer pj over pj′ . Mathematically, the ratio
Pr(i, j|P)/Pr(i, j′|P) is a constant, or

Pr(i, j|P)

Pr(i, j′|P)
=

Pr(i, j|P ′)
Pr(i, j′|P ′) , ∀P,P ′. (1)

It is important to note that in the case of Pr(i, j′|P) =
0, the value of Pr(i, j|P)/Pr(i, j′|P) is defined to be 1 if
Pr(i, j|P)=0, otherwise it is defined to be ∞.

Example 1. To illustrate, consider the products and cus-
tomers depicted in Figure 1. Suppose the market only con-
tains the existing products PE = {p1, p2}, one can observe
that both of p1 and p2 are c2’s satisfactory products. As-
sume c2 prefers p1 over p2 and c2 will adopt p1 and p2 with
probability 0.8 and 0.2 respectively, or Pr(2, 1|PE) = 0.8,
Pr(2, 2|PE)=0.2. Hence the “relative preference” of c2 over
p1 and p2 can be expressed as Pr(2, 1|PE)/Pr(2, 2|PE) = 4.
Suppose now we introduce a new product p3 into the mar-
ket. From Figure 1, one can see that p3 is also a satisfactory
product of c2. Let’s say p3 is so attracted to c2 that c2 will

adopt it with probability 0.9. After p3 is introduced into the
market, the probability c2 adopting p1 and p2 will change,
but under the persistent adoption model, their ratio remain-
s the same, say Pr(2, 1|PE ∪ {p4})/Pr(2, 2|PE ∪ {p4}) = 4.
In other words, the relative preference of c2 over p1 and p2
remains unchanged. Based on that ratio, we can update the
probability c2 adopts p1 and p2 as Pr(2, 1|PE ∪ {p4})=0.08
and Pr(2, 2|PE ∪ {p4})=0.02.

In this work, we consider two representative instances of
the persistent adoption model: uniform model and distance-
proportional model.

Uniform Model (UM)
The uniform model is one of the most widely used mod-

els which assume that when a customer has multiple satis-
factory products, the customer will adopt them with equal
probability. Mathematically,

Pr(i, j|P)

Pr(i, j′|P)
= 1, ∀pj , pj′ ∈ SP(ci|P), (2)

where P is the set of products in the market, SP(ci|P) ⊆ P
is the set of ci’s satisfactory products in P.

Distance-proportional Model (DM)
In a real world market, the higher a product’s quality is,

the more likely customers may adopt it. We use a distance
measure between a customer and a product to quantify how
likely a customer may adopt that product. Mathematically,
a customer adopts a satisfactory product with probability
proportional to the distance between her requirement vector
and that product’s quality vector. There are a number of
distance metrics we can use, e.g., l1 or l2 norm. Let P be
the available products in the current market, and d(i, j) be
the distance between the requirement vector of customer ci
and the quality vector of product pj . Then we have

Pr(i, j|P)

Pr(i, j′|P)
=

d(i, j)

d(i, j′)
, ∀pj , pj′ ∈ SP(ci|P). (3)

• Opportunistic Adoption Model

We say a customer’s preference is opportunistic if her rela-
tive preference over two given products may be influenced by
the change of the market condition. We consider two rep-
resentative instances of the opportunistic adoption model:
single-attribute-based model and all-attributes-based model.

Single-attribute-based Model (SM)
In a realistic market, one typical behavior is if a customer

has multiple satisfactory products, she will simply adopt the
one with the lowest price. We describe this kind of behav-
ior by the SM. Under the SM, customers always adopt a
satisfactory product which has the highest quality on a par-
ticular attribute (say the inverse of the price). We call this
attribute decisive attribute. If there are multiple products
having the same highest quality on the customers’ decisive
attribute, then that customer will randomly select one. For-
mally, let ai be the index of the decisive attribute of ci. Let
P be the set of products in the current market, Si be the
set of products which has the highest quality on attribute
Aai among SP(ci|P), then the choice of ci can be modeled
as follows.

Pr(i, j|P)=

{
1
|Si|

if qj [ai] = max
pt∈SP(ci|P)

qt[ai],

0 otherwise.
(4)



All-attributes-based Model (AM)
Similar with the DM, customers following the AM also

adopt products according to the distance between products’
quality vector and their requirement vector. However, un-
der the AM, customers only adopt the satisfactory product
which has the longest distance (or highest quality among all
attributes). If there are multiple products having the same
longest distance, then the customers will randomly select
one. Let P be the set of products in the current market,
d(i, j) be the distance between the requirement vector of
customer ci and the quality vector of product pj . Let S′i be
the set of products which have the longest distance to ci.
Then the probability that the ci adopts pj can be modeled
as follows.

Pr(i, j|P)=

{
1
|S′

i|
if d(i, j) = max

pt∈SP(ci|P)
d(i, t),

0 otherwise.
(5)

• Mixed Adoption Model

In the mixed adoption model, some customers follow the
persistent adoption model while other customers follow the
opportunistic adoption model. Let α1, α2, α3, α4 denote the
fraction of customers that follow the UM, DM, SM, and AM
respectively, where

∑4
i=1 αi =1. We call this the (α1, α2, α3,

α4)-Mixed Adoption Model. To simplify notations, we de-
note ( 1

4
, 1
4
, 1
4
, 1
4
)-Mixed Adoption Model as the Mean-Mixed

Adoption Model (MM).

