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Abstract 

In this paper, we consider a K-server threshold-based 
queueing system with hysteresis in which the number of 

servers, employed for servicing customers, is governed 
by a forward threshold vector F= (Fl, Fz,. . . , FK-1) 
(where FI < Fz < ... < FK-1) and a reverse threshold 
vector R= (Rl,R2,..., RK--1) (where Rl<Rz<...< 
Rx-l). There are many applications where a threshold- 
based queueing system can be of great use. The main 
motivation for using a threshold-based approach in such 
applications is that they incur significant server setup, 
usage, and removal costs. And, as in most practical 
situations, an important concern is not only the sys- 
tem performance but rather its cost/performance ratio. 
The motivation for use of hysteresis is to control the 
cost during momentary fluctuations in workload. An 
important and distinguishing characteristic of our work 
is that in our model we consider the time to add a server 
to be non-negligible. This is a more accurate model, for 
many applications, than previously considered in other 
works. Our main goal in this work is to develop an 
efficient method for computing the steady state proba- 
bilities of a multi-server threshold queueing system with 
hysteresis, which will, in turn, allow computation of var- 
ious performance measures. 

follows. A customer arriving to an empty system is ser- 
viced by a single server. A new arrival to a system with 

Fi customers already there forces a non-instantaneous 
activation of one additional server. A departure from 
a system which leaves & customers behind forces a re- 
moval of one server. 

The main motivation for using a threshold-based ap- 
proach is that many systems incur significant server 

setup, usage, and removal costs. More specifically, un- 
der light loads, it is not desirable to operate unnecessar- 
ily many servers, due to the incurred setup and usage 
costs; on the other hand, it is also not desirable for a 
system to exhibit very long delays, which can result due 
to lack of servers under heavy loads. One approach to 
improving the cost/performance ratio of a system is to 
react to changes in workload through the use of thresh- 
olds. For instance, one can maintain the expected job 
response time in a system at an acceptable level, and 
at the same time maintain an acceptable cost for oper- 
ating that system, by dynamically adding or removing 

servers, depending on the system load. 

1 Introduction 

In this paper, we consider a K-server threshold-based 
queueing system with hysteresis in which the number of 

servers, employed for servicing customers, is governed 
by a forward threshold vector F= (F~,F~,.,.,FK-~) 
(where FI < FZ < ... < FK-I), and a reverse threshold 
vector R= (RI, R2,. . . ,RK--1) (where R1<R2<...< 
RK-I). This multi-server queueing system behaves as 
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There are many applications where a threshold-based 
queueing system can be of great use, e.g., in transport 
protocols of communication networks [lo], where sev- 
eral transport-layer connections are multiplexed onto a 
single network layer connection. Whenever the traihc 
exceeds a certain threshold in the network-layer connec- 
tion, another network-layer connection can be created 

to service the incoming trafhc from the transport layer. 
Using such a control mechanism, severe degradations in 

throughput and delay can be avoided; at the same time 
operational costs can be kept at an acceptable level. 
Another example application is a system providing in- 

formation query service via the Internet. As the num- 
ber of queries increases, the number of servers, needed 
to maintain certain (acceptable) system response time 
characteristics, is also increased. Since the cost of set- 
ting up server connections can be significant, the use of a 
threshold-based approach can result in a cost-controlled 
creation and deletion of these connection, according to 
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the changes in the workload. 

As in the case of electronic circuits that are prone 
to oscillation effects, a “simple” threshold system may 
not suffice. In a computer system, one reason for avoid- 
ing oscillations are the above mentioned server setup 
and removal costs, i.e., oscillations coupled with non- 
negligible server setup and removal costs can result in a 
poor cost/performance ratio of a system. More specifi- 
cally, it is desirable to add servers only when a system is 
moving towards a heavily loaded operation region, and 
it is desirable to remove servers only when a system is 
moving towards a lightly loaded operation region - it 
is not desirable to alter the number of servers during 
“momentary” changes in the workload. Such oscilla- 
tion regions can be avoided (as in electronic circuits) 
by adding a hysteresis to the system - hence the mo- 
tivation for looking for efficient analysis techniques of 
threshold-based queueing systems with hysteresis. 

As already mentioned, a threshold-based queueing 
system with hysteresis is defined by the forward and re- 
verse threshold vectors (see Section 2 for details). Our 
main goal in this work is to develop an efficient method 
for computing the steady state probabilities of a multi- 
server threshold-based queueing system with hysteresis, 
which will, in turn, allow computation of various per- 
formance measures. Thus, the question of optimal or 
“good” values for the threshold vectors, although a very 
interesting one, is outside the scope of this paper and is 
the topic of future work. We must point out, however, 
that our solution method, due to its intuitive nature, 
should facilitate accessible experimentation techniques 
for investigating the “goodness” of various threshold 
V?AlUeS. 

