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Abstract

In this paper, we consider how to “construct” and “maintain”
an overlay structured P2P network based on the “small-
world paradigm”. Two main attractive properties of a small-
world network are (1) low average hop distance between any
two randomly chosen nodes and, (2) high clustering coeffi-
cient. A network with a low average hop distance implies
a small latency for object lookup. While a network with a
high clustering coefficient implies the underlying P2P net-
work has the “potential” to provide object lookup service
even in the midst of heavy object traffic loading, for exam-
ple, under a flash crowd scenario. In this paper, we present
the SWOP protocol of constructing a small-world overlay
P2P network. We compare our result with other structured
P2P networks such as the Chord protocol. Although the
Chord protocol can provide object lookup with latency of
O(log(N)) complexity, where N is the number of nodes in
a P2P network, we show that the SWOP protocol can fur-
ther improve the object lookup performance. We also take
advantage of the high clustering coefficient of a small-world
P2P network and propose an object replication algorithm to
handle the heavy object traffic loading situation, e.g. under
the dynamic flash crowd scenario. We show that the SWOP
network can quickly and efficiently deliver the “popular”
and “dynamic” object to all requested nodes. Based on our
knowledge, this is the first work that addresses how to han-
dle the “dynamic” flash crowd scenario on a structured P2P
network.

Keywords: Structured P2P networks, small world phe-
nomenon, dynamic flash crowd.

1 Introduction

Peer-to-peer networks are distributed information sharing
systems with no centralized control. Each node in a P2P
network has similar functionalities and plays the role of
a server and a client at the same time. This provides
immense flexibility for users to perform application-level
routing, data posting and information sharing on the Inter-
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net. The first generation P2P systems such as the Napster
system require a centralized directory service. The second
generation P2P system is the unstructured P2P network
(e.g., Gnutella, Freenet, ..., etc) which uses a fully dis-
tributed approach for file searching. The major problem
of the second generation P2P system is that in searching
for an object, the amount of query traffic may be enor-
mous and this leads to the network congestion problem.

For the past few years, researchers are working on dis-
tributed, structured P2P network. The noted work are
Chord, Tapestry and Pastry protocols[13, 17, 20]. By
applying the approaches of consistent distributed hash-
ing function and structural routing, these structured P2P
networks improve the performance of object lookup and
at the same time, also reduce the amount of query traffic
into the network. For example, under the Chord protocol,
it was shown that the worst case complexity of O(log N)
link traversal can be achieved, where NV is the number of
nodes in a Chord P2P network. The implication is that in
finding a particular data object, one does not need to gen-
erate enormous amount of query traffic which may over-
whelm the network resource.

In this paper, we address two fundamental issues on
designing a distributed, structured P2P network. They are:

e How can one further improve the performance of ob-
ject lookup?

e How can a P2P network handle heavy demand to a
popular and dynamic object such as the flash crowd
scenario ? For example, during the September 11
incident, there were large number of requests to the
CNN web server that tried to get the most up to date
information.

To address the first technical question, we propose
to construct a P2P network with the “small-world”
paradigm[7, 18]: that the average shortest hop distance
between two randomly chosen nodes is around six hops.
The second technical question is of importance because
some data objects may be very popular and requests to
these popular objects may all arrive within a short period



of time. This type of traffic may overwhelm the source
node which contains the popular object. Therefore, many
users may not be able to access this popular object while
only a small percentage of requests can be satisfied. To
overcome this problem, we take advantage of the high
clustering coefficient effect of a small-world network so
that one can quickly self-organize and replicate the dy-
namic popular object.

In this paper, we propose a small-world overlay proto-
col (SWOP) to construct and to manage a P2P network
so that it exhibits the small-world properties. We show
that the constructed small-world P2P network has a bet-
ter performance, as compared to other structured P2P net-
work such as Chord, in performing data object. We also
illustrate that the small-world P2P system is robust under
heavy traffic loading and on average, it can quickly satisfy
requests to the popular and dynamic object.

The balance of this paper is as follows. In Section 2,
we present the protocol of constructing and maintaining
a small-world P2P network. We also describe the object
lookup protocol in which individual client node uses to lo-
cate any data object. We show that using the SWOP pro-
tocol, one can have a lower average object lookup latency,
which is measured by the number of links traversal, as
compared to other structured P2P network, i.e., the Chord
network. In Section 3, we discuss how the small-world
paradigm can be realized in an existing structured P2P
network. In Section 4, we present the algorithm to han-
dle heavy traffic loading such as the flash crowd scenario.
We consider both the static and the dynamic flash crowd
situations. In Section 5, we present the related work and
Section 6 concludes.

2 Small-world P2P Protocols

In this section, we first provide the necessary background
and state some important properties of a small-world net-
work. We then present protocols to construct and to main-
tain a small-world P2P network as well as the correspond-
ing protocol for data lookup. We derive analytically the
upper bound for the average object lookup latency. Last,
we present the experimental results to illustrate the effi-
ciency of data lookup when comparing with a structured
P2P network (i.e., Chord).

The notion of the small-world phenomenon was origi-
nated from the social science research [10] and it is cur-
rently a very active research topic in Physics, Computer
Science, as well as in Mathematics [11]. It was ob-
served that the small-world phenomenon is pervasive in
many settings such as social community, biological en-
vironment and data/communication networks. For exam-
ple, recently studies show that peer-to-peer networks such
as Freenet may exhibit the small-world phenomenon[19].
Informally, a small-world network can be viewed as a

connected graph wherein two randomly chosen nodes are
connected by just the “six degrees of separation”. In other
words, the average shortest distance between two ran-
domly chosen nodes is approximately around six hops.
The implication of this property is that one can locate in-
formation stored at any random node of a small-world net-
work with only a small number of links traversal.

One way to construct a network that gives rise to the
small-world phenomenon is that: (1) each node in the
network is connected to some neighboring nodes, and
(2) each node keeps a small number of links to some
randomly chosen “distant” nodes. Links to neighboring
nodes are called “cluster links” while links to distant
nodes are called “long links™. Figure 1 illustrates an ex-
ample of a small-world network with 11 nodes and six
clusters. For example, nodes 9, 10 & 11 form one cluster.
They have neighboring links to each other and node 9 has
long links to node 6,14 and 22.
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Figure 1: An example of a small-world network with 11
nodes and six clusters.

The two important properties of a small world network
are (1) a low average hop count between two random cho-
sen nodes and, (2) a high clustering coefficient. To math-
ematically define these two properties, let G = (V, E) de-
note a connected graph representing the small-world net-
work. There are N vertices in G where [V| = N and
D(i, 7) represent the length, in hops, of the shortest path
between two vertices i,j € V. We have the following def-
initions:

Definition 1 The average shortest hop count of a graph
G, denote as H(G), is equal to

% S D(,j).
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In other words, H(G) is the ratio of the sum of all shortest
paths between any two nodes in G and all possible pair-
wise connections of the connected graph. To define the
clustering coefficient, let «, be the number of attached
links for a node v € V. The neighborhood of a vertex v
is a set of verticesT", = {u : D(u,v) = 1}.

Definition 2 For a given vertex v € V, let C, be the
“local cluster coefficient” of v and it is equal to C,, =
|E(T,)|/ (%) where |E(T,)| is the operator of counting
the total number of links for all vertices in the setT",,. The
cluster coefficient of a graph G, denote as C(G), is equal
to

@) = 30

veV
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In other words, C(G) measures the degree of compactness
of the graph G.

In the following, we first describe protocols of con-
structing and performing data lookup in a small-world
P2P network. Then, we provide a mathematical analysis
on the worst case average number of links traversal to lo-
cate an object in a small-world network. Lastly, we show
that when comparing with other structured P2P networks,
a small-world P2P network has a lower number of links
traversal.