Example 2. Consider the products and customers depict-
ed in Figure 1. Suppose the market only contains the prod-
ucts in PE∪{p4}, where PE ={p1, p2}. One can observe that
all these three products are satisfactory products of c2. Let’s
consider the probability c2 will adopt p4. Under the UM, c2
will adopt p1, p2 and p4 with the same probability, or 1/3.
Under the DM, assume that we use the l1 norm to compute
the distance. We have d(2, 1) = 5, d(2, 2) = 4, d(2, 4) = 6.
Hence, c2 will adopt p4 with probability 6/(5 + 4 + 6)=2/5.
Under the SM, assume that A2 is the decisive attribute of
c2. Since p1 has the highest quality on the attribute A2,
c2 will adopt p1 with probability 1.0, p2 and p4 with prob-
ability 0. Under the AM, assume that we also use the l1
norm to compute the distance. Since p4 has the longest dis-
tance from c2, c2 will adopt p4 with probability 1.0. Under
the MM, if we still use the l1 norm for all distance mea-
sure and a2 = 2. Then c2 will adopt p4 with probability
1
4
(1/3+2/5+0+1)≈0.43.

2.3 Model for Product Sales
We formulate the expected sales of a set of products P .

Given a product pj , let PC(pj)={ci|ci ∈ C, pj % ci} be the
set of potential customers of pj . Let P be a set of products
we consider and PE is the set of existing products in the
market. The expected sales of P are defined as:

Sale(P ) =
∑
pj∈P

∑
ci∈PC(pj)

wi · Pr(i, j|PE ∪ P ). (6)

Example 3. Let us illustrate the expected sales of p4, or
Sale({p4}), by considering the same scenario in Example 2
where all the customers follow the MM. In the market, p4
satisfies c2 and c3, or PC(p4) = {c2, c3}. Let the weight of
c2 and c3 be w2 = 1 and w3 = 2, respectively. Consider the
customer c2, from Example 2, we can see that c2 will adopt
p4 with probability 0.43. Consider the customer c3, p4 is the

only satisfactory product of c3, so no matter what adoption
model c3 follows, she will adopt p4 with probability 1.0. As
a result, the total sales of p4 are w2×0.43+w3×1.0=2.43.

2.4 Problem Formulation
Consider a new manufacturer M who wants to enter the

market. The goal of M is to attract as many customers
as possible to adopt its new entrant products. Given its
production budget, M seeks to select k ≥ 1 products from
the new product set PN so to maximize the sales.

Since M is a new manufacturer, it has no existing product
in the market, i.e., PM = ∅. The goal is to find k products
from PN which can achieve the highest expected sales. We
call this market entrance as the top-k best-selling products
(k-BSP) problem, which is formally defined as follows.

Definition 2 (k-BSP). Given a set C of customers, a
set PE of existing products in the market, and a set PN of
candidate products by the manufacturer M , select k products
from PN so to maximize Sale(P ), where P is the set of k
products the manufacturer M selects from PN .

Now assume that the manufacturer M is in the market
and has some products in PE . Then a natural question to
ask is what new products M needs to produce so to sustain
and maximize its business in the market? Note that this is
different from the k-BSP problem since PM 6=∅. M needs to
consider not only what new products to select from PN , but
also how these new products may affect its existing products
in the market. We call this the top-k best-benefit products
(k-BBP) problem, and it can be defined as follows.

Definition 3 (k-BBP). Given a set C of customers, a
set PE = PC ∪ PM (with PM 6= ∅) of existing products
in the market, and a set PN of candidate products by the
manufacturer M , select k products from PN so to maximize
Sale(P∪PM ), where P is the set of the k products M selects.

Note that both the k-BSP and k-BBP problems are func-
tions of the product adoption models we defined earlier.
In the following, we proceed to explore the algorithmic de-
sign and their computational complexity. In Section 3, we
present the exact algorithms for the top-1 BSP and BBP
problems which have polynomial running time. However, we
formally prove that finding the exact solutions for k-BSP
and k-BBP is NP-hard for k>1. To tackle this challenge, in
Section 4, we present efficient greedy-based approximation
algorithms based on the top-1 exact algorithms. By proving
the submodularity of the sales function Sale(·), we formally
prove that our approximation algorithms can provide a high
performance guarantee on the quality of the solutions.

3. EXACT ALGORITHMS AND THEIR
HARDNESS

In this section, we first present the exact algorithms for
the top-1 BSP and BBP problems under the three adoption
models introduced in Section 2. This serves as the founda-
tion of our approximation algorithms in Section 4. Then we
provide the formal proof of the NP-hardness of the k-BSP
and k-BBP problems, for k > 1.

3.1 Top-1 Exact Algorithms
One way to find the exact solutions of the top-1 BSP

and BBP problems is via exhaustive search: for all candi-
date products in PN , calculate the expected sales and select



the one with the largest. The computational complexity of
exhaustive search is O(mnld), where m = |PE |, n = |PN |,
l = |C| , and d = |A|. In the following, we will propose
enhanced top-1 exact algorithms with lower computational
complexity, O((m+n)ld), for the three adoption models we
introduced in Section 2.

• Persistent Adoption Model
Let us first assume that all customers follow the persistent

adoption model. Let Pj denote the set of products PE∪{pj}.
According to the definition of persistent adoption model, we
can calculate the sales of product pj as follows.