Given the above motivation for the use of threshold- 
based queueing systems with hysteresis, in this paper we 
present an efficient technique for computing tight per- 
formance bounds for the corresponding Markov chain 
model. We begin with a very brief survey of the pub- 
lished literature on the threshold-based queueing prob- 
lem. A two-server system is considered in [12], [13], and 
[18]. An approximate solution for solving a degener- 
ate form of this problem (where all thresholds are set to 
zero) is presented in [5,7]; an approximate solution for a 
system that employs (non-zero) thresholds is presented 
in [20] (but without hysteresis). In [6], the authors 
solve a limited form of the multi-server threshold queue- 
ing system with hysteresis, using the Green’s function 
method [4, 8, 91 - they give a closed-form solution for 
a K-server system, when the servers are homogeneous, 
and for a 2-server system, when the servers are heteroge- 
neous. The authors experience difficulties in extending 
the Green’s function method beyond 2 heterogeneous 

servers. In [16] exact solutions, using stochastic comple- 
mentation [17], for the K-server homogeneous, hetero- 
geneous, and bulk arrival variations of the multi-server 
threshold queueing system with hysteresis are given; no 
restrictions are placed on the number of servers or the 
bulk sizes or the size of the waiting room. Stochastic 
complementation is a more intuitive and a more easily 
extensible method, and is exploited in this work as well. 

In this paper, we consider and solve a homogeneous 
multi-server threshold-based queueing system with hys- 
teresis. We place no restrictions on the size of the wait- 
ing room or on the number of servers. The contributions 
of this work are as follows. To the best of our knowl- 
edge, none of the works described above consider the 
time to activate a seruer. Since for many applications 
this time is non-negligible, we consider it an important 
and distinguishing characteristic of our work. We first 
give an exact solution for computing the steady state 
probabilities of our model using the matrix geometric 
method [21]. However, we feel that the exact solution is 
not efficient. And, thus, the main contribution of this 
paper is an efficient solution of a threshold-based queue- 
ing system with hysteresis obtained through a compu- 
tation of tight performance bounds. More specifically, 
we compute the steady state probabilities of the bound- 
ing models using a combination of stochastic comple- 
mentation [17] and the matrix geometric [21] methods. 
Given the steady state probabilities, we can compute 
tight bounds on various performance measures of inter- 
est. The ease with which we are able to obtain these 
bounds demonstrates the extensibility of our method. 

The remainder of this paper is organized as follows. 
In Section 2 we give a detailed description of our model. 
In Section 3 we present background information which 
is useful in solving the model of Section 2. Section 4 
describes our general approach to solving the model. 
Due to the complexity of the solution, it is desirable 
to consider more cost efficient approaches to obtaining 
performance measures. This is done through bounding 
techniques which are presented in Sections 5 and 6. The 
goodness of these bounds and numerical results are dis- 
cussed in Section 7. Finally, our conclusions are given 
in Section 8. 

2 Model 

In this section we describe our model, which is illus- 
trated in Figure 1. We consider a multi-server threshold- 
based queueing system with hysteresis that can be de- 
fined as follows. There are K homogeneous servers in 
the system, where K is unrestricted, each with an expe 
nential service rate p. The customer arrival process is 
Poisson with rate X. Addition and removal of servers in 
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Figure 1: State Transition Diagram for K = 3. 

this queueing system is governed by the forward and the 
reserve threshold vectors F = (A, Fz, . . . , FK-~) and 
R = (Rl,Rz,... ,RK-I), where Fl < Fz <...< FK-1, 
and RI<RA -.*<RK-~, and I& < Fi for all i’. Note 
that, unlike in [6, 161, the addition of a server is not in- 
stantaneous, but is governed by a Poisson process with a 
rate Q (refer to Figure 1). This is motivated by the fact 
that in many applications addition of a new server takes 
a non-negligible amount of time. The use of a threshold- 
based approach can result in a cost-controlled addition 
and removal of servers. 

Given a K-server threshold-based queueing system 
with hysteresis, we can construct a corresponding Markov 
process M with the following state space S: 

s = {(N, Nd, L) 1 iv 2 0, N.l E (0, 1,2,. . , K}, 

LE(O,1,2 ,...) K}} 

where IV is the number of customers in the queueing 
system, IV. is the number of busy servers, and L is 
the level to which the state belongs - more specifi- 
cally, all states at level L correspond to the state of 
the system where, according to the threshold vectors, 

‘Note that, there are multiple ways to create a total order 
between the Fi’B and the Ri’n; for clarity and ease of presenta- 
tion, in the remainder of this paper (unless otherwiae stated) we 
assume that Ri+l < F; Vi. However, our solution technique can 
be easily extended to all other cases as well. 

5 

-- 

S, 

-- 

L servers “should be” active but may not be, since in 
our model activation of servers is not instantaneous2. 
Figure 1 illustrates the state transition diagram for the 
homogeneous servers threshold-based queueing system 
with hysteresis3 where K = 3. Formally, the transition 
structure of M with K homogeneous servers, where K 
is unrestricted, can be specified as follows: 

(O,O, 0) 
(6 j, 1) 
with rate 

(4 j, 0 
with rate 

(4 j, 1) 
with rate 

(i, j, I) 
with rate 

(4 i, 0 
with rate 

(l,l, 1) 

+ (l,l,l) with rate X 
+ (i+l,j,I+l) 
xl{ (i = Fk E F) A (1 = k) } 
-+ (i+l,j,I) 
xl{ (i (i! F)v(i = Fk E F)h(l # k)} 
-+ (i,j + 1, I) 
(I-j)crl{(E-j)>O} 

-+ (i-l,min(j,Z-1),1-l) (1) 

j~l{(i-l=RkER)A(Z=k+l)) 
-i (i-l,j,Z) 

91 (i L 1 A (i,i,O # (Ll, 1)) 
A( (i - 1 $Z R)v 
(i-~=RLER)A(I#~++))} 

+ (O,O,O) with rate p 

where l(z) is an indicator function, i.e., it is equal to 
1 if condition z is true and 0 otherwise. 