2.1 Overview

The aim of our small-world overlay protocol (SWOP) is
to efficiently locate any object in the network and at the
same time, achieve the capability to access popular and
dynamic object under heavy traffic loading. Our SWOP
is constructed as a layer on the top of a structured P2P
network, where this layer does not affect the functional-
ities provided by structured P2P network. Moreover, it
improves the performance on object lookup.

Let us provide a brief background on the structured P2P
protocol. Generally, the structured P2P protocol consists
of a consistent hashing function A (i.e., SHA-1 function)
to provide a unique key assignment for each node or each
object in the system. With the key’s value, each node can
determine its logical position in the system. For example,
for a Chord network, the logical position of a node is a
point in a circular key space. For a CAN network, it is
a point in a grid. Another property of a structured P2P
protocol is its use of routing table (i.e., the finger table in
the Chord network), which speeds up the object lookup
process. It was shown that the worst case number of links
traversal to locate an object is O (log(N')) number of links
traversal[17].

Each node can insert objects into the structured P2P
system. Using the same consistent hashing function h.
Each object has a unique key value, for example, k(o) is

the key value for object 0. Let /(o) be the set of nodes
whose key values are greater than or equal to h(0). The
node in A(0) which has the minimum key value is re-
sponsible to cache and to maintain the object o.

For a small-world P2P network, we use a circular ring
as our logical representation since it is a representative
model in structured P2P networks and it helps to reveal
the small-world effect introduced by the SWOP protocol.
Let us first define the following parameters for the SWOP:

e Cluster size G — maximum number of nodes within
a cluster.

e Cluster distance D — maximum hash space distance
between two adjacent nodes within a cluster.

e Long Links k& — number of long links of a cluster.

For our small-world P2P network, there are two types of
nodes, namely, head nodes and inner nodes, and two types
of links, which are long links and cluster links. Long links
connect two different nodes from different clusters while
cluster links connect two different nodes in the same clus-
ter. Each cluster has one head node, which has at most &
long links and it has cluster links to all nodes within its
cluster. On the other hand, an inner node has a link to the
head node within its cluster and cluster links to some of
the nodes within its cluster. Let m be the average number
of clusters in the network, the expected number of connec-
tions (links) for each node is: (m * k + G * n)/n, where
n is the number of nodes in the SWOP system. (Note that
the average number of clusters can be estimated by one of
our protocols, CNEP, which will be explained in the next
section.)

With the above configuration, an inner node ¢ can com-
municate with a target node j within its cluster either by
a cluster link (provided node ¢ and node j are connected),
or node ¢ can send a message to its head node, and then
the head node will forward the message to node j using
a cluster link. For communicating with a target node in
a different cluster, node 4 has to first send the message to
its corresponding head node, then the head node sends the
message using the long link which is the closest to the tar-
get node j. The message may arrive at some nodes which
is not within the same cluster of node j. The procedure re-
peats until the message is transfered to some node within
the same cluster of node 5. In figure 2, it shows an exam-
ple of small-world overlay P2P network with 11 nodes,
six clusters and with SWOP parameters G = 3, D = 2
and & = 3. In the figure, node 1 sends a message to node
17 and we illustrate the object lookup flow.

In the following, we describe several protocols in form-
ing and in maintaining a small-world P2P network. In
particular, protocol for events such as node joining, node
leaving as well as node failure.
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Figure 2: A SWOP network with six clusters, G =
3,D = 2,k = 3 and the object lookup flow.

Join Cluster Protocol (JCP): if a node ¢ wants to join a
small-world P2P network, it uses the consistent hashing
function h to obtain its key h(i). At the same time, node
i creates a link to its predecessor node a and its succes-
sor node b in the underlying P2P network. The predeces-
sor node a is an existing node in the network and its key
value h(a) is the largest key value such that h(a) < h().
The successor node b is an existing node in the network
and its key value h(b) is the smallest key value such that
h(b) > h(i). After finding its predecessor and succes-
sor nodes, node ¢ executes the join cluster protocol (JCP).
The joining node i first determines the distance (which is
defined based on the hashed key value) from the prede-
cessor and successor nodes. Let d; and d» be the distance
between the joining node ¢ and its predecessor and suc-
cessor node respectively, that is, d; = h(¢) — h(a) and
dy = h(b) — h(i). The joining node 7 inquires from its
predecessor and successor nodes for their respective clus-
ter size. If both nodes a and b have cluster size greater
than G (the maximum cluster size), then the joining node
i will form a new cluster with itself being the only node in
this new cluster. Else, it determines which cluster to join
depending on the values of d; and ds. If both d; and d»
are greater than D, then the joining node ¢ will form a new
cluster with itself being the only node in that new cluster.
Else, the joining node 4 joins the predecessor’s cluster (or
the successor’s cluster) if dy (or d») is less than D and is
smaller than ds (dy).

Next, the joining node ¢ determines whether it should
be a head node or an inner node. If the node ¢ forms a

new cluster, or if it joins its successor node b which was a
head node of that cluster, then the joining node 4 is the new
head node of that cluster. Otherwise, the joining node i is
an inner node. When the joining node i is an inner node,
it needs to create a cluster link with it’s head node. On the
other hand, if the joining node 7 is the head node, it needs
to create cluster links to all inner nodes within the cluster
and at the same time, generates & long links to other nodes
in different clusters.

In order to achieve a low average shortest hop count
H(G) and high cluster coefficient C(G), one needs to gen-
erate long links based on the following distance dependent
probability density function p(x). Let m be the number
of clusters in a small-world P2P network. The head node
will generate a random variable X, which has the follow-
ing probability mass function:

Prob[X = z] = p(z) = where z € [1,m].

®)
The implication of the above probability mass function is
that it is bias toward nodes that are far away from the head
node. Given the value of z, the head node creates a long
link between itself and a random node that is in cluster
z. It is important to point out that a long link serves as
an express link for nodes in two different clusters. The
cluster distance between two different clusters is defined
as the number of long links traversal between these two
clusters.

1
zIn(m)

Join Cluster Protocol
n.join_cluster() {/* For each node neV */
int predld; // predecessor Id
int succld; // successor Id
double dy ; // distance for predecessor
double ds; // distance for successor
int g1 ; // group size of predecessor cluster
int go; // group size of successor cluster

/*
Retri eve underlying
topol ogy i nfornmation
*/
Join underlying DHT network;

/*

Prepare for choosing the right cluster

to join
*/
Retrieve predecessor Id and successor 1d;
Computer the distances d; and ds;

Retrieve cluster group size from predecessor and successor

clusters;

/*



Deci si on naki ng
- to choose a cluster to join
*/
If (dy > D and dy > D)
n forms a new group
else if (d; < D and dy > D)
n joins pred group as a member if g; < G
otherwise forms a new one;
else if (di > D and dy < D)
n joins succ group as head if g < G
otherwise forms a new one;
else
/* both group size < D */
n chooses a smaller one to join

/* Custer information exchange */
If (n to be a head) {
n contact the old head of retrieved Id;
Retrieve the whole membership list;
Regenerate long links if it is necessary;
} else if (n to be a member) {
n sends a message to the target cluster head;
n retrieve part of the membership list;

}
}

Leave Cluster Protocol (LCP): When the node ¢ leaves
the P2P system, it informs its neighboring nodes, which
are nodes connected by cluster links, as well as some
long links if node 4 is a head node. Node ¢ will inform
its neighboring nodes about its departure by sending a
close_connection message and terminate its connection.
If a node receives a close_connection message, it will
perform the following actions:

a) Ifthe received message is from a neighbor connected
by a long link, the receiving node will close the con-
nection and re-generate a new long link to another
node in a different cluster.

b) If the received message is from a neighbor connected
by a cluster link, the receiving node will close the
connection and reduce the cluster size by 1.

c) If the received message is from the head node, the
receiving node will close the connection. A node
will become a new head node within a cluster if
the received message is from its predecessor node
which was the old head node of the cluster. The new
head node retrieves the short links, and the long links
routing tables from the new head node in order to
maintain messages routing capabilities for all clus-
ters neighbors.