Sale({pj}) =
∑

ci∈PC(pj)

wi · (Pr(i, j|Pj)/
∑

pt∈SP(ci|Pj)

Pr(i, t|Pj)). (7)

Recall that the ratio Pr(i, j|Pj) :Pr(i, j′|Pj) will not change
and all products we consider are in the set PE ∪PN . Let
bi,j = Pr(i, j|PE∪PN ), thus for any pj ∈PN , we have

Sale({pj}) =
∑

ci∈PC(pj)

wi · (bi,j/
∑

pt∈SP(ci|Pj)

bi,j). (8)

Let us consider the top-1 BSP problem first. The main
idea is that we first calculate bij for each pair of ci and
pj . Then for each new product pj ∈ PN we calculate its
expected sales according to Equation (8). The product with
the largest expected sales is the solution of the algorithm.
The main idea of finding the top-1 BBP product is similar
with finding top-1 BSP product. Finally, we outline the
algorithm for finding the top-1 BSP or BBP product in
Algorithm 1. Note that the algorithm is a general algorithm
for all persistent adoption models, and it can be simplified
for specific models. For the UM, we can replace line 4 by
bij←1, and for the DM, by bij←d(i, j).

Algorithm 1 Top-1 Algorithm (persistent adoption model)

1: Sale(PM )← 0
2: for all ci ∈ C do
3: for all pj ∈ SP(ci|PE ∪ PN ) do
4: bij ← Pr(i, j|PE ∪ PN )

5: sumi =
∑

pj∈PE
bij

6: mi =
∑

pj∈PM
bij

7: Sale(PM )← Sale(PM ) + wi · mi
sumi

8: max Sale ← 0
9: for all pj ∈ PN do

10: Sale(pj)← Sale(PM )
11: for ci ∈ PC(pj) do

12: Sale(pj)← Sale(pj) + wi · ( mi+bij
sumi+bij

− mi
sumi

)

13: if Sale(pj) ≥ max Sale then
14: res ← pj
15: max Sale ← Sale(pj)

16: return res

Lemma 1 (Computational complexity). The compu-
tational complexity of Algorithm 1 is O((m+ n)ld) for both
BSP and BBP, where m= |PE |, n= |PN |, l= |C|, d= |A|.

Proof. From line 2 to 7, we compute bij for each pair of
ci and pj , and calculate Sale(PM ) at the same time. The
complexity of these steps is O((m+n)ld). From line 9 to 15,
for each product in PN , it takes O(ld) time to compute the

expected sales. Hence, the total computational complexity
is O((m+ n)ld) + n×O(ld) = O((m+ n)ld).

• Opportunistic Adoption Model
Let us present the algorithmic design for the SM and the

AM. The algorithm for finding top-1 BSP or BBP product
corresponding to AM is outlined in Algorithm 2. The main
idea is that, for each customer, we find the products which
have the longest distance from her and record the distance.
Note that it may happen that multiple products have the
longest distance. We also record the customers who will
adopt products in PM during the calculation. Then, for each
product in PN , we calculate the expected sales via the data
we have recorded. The product with the largest sales will
be returned as the solution of the algorithm. The algorithm
for finding the top-1 BSP or BBP product corresponding
to the SM is similar with that of the AM. Please refer to [5]
for details.

Lemma 2 (Computational complexity). The compu-
tational complexity of Algorithm 2 is O((m+ n)ld) for both
BSP and BBP, where m= |PE |, n= |PN |, l= |C|, d= |A|.

Proof. Similar with the proof of Lemma 1, one can observe
that the algorithm takes O(mld) time to do the precalcula-
tion and O(nld) time to select the product with maximum
expected sales. Hence, the total computational complexity
is O((m+ n)ld).

Algorithm 2 Top-1 Algorithm (AM)

1: Sale(PM )← 0
2: for all ci ∈ C do
3: Find the set of products S′i which have the longest

distance from ci in SP(ci|PE)
4: di ← distance between the products in S′i and ci
5: ei ← |S′i|
6: mi ← |S′i ∩ PM |
7: Sale(PM )← Sale(PM ) + wi · mi

ei

8: max Sale ← 0
9: for all pj ∈ PN do

10: Sale(pj)← Sale(PM )
11: for all ci ∈ PC(pj) do
12: if d(i, j) > di then
13: Sale(pj)← Sale(pj) + wi · (1− mi

ei
)

14: else if d(i, j) = di then
15: Sale(pj)← Sale(pj) + wi · (mi+1

ei+1
− mi

ei
)

16: if Sale(pj) ≥ max Sale then
17: res ← pj
18: max Sale ← Sale(pj)

19: return res

• Mixed Adoption Model
Suppose that customers follow the (α1, α2, α3, α4)-mixed

adoption model. When we select products with the max-
imum sales, we need to calculate the sales corresponding
to all of the four models for each product in PN . Let
sale1, sale2, sale3, and sale4 denote the expected sales cor-
responding to the UM, DM, SM, and AM. The total sales
will be

∑4
i=1 αi ·salei(P ). So the algorithm corresponding

to the mixed adoption model will be a combination of the
algorithms corresponding to all of the four models. Hence,



according to Lemma 1 and 2, under (α1, α2, α3, α4)-mixed
adoption model, the computational complexity of the algo-
rithm for finding the top-1 BSP or BBP product is also
O((m+n)ld), where m= |PE |, n= |PN |, l= |C|, and d= |A|.

3.2 Top-k Exact Algorithms
A direct yet naive approach to find the exact solutions of

the k-BSP and k-BBP problems is via exhaustive search:
Enumerate all possible subsets of size k from PN , then cal-
culate the expected sales of each subset and select the one
with the largest. However, this approach is not scalable since
there are exponentially many possible subsets when k > 1.
The following two theorems state that finding the exact so-
lution for the k-BSP and k-BBP problems is NP-hard when
the number of attributes is three or more, respectively.

