2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

Secure Cache Provision: Provable DDOS Prevention
for Randomly Partitioned Services with Replication

Weibo Chu*, Xiaohong Guan*f, John C.S. Lui*, Zhongmin Cai* and Xiaohong Shi?
*MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, China
fCenter for Intelligent and Networked System and NLIST Lab, Tsinghua University, Beijing, China
iDepartment of Computer Science & Engineering, The Chinese University of Hongkong, Hongkong
§Beijing Qihoo Technology Co. Ltd, Beijing, China
Email: {wbchu, xhguan, zmcai}@sei.xjtu.edu.cn, cslui@cse.cuhk.edu.hk, shixiaohong@360.cn

Abstract—In this paper we show a small but fast popularity-
based front-end cache can provide provable DDOS prevention for
randomly partitioned cluster services with replication. To achieve
this, we first give the best strategy for an adversary to overload
the system, and then prove that the cache size is lower bounded
by O(nloglogn/log d), where n is the number of back-end nodes
and d is the replication factor. Since log logn/log d < 2 holds for
almost all the current clusters (i.e., the number of back-end nodes
n < 10° and the replication factor d > 3), this result implies an
O(n) lower bound on the required cache size. Our analysis and
results are well validated through extensive simulations.

I. INTRODUCTION

Today’s cloud computing infrastructures employ back-end
nodes at the scale of thousands or even larger [1]-[3] to provide
sustainable services. For example, Google’s BigTable and GFS
cells have 1000-7000 nodes in one cluster [4], Facebook’s
photo storage has 20 petabytes of data [5], Microsoft’s data
mining cluster has 1800 nodes [6], and Yahoo’s Hammer clus-
ter has 3800 nodes [7]. For all these cloud service providers,
protecting their large-scale clusters from various attacks such
as DDOS (denial-of-service) attack is always a critical task.

To ensure performance scalability for clusters, many ap-
proaches [8]-[10] have been proposed. Load balancing among
multiple back-end nodes using a front-end cache is perhaps the
most widely adopted solution to provide sustainable services.
In this cluster architecture as shown in Figure 1, a small
and fast popularity-based front-end cache is employed to
directly serve a very small amount of popular items and leaves
uncached items to the back-end nodes. The front-end cache
thus serves like a filter that regulates the skewed workload
and makes the load across back-end nodes more uniform.
Meanwhile, this front-end cache is generally small enough to
fit in the L3 cache of a fast CPU, enabling an efficient and
high-speed implementation of load balancer.

Besides employment of front-end cache, replication [11] is
another technique widely adopted in today’s clusters to avoid

Corresponding author: Zhongmin Cai. The research is supported by
NFSC (61221063, 61175039, 60905018), 863 High Tech Development
Plan (2007AA01Z464, 2012AA011003), Research Fund for Doctoral Pro-
gram of Higher Education of China (20090201120032), 03 Project “China
New Generation of Broadband Wireless Mobile Communication Network”
(2012ZX03002001) and Fundamental Research Funds for Central Universities
(xjj20100051, 2012jdhz08).

978-0-7695-5023-7/13 $25.00 © 2013 IEEE
DOI 10.1109/ICDCSW.2013.24

58

Application
Queries
Small & Fast

Front-End Cache

Front-End
Load Balancer

(ODo) (OoD) Ooo

Replica Group

Replica Group
Back-End Servers

Fig. 1. Cluster with a small fast front-end cache and replication

performance bottlenecks and ensure service-level objectives
(SLOs). Replication refers to having multiple back-end nodes
(also called replica group) to serve a single service request,
where each request is served by one of the corresponding
servers chosen according to some rules (i.e., random selection
or in a round-robin fashion). With replication, cluster systems
can provide substantial performance enhancement as well as
the needed capacity of dealing with unpredictable performance
variations that due to a number of factors (non-deterministic
thread scheduling, hardware differences, network conditions,
etc). Meanwhile, fault tolerance and reliability of the system
is also greatly enhanced.

In this paper, we investigate the effectiveness of the front-
end cache size on providing provable DDOS prevention for
randomly partitioned cluster systems with replication. More
specifically, we aim to answer the following question: how
large the front-end cache should be for the cluster systems
to be protected from DDOS attacks, i.e., that caused by
adversarial access patterns?