The pseudo code of LCP is as follows:

Leave Cluster Protocol
n.leave_cluster() {/ * For each node neV */
Prepare the close_connection message
(n.nodeld, n.headld);
Send the close_connection message
to all its neighbors;

}

/* For cluster head */
n.close_connection_receive() {
while(1) {
Wait until a close_connection message sent
by node n’;
If (n and n’ are in the same cluster) {
Remove the cluster link;
Group size reduces by 1;
Update information for all member;
} else if (a node in a different cluster) {
Remove the long link;
Regenerate one long link;

}
}
}

/* For cluster nenber */
n.close_connection_receive() {
loop {
Wait until a close_connection message;
Close the connection if the node in the
same cluster;

Stabilize Cluster Protocol (SCP): In the case of node
failure, the small world P2P network uses the SCP to re-
cover and to maintain the proper link connectivity. Peri-
odically?, each node sends probes to neighboring nodes
to make sure that they are still operational. If a neighbor-
ing node is an inner node and it does not respond to the
probe, the sending node will simply close the connection
to that inner node and will inform its head node to reduce
the cluster size by one. If a neighboring node is a head
node and it does not response to the probe, then the node
will perform a search to find a new head node.

In order to facilitate the recovery of the head node fail-
ure, we replicate the cluster links from the head node to
its successor nodes. The number of clusters links, G, is a
system parameter which can be adjusted (due to the space
limit, we leave this as the future research work). Sup-
pose that there is a head node failure in the SWOP sys-
tem, the SCP will first ensure that one of the nodes in the

1Thetime scaleisin the order of minutes.



SWOP system discovers this failure and be able to find a
new node (normally, it is the failed head node’s succes-
sor). The new head node will replace the failed head node
by executing the OLP. For the above action, in terms of
the number of messages transmitted in the SWOP system,
it is bounded by the worst case average number of links
traversal of (1 + logs(m/2))8In(3m)/k (the proof of this
claim will be derived in Section 2.2).

Secondly, the new head node sends a probe message to
verify the old head node’s failure. If the confirmation is
successful, that is, without receiving any reply, the new
head node starts the head node’s job. The first duty is to
send out a head node declaration message to each cluster
neighbor, which announces itself as the new head of their
cluster. In this step, the total messages involved is: 1+ G,
which includes the confirmation messages and announce-
ment messages.

Thus, the total messages transmitted in SWOP sys-
tem for recovering a head node failure is: (1 +
log2(m/2))8In(3m)/k + (1 + G) messages.

Stabilize Cluster Protocol
/* For each node neV */
n.connection_probe() {
while(1) {
For all neighbors {
Send a probe message;
If it is timeout for this message {
Close the connection to the target node of
this message;
If this node is a head node{
Search a new head to replace this node
by using OLP;
}
}
}

Sleep a few seconds;

}

Object Lookup Protocol (OLP): The object lookup pro-
tocol is responsible to locate a data object within a small-
world P2P network. The object lookup process proceeds
in two phases. In phase one, a node asks its cluster neigh-
boring nodes if they contain the target object. If any of
these cluster neighboring nodes replies positively, then
the lookup process is terminated. Otherwise, the object
lookup process continues and the phase two begins. In
phase two, the node first checks its own status within a
cluster. If it is the head node, it forwards the lookup re-
quest to its long-link neighbor which has the closest dis-
tance to the target object. On the other hand, if it is an

inner node, it forwards the lookup request to its head node
within the same cluster, then the head node will continue
the object lookup process recursively as described above.
For example, when the long-link neighbor receives that
object lookup request, it checks if it is the owner of the
object. If not, it will act as if it is the object lookup ini-
tiating node and the data lookup process is repeated. An
object lookup process continues in these two phases alter-
natively until the data object is found.

To illustrate, consider an example shown in Figure 2.
Suppose that node 1 wants to look up an object whose
key value is 16 and node 17 is responsible to manage and
maintain this object. To begin the object lookup, node 1
starts the phase one lookup process in which it asks its
neighbor, node 26, if it contains item 16. Since node 26 is
not the owner of that object, node 1 will receive a negative
reply. Then node 1 starts the phase two lookup process
and forwards the lookup request to node 26, which is the
head node within the cluster of node 1. Node 26 searches
along its long link and forwards the object lookup mes-
sage to its long link neighbor node 14, which is the closest
node to the target object 16. Node 14 checks if it contains
the object 16. Since it does not contain that object, node
14 acts as an object lookup initiator node and starts an-
other phase one lookup. Because node 14 is the only node
within the cluster, it begins the phase two lookup and for-
wards the message to the nearest long link neighbor node
17. When the object lookup request reaches node 17, the
object is found and the lookup process is terminated.

Object Lookup Protocol
/ *
Construct a query packet
(Itemld, Max Hop),
run op_phasel
*/
/* For each node neV */
n.op_phasel(Query_packet P) {
Send P to all the cluster member n knows;
if the query is successful, return ownerld,;
If (n is cluster member) {
Retrieve the whole list from cluster head;
Send the query to all the cluster member
not yet queried;
if success, return the ownerld;
}
Forward the query to head n’;
n’.op_phase2(P);
}

/* For Cluster Head €V */
n.op_phase2(Query_packet P) {
Lookup the nearest long link neighbor for P.1d
Forward P to the neighbor n”



n”.o0p_phasel(P);

Cluster Number Estimation Protocol (CNEP): In order
to generate long links for head nodes, one needs to es-
timate the average number of clusters (m) in the SWOP
network. In the following, we present the Cluster Num-
ber Estimation Protocol (CNEP), which achieves this pur-
pose.

The CNEP periodically estimates two values, N and G,
which are the average number of nodes and the average
cluster size in the system. Then, by applying

Average number of nodes

Average number of clusters = -
Average cluster size

)

the average number of clusters can be estimated.

In terms of implementation, CNEP contains two major
components, to estimate the average number of nodes N
in the system, and the average cluster size of the network.
To estimate IV, we can utilize the property of distributed
hash function of evenly assigning IDs. Since nodes are

Nodes are evenly
distributed in key space

Figure 3: A snapshot of a SWOP network

evenly distributed in the hashed key space, the average
distance of separation between two nodes represents the
compactness of the underlying network, which reflects the
number of nodes in the system. By comparing the average
distance of separation with the total ID space separation,
one can use the proportional calculation to estimate the
average number of nodes, V. For instance, a snapshot of
the SWOP network is depicted in Figure 3. Suppose the
number of bits for representing the IDs in this network is
equal to 10, and the nodes’ IDs are as shown in the Figure.
One can calculate the average number of nodes as:

hashed space 210

~ ‘average distance between nodes 101

~ 10.

To estimate G, the average cluster size of the underly-
ing network, each cluster head node can calculate the av-
erage cluster size by collecting sufficient number of clus-
ter heads’ cluster size records. The main challenge of

this component is how cluster heads share their cluster
size records. Note that in estimating G, only cluster head
nodes are involved. The CNEP can be described as fol-
lows: First, each head node keeps track of its own cluster
size record and calculates its cluster average distance of
separation between two nodes in its own cluster. Second,
each head node periodically sends a message containing
these two pieces of information to its long link neighbors
(which are located in different clusters). Third, after each
head node collected sufficient amount of data samples for
these two values, the head node can take an average for
these two values separately. Fourth, each head node cal-
culates the average number of nodes by the average dis-
tance of separation obtained in the previous step. And
each head node can now estimate the average number of
clusters by dividing the average number of nodes from the
average cluster.