‘The “level” part of the state description is somewhat artifi- 
cial at this point but will become useful, later in the paper, in 
constructing a solution to this model. 

‘The Si notation, in this figure, will be defined in Section 4. 
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3 Background 

In this section we briefly describe background informa- 
tion, used in the remainder of the paper. In Section 
3.1, we describe the matrix geometric approach, which 
is the technique we use to compute an exact solution 
for the model of Section 2. In Section 3.2, we describe 
the stochastic complement approach which is used in 
solving the upper and lower bound models. 

3.1 Matrix Geometric Approach 
A Markov process, E, has a quasi birth-death version of 
the matrix geometric form [21], if the state space of E 
can be partitioned into disjoint sets B;, i E (0, 1, . . s} 
such that the generator matrix of G has the following 
form: 

Bo,o Bo,l 0 0 0 ... BLO Al Ao 0 0 ... 1 
Q = 

8 

A2 A1 Ao 0 . . . 

0 A2 AI Ao ..’ 
(2) 

1 ; ; j j i . ..J 

where Bo.0 represents transition rates for states in Be, 
Bo,l represents transition rates from states in Bo to 
states in B1, Bl,o represents transition rates from states 
in B1 to states in Bo, A1 represents transition rates for 
states in Bi (where i 2 l), A0 represents transition rates 
from states in B; to states in Bi+l (where i > l), and 
As represents transition rates from states in Bi to states 
in Bi-1 (where i 1 2). The solution of this system can 
be obtained by solving the following matrix equation: 

Ao+RAl+R2Az = 0 

where the solution for matrix R can be obtained using 
the following iterative procedure: 

R(0) = 0 (3) 

R(n + 1) = -AoAT’-R2(n)A2A;’ n = O,l, . . . (4) 

Let Ai be the steady state probability vector for 
states in the set Bi where i 1 0. We can express ri 
aS: 

nj = x,R’-’ j=2,3,... (5) 

For the states in Bc and BI, we have the following re- 
lationship: 

moBo,o + rrlBl,o = 0 

roBo.1 + lrlA1 + 7r2A2 = 0 

which can be written in matrix form as 

(6) 

(TO, ml) 
Bo.o BOJ 

Bl,o A1 +RA2 = 1 0 (7) 

where we substitute 1~2 = lrlR in (5) to obtain the 
submatrix in the lower right-hand corner of (7). To 
determine the steady state probabilities of all states, we 
need the normalization constraint, which is: 

m 

1 = rrse + ~1 c Rj-le = Toe + ~rl(I - R)-‘e 
j=l 

We can determine the solution of mj by solving the fol- 
lowing system of linear equations: 

So (I-;)-‘~ B;;, &y&A2 =[l,o] (8) I 
where M’ is a matrix M with its first column elimi- 
nated. 

3.2 Stochastic Complementation 
In this section, we briefly review the concept of stochas- 
tic complementation (17, 19, 1514. Given an irreducible 
discrete time Markov chain, M, with state space S, let 
us partition this state space into two disjoint sets A and 
B. Then, the one-step transition probability matrix of 
M is: 

P= 
[ 

PA,A PA,B 

P&A PB,B 
I 

and A = [RA, TTB] is the corresponding steady state 
probability vector of M. In what follows, we define the 
notion of stochastic complementation and quote some 
useful results [17]. 

Definition 1 The stochastic complement of PA,.J, 
denoted by CA,A, is: 

CA,A = PA,A + PA,B[I - P~~,B]-‘~B,A (9) 

Theorem 1 The stochastic complement is always a 
stochastic matrix and the associated Markow chain is 
always irreducible, if the original Markov chain is irt-e- 
ducible. 

Theorem 2 Let AlA be the stationary state proba- 
bility vector for the stochastic complement CA,A, then 

%[A = l/(rAe)TA (10) 

where e is the column vector with all entries equal to 1. 

‘For the purposes of this presentation, we assume a discrete 
state space, discrete time, ergodic Markov chain. Throughout 
the paper we will also consider continuous time Markov pro- 
cesses; however, there is a simple transformation between the 
two via uniformization [3]. 
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The implication of the above theorems is that the sta- 
tionary state probabilities of the stochastic complement 
are the conditional state probabilities of the associated 
states of the original Markov chain. 

Let diag(u) be a diagonal matrix where the ith 
agonal element is the ith element of the vector u. $e 
can rewrite Equation (9) as: 

where 

CA,A = PA,A + diag(PA,se)Z (11) 

2 = ~;I,B [I - p&E]-l PB,A 

and P;I,B is simply PA,B but with all rows normal- 

ized to sum to 1. Let ri be the ith diagonal element 
of diag(PA,ne). The probabilistic interpretation of ri 
is that it is the total probability of making a transition 
from state si E A to any state in B. Also, let Zi be the 
i’* row of 2; then we can rewrite Equation (11) as: 

CA,A = (12) 

L 1 Tn%n 

Remarks: the probabilistic interpretation of Equation 
(12) is as follows. If in the original Markov chain there 
is a transition from state si E A to any state in B, then 
in the stochastic complement this transition becomes a 
transition to some state(s) in A instead. In other words, 
the derived Markov chain “skips over” the period of time 
spent in B. The transition from si E A to B becomes a 
transition to sj E A with probability zij. The stochastic 
complement of PA,A is therefore equal to P,J,A plus any 
transition probabilities, which used to go from A to B, 
“folded” back to A and redistributed according to the 
stochastic matrix 2. This interpretation implies that 
the ith row of matrix 2 determines how ri should be re- 
distributed back to A. In general, it is not an easy task 
to compute 2, but for some special cases where suffi- 
cient “structure” exists in the original Markov chain, 2 
can be obtained with little or no computation. We end 
this section with a useful theorem. 