The above question arises naturally for large-scale cluster
designers and managers, where the two techniques—Iload
balancing using front-end caches and replication among back-
end nodes, are simultaneously deployed in their systems.
To answer this question, we begin by examining the best
strategy (i.e., the most adversarial access pattern) that an
adversary could adopt in order to overload the system, and

IEEE
computer
psot:lety

then prove that the front-end cache needs to only store
O(nloglogn/logd) entries to provide provable DDOS pre-
vention, where n is the total number of back-end nodes, d
is the replication factor for each entry. This result has a
significant meaning for today’s cloud service providers in that:
1) the required cache size only depends on the number of back-
end nodes and the replication factor, and not on the number of
items served by the system, which means the front-end cache
is scalable to the items served; and 2) as loglogn/logd < 2
holds for almost all the current clusters (i.e., the number of
back-end nodes n < 10° and the replication factor d > 3), it
implies an O(n) lower bound on the required cache size.

Our work is an extension to [18], where the authors focus
on providing provable load balancing for randomly partitioned
services using a small fast front-end cache. In this work
we extend the analysis to services with replication which is
often the case in today’s cloud computing infrastructures. With
replication, we show that the results (the best strategy for the
adversary, the workload on system, and the bound on the cache
size) are quite different. One of the most important results we
have is that when the cache size exceeds a certain threshold
(our bound), the workload of the most loaded nodes in cluster
will never be greater than the average load on system (i.e.,
when the workload is distributed evenly on back-end nodes).
This result actually implies a provable DDOS prevention for
the system through proper cache provision.

The rest of the paper is organized as follows. Section
II presents our system settings and assumptions. Section III
analyzes the most adversarial access pattern that an adversary
could adopt to overload the system, and derives the bound on
the cache size for providing provable DDOS prevention under
this worst case. Section IV presents our simulation studies.
We conclude the paper in Section V.

II. SYSTEM SETTINGS AND ASSUMPTIONS
A. System Settings

Throughout the paper we consider services (systems) with
the following four properties. These services are now critical
parts of several major Internet services.

1) Randomized partitioning. The service is partitioned
across back-end nodes and the way the service is parti-
tioned is opaque to the clients (i.e., a key is hashed to
select the back-end nodes that serve it).

Equal replication. The replication factor for each item is
equal (i.e., the number of back-end nodes that can serve
any two different keys is the same). And the rule used
to map each item to the node (one of the replica nodes)
which ultimately serves it is the same (i.e., through
randomly choosing or in a round-robin fashion).
Cheap to cache result. The front-end cache can easily
store the result of a query or request and can serve future
request without recomputing or retrieval.

Costly to shift results. Moving service from one back-
end node to another is expensive in network bandwidth,
I/O, consistency, etc. In other words, the partitioning is
relatively stable on the timescale of a few requests.

2)

3)

4)

59

Systems that fall into this category include:

« Distributed file systems such as Google File System
(GFS) [12] or the Hadoop Distributed File System (HDF-
S) [2], where each data block is located and served at one
or multiple semi-random servers.

« Distributed object caches such as memcached [13].

« Distributed key-value storage systems such as Dynamo
[14], Haystack [5], and FAWN-KV [15].

Services we do not consider in this work include:

o Queries can be handled by any node, such as a web
farm with a large set of identical servers, each of which
is capable of handling any request. These services do not
need caching for effective load balancing.

« Partitioning is predictable or correlated. For example,
column stores such as BigTable [17] and HBASE [16]
store lexicographically close keys on the same server.
For these systems, an attacker could potentially forward
a large set of keys to the same back-end node or replica
group, and our results apply only when keys are parti-
tioned independently.

B. Assumptions

We make the following assumptions in our analysis:

1) Randomized mapping. Both the mapping of each key
to its replica group and the mapping of the key to the node
ultimately serves it are randomized, and are unknown to the
client (adversary). Although the node in each replica group
which ultimately serves the query is often selected based
on some deterministic rules, i.e., always choosing the least
loaded node, the mapping of the keys to their replica groups is
unknown (and hence randomized) to the adversary. Therefore
it is reasonable to assume that the mapping of the key to the
node that ultimately serves it is also unknown and randomized.

2) Perfect caching. The front-end cache can always cache
the most popular items. Queries for these items could always
hit the cache while other items always miss the cache.

3) The cache is fast enough. As compared to the back-end
nodes, the front-end cache is fast enough to handle queries
and never becomes the bottleneck of the system.

4) Uniform cost. The cost to handle a query at the back-end
node is the same, regardless of the type of queries or which
node processing the query.