Cluster Number Estimation Protocol

/*

G ven Hashed- Space Si ze HS
*/
/* For Cluster Head €V */

int n.get_ad_between_two_nodes() {
Retrieve Neighbor nodes’ ID;
Calculate the average distance between
the nearest nodes;
Return average distance;

}

n.cne_produce() {
Record start time;
While(1) {
Record current cluster size as Ctemp;
Obtain AD by n.get_ad_between_two_nodes();
Send packets to other cluster head nodes with
1. AverageDistance
2. ClusterSize
At the same time,

Receive and store the same kind of packets from them;

Sleep 1 second (can be adjusted)
If time passes T seconds{
Compute the average distance in system, ADavg;
Compute the average cluster size, G;
Compute N by HS / ADavg;
Compute the average cluster number, C by
C=N/G;
Construct CNEP packet with value, C;
Reset the start time;

}

/* For each Inner
n.cne_receive() {

node neV */



While(1) {
Wait for Head’s CNEP packet;
Sleep a few seconds;

}

2.2 Mathematical analysis

In this section, we derive a new mathematical theorem
based on randomized analysis to quantify the worst case
average number of links traversal to locate an object under
a small-world overlay P2P network.

Theorem 1 Let Y be the non-negative random variable
that represents the number of links traversal for object
lookup in the SWOP P2P network. We have:

E[Y] < (L+logy(m/2))8In(3m)/k,  (4)
where m and k are the number of clusters and the number
of long links of the corresponding SWOP P2P network
respectively.

Proof: Let G = (V, E) be a connected graph representing
a small-world overlay P2P network with |V'| = N. Letm
be number of clusters in G and C; be the number of nodes
in cluster 5. We have

Let C be average number of nodes within a cluster, there-
fore, for sufficient large value of NV, we have
m = N/C.

We model a connected graph G with m clusters. We de-
fine d(i, 7) as the lattice distance (in the hash key space)
between two clusters C; and C; and it is equal to |j — 4|.
For two given clusters, C,, and C,, let us first calculate the
probability that there is a long link from C), to C,. Since
along link neighbor is chosen according to the probability
density function p(z) = —L—, the probability that there
d(u,v)”?!

zIn(m)’
S AT We can

is a long link from C,, to C, is
express

Sdw) < S EGH=23 !
vEu i=1 =1

< 2+42ln(m-2)

< 2In(3) 4+ 2In(m — 2)

< 2(In(3(m —2))) < 2In(3m).

For the object lookup protocol (OLP) described above,
a node transfers an object lookup message from one clus-
ter to another cluster in two phases. These two phases
are executed repeatedly until the object is found. When
a cluster receives the object lookup message and prepares
to forward this message, we call this cluster as the current
lookup message’s holder. We define cluster movement as
the traversal along the long link from one cluster to an-
other cluster.

We also define the term “‘step, which is the cluster
movement that reduces the object lookup distance be-
tween the current lookup message’s holder and the tar-
get object’s owner by half. Describing our object lookup
process in terms of step, when the object lookup process
starts, the process’s step is equal to log(m/2). When the
object lookup process ends, the process reaches its last
step, 7 = 0, in which the distance between the object
lookup message and the object owner is at most 2 clus-
ter links away.

For the object lookup of step j, for j > 0, the cluster
movement from the current lookup message’s holder to
the target node is greater than 27 and at most 27+ clus-
ter movements. Suppose that the object lookup process is
moving from step j + 1 to j, one can view that the ob-
ject lookup needs to go from a message holder, which has
27+1 cluster movements to the target node, to its neigh-
bor, which has 27 cluster movements to the target node. In
our analysis, we have to find the probability of this event.
To derive this probability, we first define B; as the set
of nodes with the cluster movement of being 27+ + 27,
which is less than 27+2 from the target node. Each node in
Bj; has a probability of at least (2ln(3n)2j+2)71 being a
long link neighbor of the current lookup message’s holder.
If any of these nodes is the long link neighbor of the cur-
rent lookup message’s holder, the lookup messages can be
transmitted to a node with a cluster movement 27 from the
target node. At the same time, one can find the probabil-
ity that an object lookup can move one step forward from
step j + 1. The message enters B; with probability of at
least:

2 _ 1
(21n(3m)27+2) 8In(3m)’
Since there are k links per clusters, the probability of en-
tering B; i gr(gmy- Let X; be total number of cluster

movement spent in step j. We have

BX] = Yo P2

i=1

IA

81n(3m)/k.



Let Y denotes the total number of links traversal spent by
the object lookup algorithm, we have

log, (m/2)

Y= Y X,
7=0

Taking the expectation on both sides, we have
E[Y] < (1 +1ogy,(m/2))81n(3m)/k. |

Remark: The importance of this theorem is that we can
use it to estimate the proper value of & so that the SWOP
P2P network has a better object lookup performance than
other structured P2P network. Let us consider this in the
following subsection.

2.3 Experimental results of comparing with
other structured P2P networks

In the following, let us compare the object lookup perfor-
mance between the small-world P2P network and other
structured P2P network such as the Chord system[17]. We
built topology generators for SWOP and Chord and con-
ducted the simulations on measuring average lookup hop
distance between two randomly chosen nodes and collect-
ing the topological data, including average shortest paths
and average clustering coefficients. We illustrate that, in-
deed, the small-world P2P network will have a better per-
formance as compare to the underlying Chord system.

Experiment A.1 (Performance of object lookup): We
consider a connected graph with N = 1000, 2000, 3000,
4000 and 5000 nodes. We insert one object for each node,
totally IV distinct objects. Each node will perform ob-
ject lookup 50 times and the target object is randomly
chosen from all inserted objects. We obtain the perfor-
mance of object lookup, which is measured by the number
of links traversal for the Chord and the SWOP network.
For the SWOP network, it is configured with parameters
G =100, D = 120,000 and k£ = 24. In order to perform
a fair comparison, we keep the size of the finger table in
the Chord network as 24 also. Figure 4,5, 6, 7 and 8 illus-
trate the probability density functions of number of links
traversal for object lookup under the Chord and SWOP
systems for N = 1000 2000, 3000, 4000, and 5000 re-
spectively. Table 1 summarizes the effect of object lookup
under the Chord and SWOP systems in which the number
of nodes in the system varies from 1000 to 10000. It is
important to observe that the SWOP network has a lower
average number of links traversal in object lookup than
the Chord network.

Experiment A.2 (Effect of object lookup performance
under different network sizes and number of long
links): We explore the object lookup performance fur-
ther by varying on the network sizes (e.g., different values
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Figure 4: Probability density function of link traversal for
Chord and SWOP with N = 1000 nodes.
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Figure 5: Probability density function of link traversal for
Chord and SWOP with N = 2000 nodes.

of ) and the number of long links & for the SWOP net-
work. In order to make a fair comparison, we keep the size
of the finger table of the Chord network equal to log(NV),
where N is the number of nodes in the P2P network. For
the SWOP network, we vary k, the number of long links,
from 4 to 12. Unlike Experiment A.1, we assume that
each node has the same number of objects and a node
will access any object in the system with equal probabil-
ity. The result is illustrated in Table 2 and it shows that by
increasing the value of &, not only can one further improve
the object lookup performance, but one also enhances the
asymptotic performance that it can be easily reached by
fixing a small number of long links, say k around 6 to 8.
Since this value is less than log( V) for large IV, it implies
that for the SWOP network, one has a lower connection
management complexity and at the same time, is able to
achieve a better object lookup performance.