Theorem 3 Single entry. Given an irreducible 
Markov process with state space S, let us partition the 
state space into two disjoint sets A and B. The transi- 
tion rate matrix of this Markov process is: 

[ 

QA B 

Q”:::: 9,:~ 1 
where Qi,j is the transition rate sub-matrix correspond- 
ing to transitions from partition i to partition j. IjQB A 
has all zero entries except for some non-zero entries in 

the i-th column, then the conditional steady state prob- 
ability vector (corresponding to the states in A), given 
that the system is in partition A, is denoted by rIA and 
is the solution of the following system of linear equa- 
tions: 

TA [QA,A + QA,B e e?] = 0 

?rlA e = 1 

where eT is a row vector with a 0 in each component, 
except for the i-th component, which has the value of 1. 

Proof: This is intuitively clear based on the stochastic 
complementation argument above. The matrix 2 will 
have identical rows where each row is equal to e;. This 
is true because no matter how B is entered, A is entered 
from B via the ifh state, with probability 1. I 

4 General Approach 

In this section we describe a general approach to solving 
the model presented in Section 2. 

4.1 Matrix Geometric Solution 
The model presented in Section 2 is complex but has 
special structure. If we partition the state space of M 
into disjoint sets Bi, i E (0, 1, . . .} where: 

BO = {(i, j,l) E M : i 5 FK-~ + 1) (13) 

B, = {(i,j,K)ESK:i=FK-r+l+n} n>l (14) 

then, M has a matrix geometric solution [21] as de- 
scribed in Section 3.1, where the components of each of 
the Ai submatrices are: 

A&j] = 
x ifi=jandl<i<K 
0 otherwise (15) 

Az[i, j] = 
ip ifi=jandl<i<K 
0 otherwise W 

-[(K - i)o + ip + X] 
ifi=jandl<i<K 

Al[i,j] = (K - i)a (17) 
ifj=i+landl<lsK-1 

0 otherwise 

Solving a model using the matrix geometric method in- 
volves: (a) solving the R matrix, using the procedure 
in Equations (3) and (4), for the repetitive part, and 
(b) solving the system of linear equations correspond- 
ing to the northwest corner of the generator matrix, i.e., 
solving Bo,o, as defined by Equations (2) and (13). As 
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long as both matrices are “reasonably small”, we could 
obtain an efficient solution. Solving the R matrix, i.e., 
step (a) above, requires a computational cost of O(K)3. 
However, Bo,o is very large. The number of states cor- 
responding to it is: 

K-l 

1 + Fl + c I(& - R-1) + K(FK-1 + 1 - RK--1) 

I=2 

Given the original Markov process M, let us partition 
the state space S into K disjoint sets Sl, where: 

SI = {(i,j,Z) 1 (i,j,l) ES and j 5 I} I= 0, .., K (18) 

Then, for step (b) above, the exact analysis requires: 
O(no+nl+n2+n3+....+CK)3 where n; is the dimension 
of Si, for 0 5 i 5 K - 1, and GK refers to the number 
of states in SK with FK-1 + 1 or less customers (refer 
to Figure 1). 

One approach to reducing the computational com- 
plexity is to partition M into sub-parts, solve each sub- 
part separately, and then combine the solutions, i.e., 
through the method of decomposition [l]. In our model, 
we can partition M into K sub-parts, each correspond- 
ing to set Si, for 0 5 i 2 K. Solving each S; separately 
will allow us to lower the computational cost’. More 
specifically, the cost for solving all K sub-parts will be 
O(TIO)~ + Ok + Ok +.......+ O(GK), where GK 
refers to the cost of solving SK. This is much smaller 
than the original computational cost, if we can show 
that GK is also “small”. 

Note that, SK is infinite, but also has a matrix ge- 
ometric structure - that is, we can partition the state 
space of SK into disjoint sets Bi, i E (0, 1,’ . .} where: 

Bo = {(i, j, K) E SK : i 5 FK--I + 1) (1% 
B,, = {(i, j,K) E SK : i =FK--~+l+n} nzl(20) 

and the Ai’s are given in Equations (15)-(17), and then 
apply the solution of Section 3.1. In this case, the com- 
putational cost for solving R is also O(K)3, and thus 
GK = Ok + O(K)3. 

For the applications where the number of servers, K, 
is large, we expect a significant improvement in com- 
putational complexity when using the decomposition 
method. What remains to be determined is whether it 
is possible to partition M and solve each Si separately. 
This is the topic of the following section. 

4.2 Partitioning of M 

If we could partition the state space of the original 
Markov process M into disjoint sets, then, using stochas- 

‘The computational cost of solving the aggregate model is 
only O(X)‘; see Section 4.3 for details. 

tic complementation (see Section 3.2), we could com- 
pute the conditional steady state probability vector for 
each set, given that the original Markov process, M, is 
in that set. By applying the state aggregation technique 
[l], we can aggregate each set into a single state and then 
compute the steady state probabilities for the aggre- 
gated process, i.e., the probabilities of the system being 
in any given set (see Section 4.3). Lastly, we can com- 
pute the individual (unconditional) steady state proba- 
bilities of the original Markov process M [l]; these can 
in turn be used to compute various related performance 
measures. Unfortunately, the basic problem here is that 
we are not able to find special structure in the original 
model, such as the “single entry” structure exploited in 
Theorem 3, which can aid in determining the matrix 2 
(refer to Equation (11)). 