Note that real-world clusters can be much more compli-
cated, for example, there can be multiple types of operations
(read, write, update, etc) and some can cost more resources.
In [18], the authors discussed how to address these issues. We
believe their techniques are also applicable to our analysis as
our system settings and assumptions are almost the same.

III. ANALYSIS

This section is devised to analyzing the workload on cluster
system. We will first analyze the best strategy (i.e., the most
adversarial access pattern) that an attacker could adopt to
overload the system, and then derive the bound on the required
cache size for providing provable DDOS prevention for the
system under this worst access pattern.

TABLE I
NOTATIONS IN ANALYSIS

Symbol Meaning
n # of back-end nodes
m # of (key, value) items stored in the system
c # of (key, value) items cached in the front
d # of back-end nodes that can serve an item, also replica factor
R sustainable query rate
L; query rate going to node ¢
T max query rate supported by node ¢
Di fraction of queries for the ith (key, value)

A. Adversarial Access Pattern

System Model Consider a system such as that shown in
Fig. 1 which serves a total of m district items partitioned
uniformly across n back-end nodes. Each item can be served
by d corresponding back-end nodes (replica group), and once
queried, the item is served by one of these d nodes chosen
according to some rules (i.e., random selection or in a round-
robin fashion). Each node 7 (1 < ¢ < n) can handle at
most r; queries per second. The system caches the ¢ most
popular items (¢ < m) at the front-end. On a cache hit,
the front-end can serve the client request without querying
the corresponding back-end nodes. Table 1 summarizes the
notation used in our analysis.

In order to generate skewed workload to overload the
system, we assume the adversary knows which m keys are
stored on the system, the number of back-end nodes n, the
replication factor d and the front-end cache size c.

However, the adversary doesn’t know which keys are as-
signed to which replica group or nodes, so it is not easy for
the adversary to target a specific group or node as the hotspot.

What the adversary can do is to launch queries for certain
amount of different keys according to some distribution. The
amount of different keys, say x, may cover all m keys, or a
specific subset of all keys. Formally, this adversarial access
pattern can be described as a distribution S

ey

where each p; denotes the fraction of queries for the ith key,
p1+p2+ ... + pm = 1. Without loss of generality, we list the
keys in monotonically decreasing order of popularity, i.e.,

S = (p17p2>' o 7pm)

PL=P2 = 2 Pm

For the case of x > ¢, the adversary can bypass the cache,
otherwise no queries would be directed to the back-end nodes.
For this case, we can further rewrite the query distribution .S
as follows:

S:m >p2>2pe=h>pei1 2 peg2> 2 pm (2)
Ny ——

cached keys uncached kyes

Also note that since the ¢ most popular items are served by

the front-end cache, to maximize the workload on back-end
nodes, the adversary should make the frequency of these keys

60

§ h Cached keys Uncached keys
E

=2

G

5}

=

.

k31

&

= 0

1 2 c1l ¢ ctl ¢t2 =+ x-1 x m
Key #

Fig. 2. The best strategy for the adversary to maximize workload on system.
The adversary queries « keys, where the rate for « — 1 keys is the same.

as low as possible while still keep them the most popular so as
to leave as much workload as possible to the back-end nodes.
Meanwhile, in these ¢ most popular items, the adversary will
not benefit from querying any one item at a higher rate than
another. Therefore, the adversary should always query the ¢
most popular items at an equal probability (i.e., p; = p2 =

= o)

Sipr=pr=-=pc=h>pet1 > Pet2 > > Ppm (3)

cached keys

uncached kyes

Let L,;,q, be the maximum workload on the system (also the
maximum load on the back-end nodes). The following theorem
states the best strategy for the adversary in term of uncached
keys. The theorem was originally proved in [18] and we extend
it to the replication scenario. Due to space limitations, we omit
the proof here.

Theorem 1: If any distribution S has two uncached keys i
and j such that h > p; > p; > 0, the adversary can always
construct a new distribution S’ based on S to increase the
expectation of the maximum load on the system Ly,,,. This
new distribution S’ is the same as S except p;/ = p; + 0,
p;’ =p; — 9 where § = min{h —p;,p;}.

Theorem 1 intuitively tells us that an adversary can always
increase the expectation of the maximum load on system by
shifting some load on key j to a more queried key ¢ until
this key gets the same fraction as the cached keys. If the
adversary applies this process repeatedly, then it will end up
with a distribution with the same probability for the first z —1
keys (z is the number of keys the adversary queries), or

h:chrl:"’:pacfl 2pw>0

S;plz...:pC
—_——

cached keys (4)

uncached kyes
Pat1 ="+ =pPm =0

In other words, the best strategy for the adversary to
overload the system is to query the first z — 1 keys (including
the cached keys) with the same probability ~ and the last key
with the probability 1 — (x — 1)h, as illustrated in Fig. 2.