Experiment A.3 (Comparison of Clustering Coeffi-
cient): The above results show that the average object
lookup performance of SWOP is better than the Chord
protocol. The next issue we want to investigate is their
corresponding average cluster coefficients. Again, a high



0.6

SWOP ---
Chord —

05

Avg. traversed links
Chord 5.75 hops
SWOP 4.17 hops

03[

021

01r

0.6

SWOP ---
Chord —

05

Avg. traversed links
Chord 6.14 hops
SWOP 4.63 hops

03[

021

01r

10 12 14

Figure 6: Probability density function of link traversal for
Chord and SWOP with N = 3000 nodes.
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Figure 7: Probability density function of link traversal for
Chord and SWOP with N = 4000 nodes.

clustering coefficient implies that a higher capability to
handle heavy traffic workload. We vary the number of
nodes in the overlay network in this experiment. For the
Chord network, each node has a finger table of size equal
to log(IV). For a fair comparison, we also keep the num-
ber of long links for the SWOP network with k = log (V).
The clustering coefficient is computed based on Equation
(2). The result is illustrated in the Table 3. We observe
that the SWOP network has a higher clustering coeffi-
cient. Again, the importance of having a higher cluster-
ing coefficient is that the P2P network is more efficient in
handling the heavy object lookup traffic, for example, un-
der the flash crowd scenario. We will explore this feature
in detail in the following section.

10
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Figure 8: Probability density function of link traversal for
Chord and SWOP with N = 5000 nodes.

Number of nodes | Avg. traversed links | Standard Deviation
in the system Chord SWOP Chord SWOP
1000 4.96 3.76 241 0.89
2000 5.48 4.01 2.63 121
3000 5.75 4.17 2.81 133
4000 5.97 452 2.87 1.84
5000 6.14 4.63 2.95 1.86
6000 6.26 4.92 3.09 231
7000 6.39 5.07 3.10 251
8000 6.49 532 312 2.56
9000 6.53 5.44 3.15 291
10000 6.63 557 3.20 311

Table 1: Object Lookup performance (e.g. number of link
traversal) with standard deviation of SWOP and Chord
networks under different values of V.

3 Realizing the Small World
Paradigm in an Existing Struc-
tured P2P Networks

In general, SWOP can be applied to different structured
P2P networks, such as CAN, Pastry and Tapestry. A small
world network layer can be constructed on top of different
structured P2P networks based on their similarities.

A structured P2P network can be summarized into three
major components: a unique key assignment scheme,
a characteristic routing table and an effective routing
scheme. For our SWOP protocol, it can be implemented
as another layer on top of these components. First, we for-
mulate a “cluster” based on the key assignment scheme.
We group similar keys together to form a cluster, which
can enhance communications between nodes within a
cluster and provide a mean to resolve the high traffic prob-
lem. This procedure can be carried out in CAN, Pastry and
Tapestry as they contain similar key assignment scheme.
Based on the grouping criteria, group size and node sep-
aration distance, each node can decide a suitable cluster
to join and select a appropriate cluster head node. In our



N: Chord | SWOP | SWOP | SWOP | SWOP | SWOP
k=4 k=6 k=8 | k=10 | k=12
1000 6.0 6.0 5.0 44 4.2 37
2000 6.5 59 4.9 4.4 4.1 3.8
3000 6.7 6.0 4.9 4.3 4.1 3.8
4000 6.9 6.3 5.2 4.5 4.0 3.9
5000 7.1 6.2 55 4.6 4.3 4.0

Table 2: Object Lookup performance (e.g. number of link
traversal) of SWOP and Chord networks under different
values of NV and k.

[ N:#ofnodes | Chord | SWOP |

1000 0.288182 | 0.560587
2000 0.260332 | 0.649660
3000 0.250452 | 0.684012
4000 0.245469 | 0.704523
5000 0.240776 | 0.716463

Table 3: Average Clustering Coefficient

SWOP, the cluster head is selected using the smallest ID,
but in general, it can be the smallest ID or vector. Then,
different structured P2P networks can apply our selection
criteria to choose a suitable cluster head to represent a
cluster in a P2P network.

Secondly, one needs to construct the small world rout-
ing table. To realize this, we fix each inner node, or cluster
member, to connect to nodes within a cluster only and we
allow each head node to connect to nodes in other clusters
according to harmonic distribution in Equation (3), which
is aiming at providing the high degree hubs presenting in
a small world network. For different structured P2P net-
works, provided that each node has the cluster head infor-
mation, it can maintain a list of short links. Moreover, P2P
networks can execute the CNEP protocol as described in
the previous section, then nodes can estimate the average
number of clusters within a network and they can connect
to other clusters based on Equation (3) of using long links.

Third, after the formation of small world routing tables,
we can use the OLP to perform object lookup directly be-
cause the above discussed algorithms are based on short
links within a cluster and long links connecting different
cluster, which are maintained in small-world maintenance
procedure.

Currently, our small world layer groups nodes by com-
paring similar IDs to form clusters. This scheme can be
modified such that other application specific purpose can
be achieved. For instance, one can group nodes based on
transmission delay or semantic interest etc. For transmis-
sion delay, one can measure the network delay between
two nodes by sending probe packets and estimate the de-
lay. This kind of group can help reduce the transmission
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delay of file transfer. For semantic interest, one can assign
a semantic vector, based on file lookup interest, to each
node in the network. This type of network may reduce
the object lookup latency because users have a tendency
to search similar interest within a cluster first.

4 Protocols for
Crowd

Handling Flash

In this section, we address how to handle object access
under a heavy traffic loading. An example of a heavy traf-
fic loading is the flash crowd scenario [14, 16] wherein
a massive number of users try to access a popular object
within a short period of time. The incident of 911 is the
prime example of a flash crowd scenario where enormous
requests overwhelmed some popular news sites such that
only a small number of users could retrieve the object
while majority of users could not.

One way to deal with the flash crowd situation is to
replicate the popular object to other nodes. This way, ac-
cess to the popular object can be spreaded out so as to
avoid overwhelming the source node. However, one has
to address the following technical issues:

e The replication process cannot be self-initiated but
rather, driven by a high traffic demand. Or else some-
one may maliciously replicate many objects in a P2P
system.

Under a structured P2P network, object lookup is
carried out by using the object’s key value and only
one node manages that object. How can one enhance
the protocol so that more than one node can store the
popular object?

We first divide the study of the flash crowd scenario
into two cases, namely, (1) the static and (2) the dynamic
cases. A static flash crowd is a flash crowd phenomenonin
which the popular object involved will remain unchanged
after its first appearance, e.g., a newly published book
or released video. On the other hand, a dynamic flash
crowd is a flash crowd phenomenon in which the content
of the popular object will change over time after its first
appearance, e.g., a frequently updated news article. We
first describe algorithms to handle the static flash crowd
problem, then we extend the proposed protocols to handle
the dynamic flash crowd by adding mechanisms to notify
the change/update of different popular objects in order to
replicate these popular objects efficiently.

4.1 Static Flash Crowd

Under a flash crowd situation, the traffic can overwhelm
the source node that contains the popular object. To avoid



this problem, the source node needs to replicate this ob-
ject to other nodes and in return, these nodes can serve
some of the object lookup requests and reduce the traf-
fic to the source node. Note that the object replication
has to be ’demand driven” or else a node may be able to
maliciously replicate objects to all other nodes in a P2P
network. In the following, we first describe an access-rate
checking function, which is used to estimate the access
rate of an object in the system. Note that this function can
be applied to the SWOP P2P network or other structured
P2P network such as the Chord.