Theorem 1. Finding the exact solution for the k-BSP prob-
lem is NP-hard when the number of attributes d ≥ 3.

Proof. Please refer to [5] for details.

Theorem 2. Finding the exact solution for the k-BBP prob-
lem is NP-hard when the number of attributes d ≥ 3.

Proof. Please refer to [5] for details.

4. DESIGN OF APPROXIMATION
ALGORITHMS

In the last section, we formally showed that finding out
the exact solutions for the k-BSP problem and the k-BBP
problem is NP-hard. However, we also presented efficien-
t exact algorithms for the top-1 BSP and BBP problem-
s. In this section, we extend the top-1 algorithms to the
top-k problems by a greedy-based approximation algorith-
mic framework. By proving the submodularity of the sales
function Sale(·), we show that our approximation algorithms
are not only computationally efficient, but can also provide
a high theoretical performance guarantee on the quality of
the solutions: (1− 1/e)-approximation.

4.1 Greedy-based Approximation Algorithms
Let us present a general greedy algorithmic framework to

solve the k-BSP and k-BBP problems. The main idea can
be described as follows. We select k products in k steps: in
each step we select the product which is the solution of the
top-1 exact algorithm of the corresponding adoption model
(proposed in Section 3), then we remove this product from
PN and add it into PM . We outline the framework in Algo-
rithm 3. According to Lemma 1 and 2, the computational
complexity of Algorithm 3 is O(k(m+ n)ld).

Algorithm 3 Top-k Greedy Algorithm

1: P ← ∅
2: while |P | < k do
3: pnew ← top-1 exact algorithm
4: P ← P ∪ {pnew}
5: PM ← PM ∪ {pnew}
6: PN ← PN\{pnew}
7: return P

In the following, we first introduce the notion of submod-
ularity [12] and one of its interesting properties: the greedy-
based framework on a submodular objective function can

provide a performance guarantee on the quality of the solu-
tion as compared to the optimal one [6].

Given a finite set U , consider a real-valued set function
f : 2U→R, where 2U denotes the power set of U . We say f
is submodular if for any S ⊆ U , the marginal gain of adding
an element to S is at least as high as the marginal gain of
adding the same element to a superset of S. Formally, the
submodular set function is defined as follows.

Definition 4 (Submodular Set Function). Given a fi-
nite ground set U , a function f that maps subsets of U to
real numbers is called submodular if

f(S ∪{u})−f(S)≥f(T ∪{u})−f(T ), ∀S⊆T⊆U, u∈U. (9)

Submodular set functions have numbers of interesting prop-
erties. One of them is shown in Theorem 3 and we use it
to design approximation algorithms with theoretical perfor-
mance guarantee.

Theorem 3. For a non-negative monotone submodular func-
tion f : 2U→R, let S ⊆ U be the set of size k obtained by
selecting elements from U one at a time, each time choos-
ing the element that provides the largest marginal increase
in the function value. Let S∗ ⊆ U be the set that maxi-
mizes the value of f over all k-element sets. Then we have
f(S)≥(1−1/e)·f(S∗), where e is the base of the natural loga-
rithm. In other words, S provides a (1−1/e)-approximation,
or guarantees a lower bound on the quality of solutions as
compared to the optimal solutions.

Applying it to the k-BSP and k-BBP problems, the
ground set is PM ∪PN , the sales function Sale(·) in Equa-
tion (6) maps subsects of PM∪PN to real numbers. To show
our greedy algorithms can provide a (1−1/e)-approximation
according to Theorem 3, we need to prove that Sale(·) is
non-negative monotone submodular, which is shown in The-
orem 5 and 6 in the next subsection. Once we prove these
properties of Sale(·), we have the following theorem.

Theorem 4 (Performance guarantee). The greedy
algorithmic framework as stated in Algorithm 3 provides at
least (1−1/e)-approximate solutions compared with the op-
timal ones, where e is the base of the natural logarithm.

Proof. According to Theorem 5 and 6, the sales function
Sale(·) in Equation (6) is non-negative, monotone submodu-
lar. According to Theorem 3, Algorithm 3 provides (1−1/e)-
approximate solutions.

4.2 Submodularity Analysis
Since the sales function Sale(·) defined in Equation (6) is

obviously non-negative, we seek to prove that it is monotone
submodular for the k-BSP and k-BBP problems. In par-
ticular, we show the monotonicity and submodularity prop-
erties holds for the three adoption models we introduced in
Section 2: the persistent adoption model, the opportunistic
adoption model and the mixed adoption model.

• Analysis for the Persistent Adoption Model

Consider the case where all customers adopt products fol-
lowing the persistent adoption model. To prove the sales
function Sale(·) is monotone submodular, we first need to



prove some lemmas (as shown in Lemma 3, 4 and 5, and the
proof of them please refer to [5]). Based on these lemmas, we
can then prove the monotonicity and submodularity, which
are stated in Theorem 5 and 6, respectively.

To simplify the expression, we define the following nota-
tions. For any set S⊆PM∪PN of products, let PS =PE∪S
and Sj =S∪{pj}. Furthermore, let pr i(S)=

∑
pj∈SPr(i, j|PS)

denote the probability of a customer ci adopting products
in S when a set PS of products are available in the market.