If, on the other hand, we could alter our model such 
that the single entry structure would exist, then we 
would be able to take advantage of Theorem 3 and in 
essence “disentangle” the partitions and solve each one 
separately. This would give us an approximate solu- 
tion of the original model. If in addition, we were able 
to alter the original model such that not only did we 
have the special structure but were also able to obtain 
provable (performance) bounds, then we would also be 
able to bound the error due to this approximation. The 
bounding technique used in solving the model of Section 
2 is given in Sections 5 and 6, where we illustrate how 
to construct and solve the upper and lower bound mod- 
els as well as prove that these models do indeed provide 
bounds on the desired performance measures. Numer- 
ical results illustrating that: (a) our bounds are very 
tight and (b) the bounding technique results in signifi- 
cant computational savings are given in Section 7. 

4.3 Analysis of the Aggregated Process 
In this section we briefly describe the analysis of the 
aggregated process. For each 1, 1 5 1 5 K, we can ag- 
gregate all the states in Sf into a single state. The tran- 
sition state diagram of the resulting aggregated process 
is illustrated in Figure 2. The transition rates of the 

L I, 1, L )c. h--l 
> 7 . . 

CD 0 1 2 3 4 . . . . . K 

PI cl2 F3 P4 CL5 PK 

Figure 2: State transition diagram for aggregated pro- 
CesS. 

aggregated process can be computed as follows: 

x0 = x (21) 
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Xi = Xk7ri(Fipj,i) i=l,2,...,K-1 (22) 
j=l 

pi = pCj*i(fi-l+l,j,i) i=1,2 ,..., K (23) 

j=l 

where xi(Fi,j, i) and xi{&-i + l,j, i) are the condi- 
tional steady state probabilities, conditioned on being 
in set Si. (We show how to obtain these, for each of 
the bounds, in Sections 5 and 6.) The aggregated pro- 
cess depicted in Figure 2 is a simple birth-death process, 
and hence the corresponding steady state probabilities 
are very simple to compute (refer to [ll]). 

Once we determine, for each 1, where 0 < I 5 K,: 
(1) rrl((i, j)‘s, the conditional state probabilities of all 
states in &, given that the system is in Sl and (2) rr(E), 
the steady state probability of being in state 1 of the 
aggregated process, then the steady state probability of 
each individual state (i, j, I) in M can be expressed as: 

dil j, 0 = *I(4 Ml) where (i, j, I) E Sr (24) 

4.4 Computation of Performance Measures 
In this section we briefly discuss computation of per- 
formance measures for the model of Section 2. Given 
the steady state probabilities, we can compute various 
performance measureS of interest. More specifically, we 
can compute many performance measures which can be 
expressed in the form of a Markov reward function, R, 
where R = Ci,j,r ?r(i,j, I)R(i,j,I) and R(i,j,1) is the 

reward for state (i,j,l). Two useful performance mea- 
sures for our system are the expected number of cus- 
tomers and the expected response time. 

We can easily compute Ns, , the expected number of 
customers’, given that the system is in Sl, for 0 5 1 5 
K - 1, by expressing it as a Markov reward functions, 
where R(i, j, 1) = i. Computation of NsK , the expected 
number of customers given that the system is in SK, is 
a bit more tricky. It is as follows: 

NsFc = c i r(i, j, K) + ~(FK--I + 1 +j)wje 

V(i,j,WEEo j=l 

= 
c 

i r(i,j, K) + (FK--I + l)(l - woe) 

V(i.j,K)E& 

+m (I - R)-2e (25) 

Note that x(i,j, K) in the first summation term is sim- 
ply one of the component of ~0, which we defined in 
Section 3.1. 

‘And then. of course, the expected response time using Lit- 
tle’s result (141. 

5 Upper Bound 

In this section, we describe a model which can provide 
an upper bound on the desired performance measures 
for the model described in Section 2, namely, the mean 
number of customers and mean system response time. 
We begin by illustrating the upper bound idea through 
an example. Then we present our proof and lastly the 
computational procedure for obtaining the desired per- 
formance measures. 

5.1 Upper Bound Model 
The intuition for the construction of the upper bound 
model, M”, is as follows. We alter several transitions in 
the original model while satisfying the criteria that the 
new model will: (1) provide (hopefully a tight) upper 
bound on the desired performance measures and (2) be 
a “simpler” model to solve. As pointed out in Section 4, 
we would like to solve this model using the decomposi- 
tion method. The difficulty with applying this approach 
to the original model is the existence of multiple entry 
states, in Sl, from both SJ-i and &+I. Thus, we will 
construct the upper bound model by altering transitions 
in the original model and creating a single entry state 
“somewhere” in Sl. Intuitively, we will be modifying the 
departure processes, as compared to the original model, 
such that M” will have less active servers, that is, M” 
and M will “see” the same arrivals, but at any given 
moment, M” will have the same or fewer number of 
servers processing these arrivals. Note that these judi- 
cious modifications of the departure process will allow 
us to have a tight upper bound as well as an efficient 
computational procedure (see Section 7). 