B. Throughput Bound

Once we know the best strategy for an adversary (also the
worst case the system faces), we can calculate the bound of
workload on the system. Since keys are randomly partitioned

across back-end nodes, we can model the system as a well-
known balls-into-bins model with “the power of two choices”,
where a ball or item is stored at the least loaded of two (or
more) randomly selected bins. In our analysis, keys are treated
as balls, and back-end nodes are regarded as bins.

Let us say we are assigning M balls (keys) into N bins
(nodes), where each ball is stored at the least loaded of d
randomly selected bins. When M > N, it has been proved in
[19] that with high probability the number of balls in any bin
is bounded by

% loglog N

N logd
In our model, we have = — ¢ uncached keys that can be
considered as balls and n nodes as bins. Setting M =z — ¢

and N = n, we have the number of different keys in any node
bounded by

= 0(1))

Tr —cC

loglogn

+6(1) (©)

n logd

Suppose the adversary is sending queries at the rate R, then
for each key the query rate is at most R/(z — 1), and the
maximum load on any node is thus bounded by

R
r—1

— log1
z—c loglogn o

o)) -

Let k = lc”ﬁ}% + ©(1), we can further rewrite the above

bound as follows:

E[Lma;c] < [(7)

n logd

xz—c loglogn R
E[L <|[— 4+ =2=-+£0(1)]-
[Lmaa] < | n * logd o) r—1
T —c R R z—c¢ kR
= . = —. 8
[n +] r—1 n r—1 x-—1 ®
R R[(l—c)/n—&-k]iﬁ’_ﬁ.l—c—&-nk

+
n r—1 n n

In the above bound (8), R/n is the best case that the work-
load is distributed evenly on the back-end nodes, regardless of
the load balancing techniques adopted. This value can be used
as a baseline to evaluate the attack under a given query rate
R and the number of back-end nodes n in the target system.
In our work, we also use this value to define the effectiveness
of a DDOS attack.

Definition 1: Given a query rate R and the number of back-
end nodes 7 in the target system, the Attack Gain of a DDOS
is defined as the normalized workload for the most loaded
nodes, which is as follows:

r—1

E [Lmaz}
R/n ©)
Definition 2: An effective DDOS attack is the one by which

an adversary can achieve the attack gain greater than 1.0;

Similarly, an ineffecitve DDOS attack is the one with attack

gain less than or equal to 1.0.

Returning back to (8), by dividing E[L,..] by R/n, we
have the normalized workload for the most loaded nodes (also
attack gain) being bounded by

Attack Gain =

61

E [Lmaw}
R/n —
Since x — 1 > 0 always holds, it can be seen from (10)
that under this most adversarial access pattern, whether the
adversary can launch an effective attack depends on the front-
end cache size ¢, the number of back end nodes n, and k. By
the definition of k, we can further rewrite it as k = lolgolgofl" +
(1) = k’ﬁ}% + k', where k£’ denotes a suitable constant.
With regard to the above bound on the normalized workload
(attack gain), we have the following two cases:

e Case 1: 1 — ¢+ nk > 0, which means ¢ < nk +1 =
% +nk’ + 1. Since x — 1 > 0 always holds, the
adversary should query x = ¢+ 1 keys to maximize his

gain. Meanwhile, as E[é’"rjf} > 1.0, this means that the
adversary could always launch an effective attack.

o Case 2: 1 — ¢+ nk < 0, which means ¢ > nk +1 =
% +nk’+1. In this case, to maximize his gain, the
adversary should always query as many keys as possible.
That is, he should query = m keys (the entire key
space). Also as % < 1.0, the adversary can never

launch an effective attack.

1—c+nk

z—1 a0

The above results show that when the cache size is large
enough, the best strategy for the adversary is to query all
the keys. In other words, under this case, the adversary will
never gain advantages by deliberately querying certain amount
of keys. However, when the cache size is not so large, the
adversary could always query a number of keys that are larger
than the cache size so to launch an effective attack.