To estimate the access rate of an object, we use the ac-
cess_checki ng function specified below. This func-
tion determines the access rate of object and decides
whether the object should be replicated or not. Each node
in a P2P system calls the access_checki ng() func-
tion every PERIOD units of time to estimate the access
rates of its managed objects. At all times, each node also
keeps track of the number of access to its management ob-
jects in the array access_count[]. The pseudo code of the
access_checki ng() function is shown as follows:

Access checking

n.access_checking()/ * For each node neV */
1. double access_rate;

2. for (Vi € objects managed by node n) {

3. I*
comput e access rate for object q.
*/

4.  access_rate[i] = access_count[i] / PERIOD;

5. /* reset access count */

6.  access_count[i] =0;

7.}

8. }

In the following, we describe algorithms of replicating
static popular objects for the Chord network and for the
SWOP P2P network.

Static-Chord Algorithm: Assuming that a node in the
Chord P2P network can process up to A; requests per sec-
ond with a reasonable performance. Whenever a source
node discovers that the request rate for an object is \;
where A\; > \;, the source node starts the replication
process by pushing this popular object to all its neigh-
boring nodes, e.g., all nodes listed in its finger table.
These receiving nodes will cache this popular object for
T time units. Using the Chord object lookup protocol,
any node that wants to access this popular object may
passes through these receiving nodes and can then access
the popular object. For a node that caches the popular ob-
ject, if it receives a lookup rate A, for that object, where
A2 > A then in turn it will push this cached popular
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object to all its neighboring nodes. The motivations of
the above algorithm are: (1) the replication process of a
popular object is purely demand driven, (2) for a popular
object, it will be replicated to other nodes in the Chord
system so other nodes can access that object.

We applied the above approach for the Chord system to
handle the flash crowd scenario because the nodes in the
Chord system are evenly distributed and the fingers of the
nodes are evenly spreaded among the system. By push-
ing the “popular” items to those evenly spreaded finger
nodes, one can then distribute the “cached” item evenly in
the system, which can increase the hitting probability by
a randomly generated query. Thus, the above scheme is
used for the Chord system so as to provide a fair compar-
ison between the SWOP system and the Chord system.

Implementation of replication process in Chord: The
pseudo code of the replication algorithm is illustrated as
follows. If the access rate is larger than A, the function
push(int objectld) will be called. The popular
objects will be pushed and replicated to all nodes indi-
cated by the finger table under the Chord system.

Push — Chord version
n.push(int objectld)

1. for (V neighboring nodes € finger_list) {
2. transfer the popular object to
each neighboring node;
3. each neighboring node caches
the received object;
4.}

Static-SWOP Algorithm: Note that a small-world P2P
network exhibits a high clustering coefficient. We take
advantage of this property so as to achieve a lower repli-
cation time and lower links traversal to obtain the popular
object. We also assume that a node in the SWOP network
can process up to A; requests per second. Whenever a
source node receives a request rate for an object being A1
with A; > )\, the source node will start the replication
process by pushing the popular object its neighbors, e.g.,
all nodes connected by long links of its cluster. All these
receiving nodes will cache this popular object for T time
units. Any node that wants to access this popular object
uses the Object Lookup Protocol (OLP) described in Sec-
tion 2. If the popular object is cached by any node in its
cluster, the requesting node can access this popular object
quickly. For a node that caches the popular object, if the
lookup rate for that cached object is higher than X,, in
turn, it will push this cached popular object to all nodes
connected by long links of its cluster. Note that the main
motivation of replicating the popular object via the long
links is to propagate information to distant clusters so that



nodes within those clusters can easily access the popular
object.

Implementation of replication process in a SWOP net-
work: The pseudo code of the replication algorithm is
illustrated as follows. We define ”’long_links_list” as a
set of nodes in different clusters which are directly con-
nected via the long links. If the access rate is larger than
¢, the function push(i nt obj ect | d) will be called.
The main idea of this push function is to replicate popu-
lar object from one cluster ¢; to another cluster c; via ¢;’s
long links. The popular object will be cached in among
the long link neighbors. Since each long link neighbor
belongs to another cluster, pushing the popular object to
each long link neighbor means spreading or replicating
that object to each cluster. Under our SWOP, our OLP can
achieve an efficient lookup within a cluster. The detailed
pseudo code for the push function is as follows:

Push — SWOP version

n.push(int objectld)

1. if (n.cluster_status == INNER) {
/* node n is an inner
node n searches its cluster head;
node n sends objectld to it’s cluster head;

node */

arwN

node n transfers the object to cluster head,
but the cluster head does not store the object
in its cache if it did not request for it;
cluster head calls the push function again;

/* node n replicates the object.
for (V neighbors € long_links_list) {
cluster head transfer the popular object to
each neighbor;
each neighboring node caches the received object;

RO ~NO®

0.

11.
12.
13.}

4.2 Dynamic Flash Crowd

To handle dynamic flash crowd scenario, an additional
communication message, update message, and an extra
data structure for each object’s version number, or update
counter, are added to static SWOP PUSH algorithm in or-
der to handle the dynamic popular object.

For the static algorithm applying on the SWOP net-
work, an efficient replication has been operated such that
each cluster in the system has exactly one node caching
the popular object. Consider at this moment, each node
with the popular object marks this copy as original, say
version 0. If an updated version, say version 1, is in-
serted to the system by the source node, we only need a

. }else{/* node n is the cluster head *
*/

cluster head registers the replicated item in item list;

/
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light weight notification to inform all cached nodes about
the newly updated popular object. Again, this notification
can be carried out by exploiting the small-world property
and the static replication scheme.

To implement the above dynamic algorithm, we en-
hance the static algorithm as described previously, which
is the replication scheme for the original version of the
popular object. Whenever the source node has an updated
version, additional tasks have to be carried out. First, an
update message is sent out by (1) the source node and,
(2) the cached node of the updated object. In general,
there are two types of update messages, which are (i)
sending to all cluster neighbors and, (ii) sending to all
long link neighbors of each cluster head. The first type
of message involves the cluster neighbors only and it re-
minds the cluster neighbors to lookup the latest updated
version of the popular object. On the other hand, the sec-
ond type of message involves the long link neighbors. It
reminds these nodes about the new update and transfers
the updated popular object to these nodes. This implies
that an updated version will be replicated from one clus-
ter to another cluster. This type of message requires the
co-operation between head node and the sending node if
the sending node is not a head node. As a receiver of the
update message, if a node does not contain a cached copy
of the popular object, it will use the OLP protocol as de-
scribed in Section 2 to retrieve the updated object.

4.3 Mathematical analysis of object replica-
tion time

In this section, we present the mathematical derivation of
the average time, the memory requirement of each node
and the bandwidth requirements of replicating a popular
object to all clusters in a SWOP overlay P2P network. We
model the spreading process by a continuous time Markov
chain (CTMC).

The Average Spreading Time: Let M be the CTMC
representing the replication dynamics of a SWOP over-
lay network. The SWOP overlay network has N nodes.
The CTMC M has a state space of S such that S =
{1,2,---,m}, where m is the number of clusters in a
SWOP P2P network. State ¢ in M represents that the
popular object has already been replicated to i nodes in
the SWOP network. Since the source node contains and
manages the popular object initially, the initial state of
the CTMC M is in state 1. Define z; as the number
of requests needed within a time period 7 so that the
source node of the popular object will start replicating
the popular object to all its long links neighbors (e.g.,
A1 = z1/7). After receiving the popular object, these
neighboring nodes become replicated nodes. Similarly,
define 25 as the number of object requests needed for a
replicated node to start replicating the popular object to



all its long links neighbors Let X be the request rate of the
popular object from each node in a SWOP P2P network.
The rate of replicating a popular object from the source
node is As, which is equal to:

A = (N —1)A [1 - zf R (G 1)’\”1 .