We begin at the lowest level - for instance, in the 
case of Figure 1, we begin at level &. To achieve the 
upper bound, we can alter the following transitions. 
The original transition from state (Rs + 1,2,3) to state 
(I&,2,2) is changed to a transition to state (&,l, 2), 
at the same rate. In addition, the original transition 
from state (R2 + 1,3,3) to state (Rs, 2,2) is changed to 
a transition to state (Rs, 1,2), at the same rate. 

In general, we can describe the upper bound version 
of our model as follows. We can construct a correspond- 
ing Markov process, M”, with the following state space 
s”: 

S” = {(N”, N,“, L”) 1 

N“ 2 0, N.” E {O,l, 2,. . . , K}, L” E {O,l, 2,. . . , K}} 

where N” is the number of customers in the queueing 
system, N.” is the number of busy servers, and L” is the 
level to which the state belongs (see Section 2 for expla- 
nation of the “level” notation). The transition structure 
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of M”, is the same as that of the original process M, 
given in Equation (l), except for the transition corre- 
sponding to a change of levels due to a departure (line 
5 in Equation (1)). The upper bound model transitions 
that replace this original transition can be specified as 
follows: 

(it i 1) + (i - 1, min(j, 1 - l), 1 - 1) 
with rate j/ii{ (i-l=&ER)A(l=k+l) 

Nl I 2) 1 
(i,j, 1) + (i-l,l,I-1) (‘W 

with rate j/&l{ (i-l=&ER)/i(l=k+l) 

w L 3) ) 

5.2 Proof for the upper bound model M” 

In this section, we give a theorem which proves that M” 
provides an upper bound on the mean number of cus- 
tomers and the mean response time of the original model 
M. Using the state notation defined in the previous 
section, we have the following notation for the original 
model M, [N(t), Nd(t), L(t)], where N(t) is the num- 
ber of jobs waiting in the queue at time t, N,(t) is the 
number of busy server at time t (where 0 5 N,(t) < K), 
and L(t) is the level to which the state belongs at time 
t. Similarly, we define the state vector for the upper 
bound model M” as, [N”(t), NJ‘(t), L“(t)]. 

Definition 2 Let X and Y be two real valued ran- 
dom variable. X is stochastically less than Y (X <St Y) 
ifP[Y<t]<P[X<t] vt. 

Theorem 4 ZfN(0) &t N”(O), then we have N(t) 
&r NU(t) vt. 

Proof: Omitted due to lack of space; please refer to [2]. 
I 

5.3 Numerical Computation for model MU 

In this section, we present a numerical computation pro- 
cedure for the upper bound model M”. Our goal here 
will be to partition the upper bound model into dis- 
joint sets and apply the stochastic complementation ap- 
proach of Section 3.2. Let us first define the following 
notation: 

s; = (JSi and ST=fiSi 
i=o id 

where (for ease of notation) the Si’s are defined as in 
Equation (18), but with respect to the upper bound 
model M”. Then, we can state the following theorem. 

Theorem 5 Multiple entries. Given an irreducible 
Markov process, M”, of Section 5.1, with state space 
S”, let us partition the state space into two disjoint sets 

Cl and S;‘, for 3 5 1 5 K. The transition rate matrix 
of this Markov process is: 

Qs,+,s+ 
QS,, ,:: 

QS:,S,:l 
Qsl-ll.s.L1 1 

where Qi,j is the transition rate sub-matrix cowespond- 
ing to transitions from partition i to partition j. Then, 
the rk ‘s and the %k ‘s in Equation (1.8) are as follows: 

rk = Jo ifk=(Rl-i+l,j,l) and15 jjl 
0 otherwise 

xk,n = 

*f-l~~~~-l~z~l--l~~~(F~~~.r,l-l~.~F,-~+l,o.l~ 

~l-l~~~~-I~Y~‘-~~~~(F,~~,~,I-l),(F,~~+l,”,~) 

ifk=(RI-1+1,j,1),15j~land 
n = (F’l-I + l,z,l) and 1 5 z 5 I- 1 

where m(n) is the probability of being in state n condi- 
tioned on being in Sl and qi,j is the transition rate from 
state i to state j in M”. Then, the stationary state 
probability vector, srls: is given by Equation (10). 

Proof: This follows from the definition of a stochastic 
complement. I 

A very similar theorem can be stated for construct- 
ing a stochastic complement for Qs- s- ; we omit it due 

to lack of space. Given these theore&‘we can construct 
the stochastic complement for each set Sr and compute 
the conditional steady state probabilities. 

Let us now present the numerical computation pro- 
cedure for the upper bound model M”. The basic idea 
is that we first compute the steady state probability 
vector given that the system M” is in a particular set, 
namely, St for 0 5 1 5 K. Computation of the ag- 
gregate state probabilities for each Si is described in 
Section 4.3. Based on these two values, we can com- 
pute the individual steady state probabilities as well as 
the desired performance measures - the mean number 
of customers and the mean response time. 

Let us now concentrate on computation of the steady 
state probabilities given that the system M” is in a 
particular set Sl. Let Ns, denote the expected number 
of customers, given that the system is operating in Sl, 
0 5 1 5 K. For So, the conditional state probability is 
clearly equal to 1 and Ns, = 0 For Si, there is a single 
exit state to Si and a single entry state from Si where 
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i E {0,2}. Therefore, we can apply Theorem 3 twice, 
fold the transition from state (A, 1,l) to state (RI, 1,1) 
with rate X and from state (l,l, 1) back to (l,l, 1) with 
rate ~1, and compute the steady state probability vector, 
given that the system is in &. Once this is obtained, 
Ns, is easily computed. 