Lemma 3. Let PS be the set of products available in the
market, by adding another new product pu into the market,
pu∈PN \PS, the increase of the sales of products in Su is

Sale(Su)− Sale(S) =
∑

ci∈PC(pu)

wi ·(pr i(Su)− pr i(S)). (10)

Lemma 4. Let S and T be two sets of products, S ⊆ T ⊆
PM ∪PN , and pu be another product in PN , pu ∈ PN\T .
For a customer ci following the persistent adoption model,
if pu % ci, i.e., ci∈PC(pu), then we have

pr i(Su)− pr i(S) ≥ pr i(Tu)− pr i(T ). (11)

Lemma 5. Let S ⊆PM ∪PN be a set of products, and pu
be another product in PN , pu ∈ PN\S. For a customer ci
following the persistent adoption model

”
if pu % ci, i.e.,

ci∈PC(pu), then we have

pr i(Su)− pr i(S) ≥ 0. (12)

Based on Lemma 3, 4 and 5, we now prove the mono-
tonicity and submodularity of the sales function Sale(·) as
follows in Theorem 5 and 6, respectively.

Theorem 5. Suppose all customers adopt products follow-
ing the persistent adoption model, then the sales function
Sale(·) defined in Equation (6) is monotone for the k-BSP
problem and the k-BBP problem.

Proof. Consider the k-BSP problem. To prove the mono-
tonicity property of the sales function, we need to show

Sale(Su)− Sale(S) ≥ 0 (13)

holds, ∀S⊆PN , pu∈PN . Similarly, for the k-BBP problem,
we need to show

Sale(PM ∪ Su)− Sale(PM ∪ S) ≥ 0 (14)

holds, ∀S ⊆ PN , pu ∈ PN . Recall that PM ⊆ PE . Exam-
ine Inequality (13) and (14), one can observe that to prove
Inequality (13) and (14) hold, we only need to prove that
Inequality (13) holds for all S⊆PN∪PM and pu∈PN , which
can be easily proved by combining the results of Lemma 3
and Lemma 5.

Theorem 6. Suppose all customers adopt products follow-
ing the persistent adoption model, then the sales function
Sale(·) defined in Equation (6) is submodular for the k-BSP
problem and the k-BBP problem.

Proof. Consider the k-BSP problem. Based on Defini-
tion 4, we need to show

Sale(Su)− Sale(S) ≥ Sale(Tu)− Sale(T ) (15)

holds, ∀S⊆T ⊆PN , pu∈PN .
Similarly, for the k-BBP problem, we need to show

Sale(PM ∪ Su)− Sale(PM ∪ S)

≥ Sale(PM ∪ Tu)− Sale(PM ∪ T ) (16)

holds, ∀S ⊆ T ⊆PN , pu ∈PN . Note that PM ⊆PE . When
we examine Inequality (15) and (16), one can observe that
it is sufficient to prove Inequality (15) holds for all S⊆T ⊆
PN∪PM and pu∈PN .

In the case of pu∈S, Inequality (15) holds, since both sides
of Inequality (15) are equal to 0. In the case of pu ∈ T \S,
the right side of Inequality (15) equals 0, while according to
the monotonicity, which has been proved in Theorem 5, the
left side is non-negative. Hence Inequality (15) also hold-
s. In the case of pu ∈ PN\T , Inequality (15) can be easily
proved by combining the results of Lemma 3 and 4. Thus,
Inequality (15) holds ∀S⊆T ⊆PN∪PM , pu∈PN .

• Analysis for the Opportunistic Adoption Model

Here we consider the case where all customers adopt prod-
ucts following the opportunistic adoption model. The sales
function Sale(·), in general, is not monotone submodular
under the opportunistic adoption model. However, we will
show that for the two adoption models we introduced in
Section 2: the SM and the AM, the sales function Sale(·) is
indeed monotone submodular, as shown in Theorem 7.

Theorem 7. Suppose all customers adopt products follow-
ing the SM or AM, then the sales function Sale(·) defined in
Equation (6) is monotone submodular for both k-BSP and
k-BBP problems.

Proof. The derivation is similar to Theorem 5 and 6. Please
refer to [5] for derivation details.

• Analysis for Mixed Adoption Model

The mixed adoption model describes that in a market,
some customers may follow the persistent adoption model,
while the rest of them may follow the opportunistic adop-
tion model. We show that the sales function Sale(·) remains
monotone submodular in the following theorem.

Theorem 8. Suppose customers adopt products follow the
(α1, α2, α3, α4)-mixed adoption model, then the sales func-
tion Sale(·) defined in Equation (6) is monotone submodular
for the k-BSP problem and the k-BBP problem.

Proof. The derivation is based on Theorem 5, 6 and 7.
Please refer to [5] for derivation details.

5. EXPERIMENTS ON SYNTHETIC DATA
In this section, we perform experiments on synthetic data

to show the efficiency and accuracy of our greedy algorithms.
All the algorithms were implemented in C++ and the ex-
periments were performed on a PC with a 16-core 2.4GHz
CPU, 30 GB of main memory under 64-bit Debian 6.06.

• Synthetic datasets

We adopt one of the most widely used data generator pro-
vided by [3] to generate synthetic datasets. We generate the
following three typical types of synthetic datasets to exam-
ine the efficiency and accuracy of algorithms.



- Independent (ind): the value of each attribute is
generated independently using a uniform distribution.

- Positive correlated (p-corr): products (customers)
that have high quality (requirement) in one attribute
tends to have high qualities (requirements) in other
attributes.

- Negative correlated (n-corr): products (customer-
s) that have high quality (requirement) in one attribute
tends to have low qualities (requirements) in at least
one attribute.

We set the weight of each customer to be 1.0. In other
words, each customer only adopts one unit of products. The
list of all the parameters used to generate the datasets are
shown in Table 1.