!
i=0 J:

Similarly, let C' represents the average number of nodes
within a cluster. The rate of replicating a popular object
from a replicated node is A, which is equal to:

A= (C— 1)\ ll ~ Mf il I)AT)j] .

i=0 7!

Let @ be the infinitesimal rate matrix of M and we
denote the element in @ as g; ;, which is the transition rate
from state 4 to state j, fori,j € {1,2,...,m}. Assuming
that a replicated node will cache the object for an average
timeof 1/p. Letvy = A;andy; = A fori € {2,...,m}.
The transition rate matrix of () can be specified by the
following transition events:

Object deletion event:
forl<i<m

()
Object replication event: we have two cases to consider:
Case 1: forstate i € S, if (i +ik) < m:

[ (TR ik << (i +ik
%i= 0 otherwise.

Giic1 = ip

6)

Case 2: forstate i € S, if (i +ik) > m:

(i+ik) (m=iym—i(iyz—(m=i)y,

ifj=m

r=m : m T
i j={(m=t)i—i (L )ik=(i=1)y,
! m m
0 otherwise.

Once the rate matrix Q is specified, one can derive the
average time to replicate a popular object to all clusters
in a SWOP P2P network using the theory of fundamental
matrix in Markov Chain [2, 12].

We first transform the rate matrix @ to a discrete time
transition probability matrix P by using the uniformiza-
tion technique [2, 12] such that P = I + Q/A, where I is
an identity matrix and A is a maximum absolute value for
all entries in Q. Since we want to find the average time it
takes to replicate a popular object, then one can consider
the state m in M as an absorbing state, e.g., this is the
state wherein the popular object has been replicated to all
clusters in a SWOP network. Let P, be the square matrix
which is equal to P except we remove the last row and
column (e.g, the absorbing state m) from P. The funda-
mental matrix M can be calculated using

o0

M=(I-P,) '= Z P,

Let E[T.] be the average time to replicate the popular ob-
ject to all clusters in a SWOP network given that only one
node (or cluster) has the popular object at time ¢ = 0. We

can compute E[T¢] by:
1
(K) eeM17”

where e; is a row vector of zero except the first entry be-
ing 1 and 1 is a row vector of all 1’s.

To quantify the memory requirement, one can measure
the expected number of keys stored in each node in the
SWOP system. The keys can be divided into two cat-
egories: topological keys and item keys. For topolog-
ical keys, the upper bound of these keys can be calcu-
lated by considering the head nodes in the SWOP system
since these nodes have both long links and short links for
topology construction. The value of this upper bound is
(log N +2)+(G+k), which includes the topological keys
for the underlying DHT and the SWOP overlay. For item
keys, the upper bound depends on the number of popular
objects in the system during flash crowd period. One can
expect that the final result after executing flash crowd han-
dling protocol is that each node contains one copy of each
popular object. So, the bound of memory requirement for
item keys for each node is the number of popular object
in the system. In summary, if there is 4 popular objects
in the SWOP system, the memory bound for each node in
the SWOP system is (log N + 2) + (G + k) + ¢.

The bandwidth requirement in the network can be mea-
sured by the number of messages generated from each
node in the SWOP system. Without the flash crowd han-
dling protocol, the bandwidth requirement is n = (1 +
log2(m/2))8In(3m)/k messages, which means that n

E[T.] = 9)

<5< G+ (Dnodes apply the OLP to retrieve the popular object. On

the other hand, with the flash crowd handling proto-
col, the “cached” node can push the popular object to
its & long link neighbors. As a result, those nodes in-
side the k& clusters can use the OLP to lookup the pop-
ular object by two messages (within two hops) instead
of (1 + loga(m/2))8In(3m)/k messages. To represent
the dynamics using the flash crowd handling protocol, we
assume that the system has replicated the popular object
N, times to ¢ clusters, where ¢ < m (m is the aver-
age number of clusters in the SWOP system), and each
server needs r requests to trigger the replication. The
number of messages generated in the system is bounded
by N.r(1+1log2(m/2))8In(3m)/k+2cG, where G is the
number of cluster member as defined in previous sections.

4.4 Experimental results of handling flash
crowd

In this section, we present the experimental results of
comparing the performance of replicating a popular object
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for a Chord and SWOP P2P networks. We use the topol-
ogy generator developed in Section 2 to form and main-
tain a small-world P2P network. And we use a discrete
event driven simulator to generate workload that simulates
a flash crowd scenario.

In our experimental study, we use a 24-bits hash space.

There are N = 2000 nodes in a P2P system. In order to
provide a fair comparison, each node in the P2P network
(both for Chord and the small-world P2P network) has no
more than 11 long link neighbors. This implies that, under
the Chord network, the size of the finger table is 11 and,
for the small-world SWOP network, the size of the the
long link neighbor list is & = 11. We generate a popular
object whose key value is randomly chosen from the 24-
bits hash space and we insert this popular object in the P2P
network. Each node in the P2P network generates request
to this popular object with a Poisson arrival rate of A. If a
node receives a request lookup, it will process the request
with a Poisson service rate of u, which is normalized to
1 request/second. If a request arrives to the source node
and the source node is busy, that request will be queued
up. Each node has a finite queue size to store incoming
requests. If the request arrives at a full queue, the request
will be dropped.

We carried out experiments and measure the “effec-
tive replication time”” of SWOP and Chord. The effective
replication time is reflected by the number of successful
requests. The number of successful requests at time ¢ is
defined as the number of nodes that can successfully ac-
cess the popular object by time ¢. Note that an object
lookup request from a requesting node may fail because
the request may be dropped by intermediate nodes or by
the source node due to finite queueing at each node. In
our study, a request is successful only if it can access the
popular object by time ¢. We use this performance met-
rics for investigating the effective replication time, that is
how fast that a popular object can be replicated under the
SWOP or the Chord network.

Experiment B.1: Comparison between Chord and
SWOP: This is a basic comparison of the static and the
dynamic flash crowd scenarios between the Chord and the
SWOP network. We fix the per node average request ar-
rival rate of the Chord and the SWOP as A = 0.003 re-
quests/second. Under the dynamic flash crowd scenario,
the source node which manages the popular object will
change the version of the popular object at time ¢ = 25, 50
and 75 respectively.

Static Result: Figure 9 shows the number of successful
requests as a function of time. The result shows that the
SWOP network has a much better performance on object
replication than the Chord. For example, at time > 20,
most of the requests to the popular object are successful
under the SWOP network. However, only around 6% of
the requests are successful under the Chord network.
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Figure 9: Comparison of the number of successful re-
quests to the popular object under the static flash crowd
with N = 2000 nodes.

Dynamic Result: Figure 10 illustrates the performance
of both P2P networks under the dynamic flash crowd sit-
uation. It uses the same plot setting as the static result.
Since the content of the popular object is updated at time
t = 25,50 and 75, we consider a request is successful if
and only if it can access the most up to date version of the
popular object. Figure 10 shows that the number of suc-
cessful request for the SWOP network is much better than
that of the Chord. Moreover, when the object changes its
content at time ¢ = 25, 50 & 75, the SWOP network can
quickly notify other nodes so that other nodes can eventu-
ally access the most recent version of the popular object.
On the other hand, the Chord network is not as effective as
the SWORP in replicating the object. Thus, the SWOP net-
work has a much better performance during the dynamic
flash crowd situation.
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Figure 10: Comparison of number of successful requests
under the dynamic flash crowd with N = 2000 nodes.
(object changes its version at ¢ = 25, 50, 75.)