Level Sa has a single entrance state from level SI and 
also a single entrance state from level S1 . Therefore, we 
can apply Theorem 3 again and fold both transitions 
from states (Fz, 1,2) and (F2,2,2) to state (Rz, 1,2), 
each at the rate of X. In addition, we can fold both 
transitions from states (RI + 1,1,2) and (RI + 1,2,2) to 
state (Fl + l,l, 2), the former at the rate of p and the 
latter at the rate of 2~. At this point we can compute 
the steady state probability vector, given that the sys- 
tem is in S2, using a variety of methods (refer to [22]). 
Once that is done, we can easily compute Ns,. 

For level SC, where 3 < 1 5 K - 1, we first note that 
there is a single entry state from the states in &+I. 
Therefore, using Theorem 3, we can fold the transi- 
tions from state (Fl,j,l), where 1 5 j 5 1, to state 
(Ri,1,1), each with a rate equal to X. On the other 
hand, there are multiple exit states to St-1 and multiple 
entry states from Sl-1 to St. Since we have computed 
the conditional states probabilities, given that the sys- 
tem is in Sl-1 in a previous step, using Theorem 5 we 
can determine exactly how to fold these transitions from 
the exit states (Rr-1 + l,j,E) back to the entry states 
(Fl + l,j’,l). Then we can compute the conditional 
state probabilities given that the system is in SI using a 
variety of methods (refer to [22]). Once the conditional 
steady state probability vector is determined, we can 
easily compute Ns, , for 3 _< 1 5 K - 1. 

The computation of the conditional state probabil- 
ities for set SK is somewhat different. First, observe 
that we can apply Theorem 5 to fold the transitions 
from the exit state (RK-I + l,j, K) back to the entry 
states (FK-1 + l,j’, K). Since the state space cardinal- 
ity of SK is infinite, we cannot use standard numerical 
methods (such as the power method) to compute the 
conditional steady state probabilities in this case. How- 
ever, since the Markov process corresponding to SK has 
special structure, i.e., the quasi birth-death version of 
the matrix geometric form, the remainder of the solu- 
tion can proceed as described in Section 4. Note that, 
it is possible to have an alternative upper bound model. 
For details, please refer to (21. 

6 Lower Bound 

In this section, we describe a model which can provide 
lower bounds on the desired performance measures for 

the model described in Section 2, namely, the mean 
number of customers and the mean system response 
time. The intuition behind the construction of the lower 
bound model, M’, is very similar to that of the upper 
bound model. We alter several transitions in the orig- 
inal model while satisfying the criteria that the new 
model will: (1) provide (hopefully a tight) lower bound 
on the desired performance measures, and (2) be a “sim- 
pler” model to solve. As pointed out in Section 4, we 
would like to solve this model using the method of de- 
composition. Recall, that the difficulty with applying 
this approach to the original model was the existence of 
multiple entry states, in Sl, from both Si-1 and &+I. 
Thus, we will construct the lower bound model by al- 
tering transitions in the original model and creating a 
single entry state “somewhere” in S1. Intuitively, we will 
be modifying the departure processes, as compared to 
the original model, such that M’ will have more active 
servers, that is, M’ and M will “see” the same arrivals, 
but at any given moment, M’ will have the same or 
more servers processing these arrivals. Note that these 
judicious modifications of departure process will allow 
us to have a tight lower bound as well as an efficient 
computational procedure (see Section 7). 

We begin at the lowest level - for instance, in the 
case of Figure 1, we begin at level S3. To achieve the 
lower bound, we can alter the following transition. The 
transition from state (R2 + 1, 1,3) to state (R2,1,2) is 
changed to a transition to state (Rz, 2,2), at the same 
rate. 

In general, we can describe the lower bound version 
of our model as follows. We can construct a correspond- 
ing Markov process, M’, with the following state space 
s’: 

S’ = {(N’, N;,L’) 1 

N’ 2 0, N; E {0,1,2,. . . , K},L’ E {O,l, 2,. . . ,K}} 

where N’ is the number of customers in the queueing 
system, Nj is the number of busy servers, and L’ is the 
level to which the state belongs (see Section 2 for expla- 
nation of the “level” notation). The transition structure 
of M’, is the same as that of the original process M, 
given in Equation (l), except for the transition corre- 
sponding to a change of levels due to a departure (line 
5 in Equation (1)). The lower bound model transitions 
that replace this original transition can be specified as 
follows: 

(i,j, 1) * (i - 1, min(j, I - l), 1- 1) 
with rate j,d{ (i-l=& ER)A(l=k+l) 

41 5 2) 1 
(4 j, 1) + (i-l,I-l,I-1) (27) 

with rate jpl{ (i-l=&ER)h(l=k+l) 

Nl 2 3) 1 
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Note that, it is possible to have an alternative lower 
bound model. For details, please refer to [2]. The proof 

that M’ provides a lower bound on the desired per- 
formance measures and the numerical computation of 
these measures using M’ are very similar to those given 
in the context of M” (see Sections 5.2 and 5.3). Due to 
lack of space, we omit both. 