In the following, we examine the impact of various fac-
tors. In each experiment, we examine one factor considering
the corresponding parameter as a variable and setting oth-
er parameters as default value as shown in Table 1. Due
to the page limit, we only show the results of the experi-
ments on the first five parameters in Table 1. Please refer to
[5] for experiments on the remaining three parameters. We
examine the accuracy of our greedy algorithms (greedy) by
comparing the output with the exhaustive search algorithms
(exh). Furthermore, we also compare the running time and
computationally efficiency of these two algorithms.

Figure 2-6 show the results. In each figure, the horizontal
axis shows the corresponding parameter which is considered
as a variable, the vertical axis of (a) shows the speedup of
our greedy algorithms compared with the exhaustive search
algorithms, i.e., the ratio between the running time of these
two algorithms, and the vertical axis of (b) shows the ex-
pected sales. In Table 2, we show the running time of both
algorithms. Since the running time only changes slightly
when we change the first three parameters, we only show
the running time of the experiments varying k and |PN |.

Parameters Range Default

data distributions ind, p-corr, n-corr n-corr
adoption models UM, DM, SM, AM, MM DM

|A| 4, 6, 8, 10 4
k 2, 3, 4, 5 3

|PN | 20, 40, 60, 80 20
|PE | 100, 200, 300, 400 100
|PM | 5, 10, 15, 20 5
|C| 1K, 4K, 7K, 10K 1K

Table 1: Parameters of synthetic data

• Experiment 1: Impact of data distribution

We explore the impact of different data distributions on
the efficiency and accuracy of our greedy algorithms. In
particular, we perform experiments on the datasets, where
products’ quality vectors and customers’ requirement vec-
tors are generated by three distributions: independent, pos-
itive correlated, and negative correlated. We run experi-
ments for both the k-BSP and k-BBP problems, and the
speedup and expected sales are shown in Figure 2. Fig-
ure 2(a) shows that the running time of the greedy algo-
rithms is significantly less (about 1/1400) than that of the
exhaustive search algorithms for all three different data dis-
tributions, and the speedup of the k-BSP problem and the
k-BBP problem is almost the same. From Figure 2(b), we

can see that for the independent and positive correlated da-
ta distributions, the greedy algorithms can almost find the
optimal solutions since the expected sales corresponding to
the greedy algorithms and the exhaustive search algorithm-
s are nearly the same. This implies high accuracy of our
greedy algorithms. For the negative correlated data distri-
bution, the expected sales corresponding to the greedy al-
gorithms are slightly smaller than the optimal ones (about
0.9-approximate), but still much better than the theoretical
lower bound derived in Theorem 3.

Lessons learned: The greedy algorithms are significantly
faster than the exhaustive search algorithms with high accu-
racy. The efficiency and accuracy of the greedy algorithms
are insensitive to data distributions.
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Figure 2: Impact of data distribution

In the real world market, negative correlated distribution
is common. Due to the constraint of technology and cost,
most products cannot have good qualities on all attributes.
Instead, they can preserve high qualities on some attributes
but low qualities on some other attributes. At least, if a
product is of high qualities, then the price tends to be high,
which is not “good” for customers. Hence, in the following
experiments, we will set negative correlated distribution as
our default data distribution.

• Experiment 2: Impact of adoption models

Here we examine the impact of different adoption models
as presented in Section 2 on the efficiency and accuracy of
the greedy algorithms. We consider five different product
adoption models: the UM, DM, SM, AM, and MM. Here,
we use the l1 norm to compute the distance in the DM, AM,
and MM. We run experiments for both the k-BSP and k-
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Figure 3: Impact of adoption models

BBP problems. The speedup and expected sales are shown
in Figure 3. From Figure 3(a), we observe that the greedy
algorithms are significantly faster (about 1,400 times faster)
than the exhaustive search algorithms for all adoption mod-
els. Actually, for the greedy algorithms, the running time is
invariant with respect to the product adoption models ex-
cept the MM. The running time of the greedy algorithms un-
der the MM is roughly the summation of that under the UM,
DM, SM, and AM. Because to compute the corresponding
sales under MM, we need to calculate the corresponding sales
under all the other four models. Furthermore, the running
time is nearly the same for the k-BSP and k-BBP prob-
lems. This statement also holds for the exhaustive search
algorithms. From Figure 3(b), one can observe that the ex-
pected sales corresponding to the greedy algorithms and the
exhaustive search algorithms are nearly the same. This im-
plies a high accuracy of our greedy algorithms. As we vary
the adoption models, the expected sales vary significantly.
This shows that the adoption models have a high impact on
the expected sales.

Lessons learned: Our greedy algorithms are remarkably
faster than the exhaustive search algorithms and the speedup
is invariant with respect to the adoption models. The accu-
racy of the greedy algorithms is very high and it is insensitive
to adoption models. The optimal expected sales, however,
are sensitive to adoption models. Customers following dif-
ferent adoption models may cause significant loss or increase
in the expected sales.

• Experiment 3: Impact of |A| (or d)

We explore the impact of the number of attributes, or d,
on the efficiency and accuracy of the greedy algorithms. We
vary the value of d from 4 to 10. We show the speedup and
expected sales in Figure 4. From Figure 4(a), one can ob-
serve that the speedup increases slightly with the increase of
the number of attributes, which ranges from 1380 to 1410.
From Figure 4(b), one can observe that the greedy algo-
rithms are with similar high accuracy for each value of d.
This implies that the accuracy is insensitive to the number of
attributes d. It is interesting to observe that increasing the
number of attributes decreases the expected sales. Because
larger number of attributes indicates stronger customers’ re-
quirements, thus less products will satisfy the requirements
of customers.
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Figure 4: Impact of d

Lessons learned: The running time of both greedy algo-
rithms and exhaustive search algorithms is invariant on d.
This statement also holds for the accuracy. Increasing the
number of attributes may decreases the expected sales.