Experiment B.2: Comparison on Queue Size: In this
experiment, we investigate the effect of different queue
size on the number of successful request. We keep the
same experiment configuration as in Experiment B.1 ex-
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cept that we vary the queue size of each node. from 20 to
50 and the result is shown in Figure 11. From the figure,
we observe that the SWOP network is not very sensitive
to the node’s queue size. Even when one uses a small
queue size of 20, the SWOP network can maintain a good
performance and high successful request rate. Thus, the
system resources for each node in the SWOP network can
be reduced without affecting the performance during the
flash crowd situation. Lastly, the figure also illustrates that
the SWOP network performs much better than the Chord
network under the flash crowd scenario.
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Figure 11: Effect of queue size on the number of success-
ful request for the SWOP and the Chord network (object
changes its version at ¢ = 25, 50, 75.)

Experiment B.3: Variation on object request rate: In
this experiment, we further examine the performance on
handling dynamic flash crowd when object request rate is
being varied. We keep the same configuration as in Ex-
periment B.1. We vary the per node object request rate A
from 0.001 to 0.005. The result is illustrated in Figure 12.
Result shows that the SWOP performs the best under the
arrival rate of 0.003. The reason is that when the request
rate is greater than 0.003, the aggregated request rate is
higher than the service rate for the individual node which
caches the popular object within a cluster. On the other
hand, when the request rate is smaller than 0.003, the ag-
gregated request rate is small enough so as to achieve a
very high number of successful request. To handle higher
request rate, we may need to dynamically control the clus-
ter size (e.g., to make a smaller cluster) in order to achieve
a high successful object access rate. Due to the lack of
space, we leave this as one of our future work.

Experiment B.4: Variation on number of long link
neighbors (k): This experiment investigates the perfor-
mance when we vary the number of long link neighbors
k in a small-world P2P network. We adjust the topology
of the SWOP network such that each node in SWOP has
k =7,90r 11 long links. In this experiment, we keep the
finger table size of the Chord network to be 11. The result
is illustrated in Figure 13, which shows that even when the
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Figure 12: Effect on the variation of per node request rate
A on the number of successful request for the SWOP &
the Chord network (object changes its version at ¢ = 25,
50, 75.)

number of long links neighbors in SWOP is reduced, the
performance on the number of successful requests under
the SWOP network is significantly better than that of the
Chord network. For example, one can observe when the
SWOP has k = 7 long links, the number of successful re-
quests at the beginning is less than £ = 9 or k = 11 long
links of SWOP, but the number of successful requests can
quickly catch up. Also, the replication rate is much better
than the Chord network. The implication of this experi-
ment is that the SWOP network only needs to manage a
small number of long links than the Chord network but it
is still very robust under the dynamic flash crowd situa-
tion.
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Figure 13: Effect of the variation of number of long links
k for the SWOP & the Chord network. (object changes its
version at ¢ = 25, 50, 75.)

Experiment B.4: Amount on traffic generation: In this
experiment, we examine the effects on traffic loadings, in
terms of the number of messages generated in the network
to handle flash crowd. For both the SWOP and the Chord
networks, we compare the differences on their traffic load-
ings when they are facing the same flash crowd scenario.



No. of Messages

We employ the simulation as described in previous ex-
periments with the modification that we record the num-
ber of message generated. We set parameters N=2000
nodes for both the SWOP and the Chord networks, A =
0.003 requests/second for each node and p = 1 for the
each source and object cached node. Before the simula-
tion starts, a popular object is generated and after that,
each node generates a request, with the rate A to lookup
that popular object. In this simulation, for each time in-
terval, the total number of generated messages is counted,
and the simulation ends at the simulation time of 200.

The result is illustrated in Figure 14, which shows that,
in the static flash crowd scenario, the traffic loading of the
SWOP network decreases substantially while the Chord
network still suffers a high traffic loading. This shows that
the SWOP network has a better performance on handling
traffic burst in the flash crowd scenario because it makes
use of the clustering property to reduce requests’ lookup
distances.
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Figure 14: Effect of the traffic loading for static flash
crowd of SWOP & the Chord network.

5 Reated Work

The small world phenomenon was first observed by
Milgram[10] and he discovered the interesting six degrees
of separation in social network. Kleinberg [6, 7] provided
the theoretical framework in analyzing graphs with small-
world properties. In [3], authors studied the broadcast
mechanism of communication in a small-world network.
In [1], authors presented the condition of switching from
a regular lattice to a small-world graph. In [5], authors
proposed a system architecture to handle the popular files
replication and their version updates. Comparing to our
work, our system makes use of the small world structure
which can reduce the popular file spreading distance sig-
nificantly. Moreover, our system is built on top of the

DHT network, which preserves many attractive properties
provided by the DHT network. In [19], authors proposed
a scheme of storing data in an unstructured P2P network
such as Freenet so that the P2P network may exhibit some
of the small-world properties. Comparing to our work,
our proposal is concentrated on structured networks which
use consistent hashing function. Moreover, we apply it
to resolve the dynamic flash crowd problem which is not
applicable in an unstructured P2P network because an ob-
ject can be stored in many different nodes. In [15], au-
thors proposed the small world overlay structure on top of
the unstructured and decentralized peer-to-peer network,
such as Gnutella. In contrast to our work, we focus on the
structured and decentralized peer-to-peer network, such
as Chord. In [4], authors proposed to form a small-world
P2P network for scientific communities. However, the de-
tail of creating and managing a small-world P2P network
was not clearly specified.

Recent research work on structured P2P network can be
found in [9, 13, 17, 20]. The main feature of these work
is to provide some form of data/topological structure for

mance in object lookup and we propose an efficient way to

1 “replicate” popular and dynamic objects and as a result, it
1 helps the system to resolve the dynamic flash crowd prob-
{lem. Ulysses[8] is a structured P2P based on the concept
| of butterfly network and shortcut intuition. The proposed

P2P protocol achieves a low number of link traversal for
performing an object lookup. However, the performance

i p - P wdepends on a stable topology. If a query is routed between

nodes which are doing a join or a leave operation, the per-
formance is not known. Moreover, it considers only mod-
erate traffic and does not address how to resolve heavy
traffic workload like the flash crowd scenarios. In compar-
ison, the proposed small-world P2P network can achieve
a low number of link traversal for object lookup and one
can also take the advantage of the high cluster coefficient
effect to handle the dynamic flash crowd problem. For
the Chord project, the Cooperative File System was pro-
posed for a new peer-to-peer read only storage system,
which helps to handle the flash crowd problem. But it
has a large storage overhead to store the file information.
In our small-world P2P network, it only requires a small
amount of additional data storages of O(G+k) routing ta-
ble entries to handle flash crowd problem.

In [16], the authors proposed a protocol to handle the
static flash crowd problem on a P2P network. An elegant
analysis of the static flash crowd problem was presented in
[14]. Our work focuses on the dynamic flash crowd prob-
lem since many popular objects may have a time varying
content.
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6 Conclusion

The small-world effect is an active field of research in so-
cial sciences, Physics and Mathematics. A small-world
graph has two important properties: low average hop dis-
tance between two randomly chosen nodes and high clus-
tering coefficient. In this paper, we propose a set of proto-
cols to create and manage a small-world structured P2P
network. We show that the proposed small-world P2P
network contains both a small average hop distance and
a high clustering coefficient properties. We demonstrate
how the low average hop distance between two random
chosen nodes can reduce the number of link traversal for
object lookup. A high clustering coefficient provides the
potential”” advantage to handle the flash crowd problem.
We propose a protocol to replicate popular and dynamic
object so as to handle the dynamic flash crowd prob-
lem. Experiments were carried out to compare the per-
formance of the proposed small-world P2P network with
other structured P2P system (e.g., Chord). We show that
the small-world P2P network has a lower object lookup
latency and can satisfy many users who are requesting for
the popular object.
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