7 Numerical Examples and Validation of Bounds 

In this section, we present numerical examples which 
illustrate the tightness of the bounds, given in Sections 
5 and 6, as well as the reduction in computational cost’ 
due to bounding, as compared to the exact solution 
technique. In the following examples, the number of 
servers, K, is equal to 5. The forward and reverse 
threshold vectors are set to F = (25,50,75,100) and 

R = (12,24,49,74), respectively. The service rate ~1 is 
set to 60, and the the average arrival rate X is varied 
from 30 to 290. The solution of all models (i.e., up- 

per and lower bound models and the original model) 
is carried out using the MATLAB numerical solutions 
package. 

Firstly, we demonstrate the savings in computational 
cost due to obtaining bounds as compared to solving 
the model exactly. Table 1 depicts performance mea- 
sures, computed using the original model as well as the 
bounding models, both, for lightly loaded and heavily 
loaded systems. It illustrates that significant reduction 
in computational cost can be obtained using our bound- 
ing technique. More specifically, in this example, we 
maintain tightness of bounds while obtaining more than 

a 10 fold reduction in computational cost, where cost is 
measured in flops, the number of floating point opera- 
tions executed in MATLAB. Clearly, the computational 

n 1 x 1 a 1 average response 1 flops n 
Model time 

origmal 30.0 20/r 0.033333 145481380 
M” 30.0 2W 0.033333 10739407 

jj Ml 1 270.0 20; 0.328451 11003954 

Table 1: Illustration of computational savings. 

savings will grow as the model grows, e.g., either as the 

number of servers, K, grows and/or as the differences 
between the forward and reverse thresholds, Fi and R;, 
grow. 

Tables 2, 3 and 4 illustrate the tightness of bounds 
under different values of a, the rate at which server 

‘More specifically, in this section we present empirical evi- 
dence of computational savings resulting from bounding; theo- 
retical resuIts are given in Section 4.1. 

activation occurs. More specifically, a is equal to 20~, 

lO,u, and p in Tables 2, 3 and 4, respectively. In all 
cases, the percentage error (%E) is defined as follows: 

percentage error = spre;~w~;t;;u;Jnh x 100% (28) 

1 
i 
I 

X 1 M” expected 1 M’ expected 1 % Error 

30.0 
60.0 
90.0 
120.0 
150.0 
180.0 
210.0 
240.0 
270.0 
290.0 

response time 
0.033333 
0.169967 
0.216872 
0.244564 
0.254905 
0.278554 
0.299463 
0.313259 
0.328654 
0.383638 

response time 
0.033333 
0.169967 
0.216872 
0.244517 
0.254809 
0.278424 
0.299287 
0.313081 
0.328450 
0.383705 

- 
- 
- 

0.019221 
0.037675 
0.046691 
0.058806 
0.056854 
0.062109 
0.034662 

Table 2: Tightness of bounds for a = 20~. 

90.0 0.217060 
120.0 0.244746 
150.0 

I 
0.255113 

180.0 0.278765 
210.0 
240.0 
270.0 
290.0 

0.299720 
0.313505 
0.328935 
0.384070 

M’ expected 
response time 

0.033333 
0.170016 
0.217060 
0.244653 
0.254922 
0.278504 
0.299369 
0.313150 
0.328528 
0.383805 

0.093714 
0.117246 
0.113364 
0.123885 
0.069045 

Table 3: Tightness of bounds for a = 10~ 

% Error 

- 
- 

0.038013 
0.074924 

x 

30.0 
60.0 
90.0 
120.0 
150.0 
180.0 
210.0 
240.0 
270.0 
290.0 

M’ expected M’ expected 
response time response time 

0.033333 0.033333 
0.170891 0.170891 
0.220488 0.220485 
0.248024 0.247051 
0.258797 0.256944 
0.282530 0.279912 
0.304202 0.300824 
0.317900 0.314356 
0.333847 0.329931 
0.388147 0.385635 

% Error 

- 
- 

0.001360 
0.393845 
0.721168 
0.935293 
1.122915 
1.127384 
1.186914 
0.651393 

Table 4: Tightness of bounds for Q = p 

As can be seen from these tables, the obtained bounds 
are very tight. The percentage error is less than 1.2% 

for all cases illustrated here, even under high system uti- 
lization. It is important to point out that the percentage 
error is very small at very high utilizations, because in 
the very heavily loaded cases the system spends most of 
its time operating in the unmodified region (or the tail 
end) of the state space. 

8 Conclusions 

In summary, we have considered a K-server threshold- 
based queueing system with hysteresis in which the num- 
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ber of servers, employed for servicing customers, is gov- 
erned by forward and reverse threshold vectors. The 
main motivation for using a threshold-based approach 
was that many applications incur significant server setup, 
usage, and removal costs. The motivation for the use 
of hysteresis was to control the cost during momentary 
fluctuations in workload. An important and distinguish- 
ing characteristic of our work is that we considered the 
time to add a server to be non-negligible, which is a 
more accurate model for many applications. In this 
work we have shown that an exact solution of the model 
can be obtained but at fairly significant computational 
costs. We then developed an efficient method for com- 
puting the steady state probabilities of a multi-server 
threshold-based queueing system with hysteresis, which 
in turn, allowed computation of various performance 
measures. More specifically, we proposed modified mod- 
els, which we showed to have an efficient computational 
solution, and used them to bound the performance mea- 
sures of interest for the original model. These bounds 
are tight and the reduction in computational cost, as 
compared to the exact solution, is significant. The ex- 
ample cases presented in the paper resulted in less than 
a 1.2 percent error due to bounding with an order of 
magnitude reduction in computational cost. 
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