• Experiment 4: Impact of k

We explore the impact of the number of new products we
select, or k, on the efficiency and accuracy of the greedy al-
gorithms. Since the exhaustive search algorithms calculate
the expected sales of all k-cardinality subsets of PN , the in-
crease of k leads to an exponential increase in the running
time. Due to this computational constraint, we vary k from
2 to 5. We run experiments for both the k-BSP and k-
BBP problems. The speedup and expected sales are shown



in Figure 5. From Figure 5(a), we can see that when k=5,
the speedup of our greedy algorithms compared with the
exhaustive search algorithms is higher than 250,000, where
the running time of the exhaustive search is more than 104

seconds, but our greedy algorithms still take less than 0.1
seconds as shown in Table 2. As we increase the value of
k, we increase the running time of the exhaustive search al-
gorithms remarkably, but the running time of the greedy
algorithms only increases slightly. This implies that the
greedy algorithms are highly efficient and can be applied to
large data sets. Examine Figure 5(b), one can observe that
the greedy algorithms provide at least a 0.9-approximation.
This implies high accuracy of the greedy algorithms.

Lessons learned: Increasing the number of new product-
s only increases the running time of the greedy algorithms
slightly. The greedy algorithms are of high accuracy pro-
viding at least a 0.9-approximation. And the accuracy is
insensitive to the number of new products k.
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• Experiment 5: Impact of |PN | (or n)

We explore the impact of the number of candidate prod-
ucts, say n, on the efficiency and accuracy of the greedy
algorithms. We vary the number of candidate products n
from 20 to 80. We show the speedup and the expected sales
in Figure 6. From Figure 6(a), we can observe that as we
increase the value of n, the speedup increases exponential-
ly, since the running time of the exhaustive search increas-
es exponentially while that of our greedy algorithms only
increases linearly with n, as shown in Table 2. From Fig-
ure 6(b), we can see that with the increase of n, the greedy
algorithms maintain a high level of quality guarantee, or
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above 0.8-approximation in the worst case.

Lessons learned: The running time of the greedy algo-
rithms increases linearly with the increase of the number
of candidate products n. The accuracy of the greedy algo-
rithms is invariant with respect to n.

k 2 3 4 5

greedy (s) 0.0223 0.0304 0.0384 0.0465
exh (s) 2.3132 41.9621 720.2301 11632.5061

n 20 40 60 80

greedy (s) 0.0303 0.0342 0.0382 0.0433
exh (s) 41.9425 368.5041 1260.4245 3033.1006

Table 2: Running time k-BSP

• Summary and discussion

For all the above experiments, the greedy algorithms show
efficient running time and high accuracy for both of the k-
BSP and k-BBP problems. Our greedy algorithms provide
a 0.96-approximation ratio on average, and they are about
1400 times faster than the exhaustive search algorithms un-
der default the parameters in our experiments. When k=5,
the speedup is around 250,000 as compared to the exhaustive
search algorithms. For larger k, say k= 6 or 7, the exhaus-
tive search algorithms need days or even months, while the
running time of the greedy algorithms is still less than 0.1
seconds. This implies that our greedy algorithms can work
effectively on large datasets.



6. EXPERIMENTS ON WEB DATA
In this section, we conduct the experiments on real-world

web data to show the importance of studying the customer-
s’ adoption behavior: different adoption models may lead
to totally different product selection strategies. Since the
results of the k-BSP and k-BBP problems are similar, for
brevity, we only show experiments on the k-BSP problem.

We consider the following problem: Assume customers’ re-
quirements, existing products, candidate new products, and
k are all given, explore how different adoption models may
influence the result of the k-BSP problem. Studying this
problem helps us gain important insights on how to perform
product selection in the real world.

• Web dataset

RateBeer.com RateBeer is widely recognized as the most ac-
curate and most-visited source for beer information. Cus-
tomers share their opinions on beers via expressing ratings
on six attributes (e.g., aroma, appearance, taste). We crawl
the historical ratings of 357 beers. Table 3 shows the overall
statistics of the dataset.

dataset #products #customers #attributes

RateBeer 357 5582 6

Table 3: Parameters of RateBeer dataset

• Extract attribute quality and requirement

For a product (beer) in the dataset, we use the average
rating of an attribute as the true quality of that attribute.
A customer’s requirement on an attribute is set as the low-
est rating she has ever expressed on that attribute. And the
weight of each customer is set to be 1. In the dataset, the rat-
ing scale on different attributes is different, thus we perform
normalization so all attributes are in the same scale, say in
the range of (0, 10). RateBeer does not provide ratings on
attributes like “price”, which is important for product adop-
tion. To overcome this deficiency, we manually generate one
attribute to represent the price. We generate the values on
price based on negative correlation on other attributes, i.e.,
the higher the quality on other attributes, the lower quality
on price. Precisely, the value of the price attribute is inverse-
ly proportional to the of sum of values on other attributes.
Note that lower quality on price implies higher pricing. We
also normalize the price within the range of (0, 10). Since we
cannot get the information about customers’ requirements
on price, we randomly generate them from 0 to 10.

• Experiments based on RateBeer

We select 10 beers from the 357 beers as the candidate
new products (or PN ), and we set the remaining 347 beers
as the existing products (or PE). The qualities of the 10
selected beers are shown in Table 4. We use our proposed
algorithms to solve the 3-BSP problem under 5 different
adoption models respectively: the UM, DM, SM, AM, and
MM as defined in Section 2. We adopt l1 norm to compute
the distance and the decisive attribute of all customers is
taste. The selected beers for each product adoption model
are shown in Table 5, which depicts the adoption models,
and the corresponding selected products. All the beers are
anonymized and represented by ID numbers. Examine Ta-
ble 5, one can observe that when we use different product
adoption models, the selected beers vary significantly. For

example, for the UM, the selected products are 4,5,9, but
for the AM, the selected products are 1,2,5. This implies
that customers’ product adoption behavior can significantly
affect the product selection results.

ID taste aroma appea- prefe- palate overall price
rance rence

1 7.111 6.889 7.111 7.667 7.078 6.667 5.664
2 6.620 6.820 6.909 6.967 6.820 6.714 5.896
3 6.962 6.423 6.913 6.462 6.758 6.692 5.989
4 4.375 3.875 4.458 5.333 4.500 5.333 8.640
5 6.750 6.250 7.000 6.500 6.650 6.000 6.152
6 6.417 6.437 6.631 7.241 6.576 6.285 6.084
7 6.194 6.676 6.475 6.504 6.437 6.230 6.253
8 5.822 6.111 5.911 6.578 5.987 5.778 6.655
9 6.404 6.316 6.623 6.632 6.460 6.035 6.261
10 6.822 6.800 6.911 7.289 6.862 6.444 5.856

Table 4: PN of RateBeer dataset

Models ID of selected beers

UM 4, 5, 9
DM 4, 5, 1
SM 3, 5, 4
AM 5, 2, 1
MM 3, 5, 9

Table 5: Solutions of RateBeer

• Summarizations and discussions

Product adoption models can significantly affect the s-
election results. Different adoption models may result in
different product selection strategies. In other words, analy-
sis of customers’ adoption behavior is significant for product
selection. Hence, manufacturers should put more effort into
understanding and discovering customers’ product adoption
behavior, so as to improve the accuracy of product selection
and maximize their sales.

7. RELATED WORK
Kleinberg et al. [7] first advocated using a microeconomic

approach on data mining. Since then, a number of works
have examined the commercial issues like potential customer
identification [1, 17], product feature promotion [16, 11],
as well as product positioning [8, 10]. These works show
the possibility of helping organizational decision makers to
increase their utility.

Authors in [8] extended the concept of dominance, which
is used in skyline operators [3], to analyze various forms
of relationships among products and customers. By ana-
lyzing the dominance relationships, manufacturers can po-
sition products effectively while remaining profitable. They
extended their results in [9], which took into account not
only those min/max attributes (e.g., price, ratings), but al-
so spatial attributes (e.g., location). In these two papers,
the authors only considered one manufacturer without com-
petitors while our paper considers this competition. Zhang
et al. [18] analyzed the situation that there exist numerous
competing companies. They derived the Nash Equilibrium
if each manufacturer tries to modify its product in a round
robin manner to maximize the market share. Their work on-
ly allows each manufacturer to produce one product, which
cannot truly reflect the real world market.

Authors in [15] aimed to find the most competitive prod-
ucts using the skyline operator [3]. They could find a group



of candidate products which are not dominated by any com-
petitors. They extended this work by taking customers into
account [14, 13], and aimed to find the k most profitable
products and k most popular products which can attract
the largest number of potential customers. Authors in [2]
studied a similar problem named k-most attractive candi-
dates query, where the attractiveness of a product is defined
based on the concept of reverse skyline query. The above pa-
pers all aimed to find the products which can maximize the
number of potential customers. In our work, we derive the
expected number of adopters since the probability a poten-
tial customer adopting new products depends on the number
of competitors. For example, a customer attracted by only
one product has a much higher probability to adopt new
products than those customers attracted by many products.
So the number of potential customers (derived in [15, 3, 14,
13, 2]) is not the same with the expected number of adopters
which is derived in our work. Lin et al. [10] aimed to find the
products with maximum expected number of total adopters.
However, they did not provide any theoretical performance
guarantee for their proposed approximation algorithms.

Moreover, none of the previous works considered the com-
plex product adoption behavior of customers and its signif-
icant impact. They simply assumed that the customers will
randomly select the satisfactory products. Furthermore, all
the previous works only considered the market entry and did
not address the problem of market sustainability.

8. CONCLUSION
We presented a general framework for the product selec-

tion problems: the k-BSP problem and the k-BBP prob-
lem, which are applicable for the market entry and market
sustainability, respectively. We mathematically proved that
both the k-BSP and k-BBP problems are NP-hard when
the number of attributes is three or more. We presented vari-
ous product adoption models to describe the complex behav-
ior of customers. We proposed approximation algorithms to
solve the k-BSP and k-BBP problems. Our algorithms are
computationally efficient, and we also formally proved that
they can guarantee a (1−1/e)-approximation by the sub-
modularity analysis. We conducted a set of comprehensive
experiments using both synthetic datasets and real-world
web dataset for quantitative and qualitative analysis of our
approximation algorithms. The results showed that our al-
gorithms are remarkably faster than the exhaustive search
algorithms and our algorithms can provide high accuracy:
much higher than the lower bound that the algorithms guar-
antee. We also showed that different adoption models will
significantly influence the results of the k-BSP and k-BBP
problems, which reflects the importance of considering the
behavior of customers for market entry and sustainability.
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