Our result is quite different from [18], where it is shown that
in randomly partitioned cluster services an adversary could
always maximize his attack gain by selecting an optimal value
of x (the number of queried keys). This optimal value of z
is a continuous function of the cache size ¢ and the number
of back-end nodes n. Under this optimal value of =z, it is
shown that the adversary could always launch an effective
attack (the normalized maximum workload > 1.0). However,
in our analysis we show that given the number of back-end
nodes n and the replication factor d, whether the adversary
can launch an effective attack depends on the cache size c.
With large caches, the adversary can never launch an effective
attack.

Our result has a significant meaning for today’s cloud
service providers. As the required cache size only depends on
the number of back-end nodes and the replication factor, and
not on the number of items served by the system, it implies that
the front-end cache is scalable to the items served. Meanwhile,
since loglogn/logd < 2 holds for almost all deployed
clusters (i.e., the number of back-end nodes n < 10° and
the replication factor d > 3), it implies an O(n) lower bound
on the required cache size. Our result indicates that system
designers and managers can always protect their clusters from
DDOS attacks using a small O(n) fast front-end cache.

Note that in practice, each node can only support limited
query rate. If the capacity r; of each node is larger than

E[Lnqz), then with high probability the adversary will never
saturate any node.

IV. VALIDATION

In this section we validate our analysis and results through
simulation studies. Our validation will focus on: 1) derive the
bound of workload and its tightness; 2) verify the best strategy
for the adversary to overload the system, and the required
cache size for providing provable DDOS prevention.

To examine the accuracy and tightness of the bound, we
simulate a system with 1000 back-end nodes. The replica-
tion factor for each item is 3 and the size of queried key
space (number of items stored) is 10000. The client launches
1000000 queries per second. For each run of this simulation, =
(x>cache size) different keys are queried at the same rate, and
the load of the most loaded nodes is recorded. We repeat this
simulation for 200 runs, and show the max of the maximum
load on the back-end nodes. Fig. 3(a) shows the normalized
maximum workload obtained when the cache size is small
(¢ = 200), while Fig. 3(b) shows the result when the cache
size is large (c = 2000). The curve with stars is calculated
from Eq. (10) where we set k' = —1.2. The figure shows that
this bound has a mall gap between numerical results.

Meanwhile, from Fig. 3, clearly we can see that the work-
load varies in different ways under different cache sizes. When
the cache size is small, i.e., smaller than our bound, the
normalized max workload decreases with the increase of the
number of queried keys, as that shown in Fig. 3(a). And in
this case the adversary could always query a number of keys
that are larger than the cache size to launch an effective attack
(normalized max load > 1.0); However, from Fig. 3(b) it is
observed that when the cache size is large, i.e., larger than
our bound, this trend is quite different in that the normalized
max workload increases with the increase of the number of
queried keys, and the best strategy for the adversary is to
query as many keys as possible (all the key space). And it is
seen that in this case the adversary can never gain advantages
(normalized max load < 1.0). The result shown in Fig. 3 is
well in accordance with our analysis.

To verify the best strategy for an adversary, we also compare
it with two different workload access patterns: uniform and
Zipf. The uniform distribution across all the 10000 keys is
expected to be a good case of load balancing and serves as
a baseline. The Zipf distribution with parameter 1.01 has a
bias towards a few keys and better characterizes the real-word
workloads.

Fig. 4 shows the normalized max workload on the back-end
nodes under all three different access patterns, where we set
the cache size as 100, and vary the number of back-end nodes.
From Fig.4 we can see that: 1) the cluster system provides
best throughput for the Zipf(1.01) access pattern in which near
80% workloads are concentrated on 20% items. Since these
highly concentrated workloads are well served by the front-end
cache, the traffic to the back-end nodes are greatly reduced;
and 2) when the cache size is large enough as compared to
the number of back-end nodes, the cluster system can provide

62

3 : . :

* —— simulation
\‘ —+—bound

2.5¢]
s
S |4
x
© 2*3f
E 4
el
5}
N
©
13
S
z

05 L L L L

0 2000 4000 6000 8000 10000
x: number of queried keys
(a) cache size = 200
0.8 . . ! ! : :
Ak
et
7t AT —

0 e
E 06
3
£ 05
o
[}
204
®©
13
203

0.2 —— simulation ||

—+—bound

0

1 / L L L L n
3000 4000 5000 6000 7000 8000 9000 10000
x: number of queried keys

(b) cache size = 2000

Fig. 3. Simulation of maximum workload on 1000 back-end nodes with
different cache sizes

almost the same throughput under the uniform access pattern
and the adversarial access pattern, as at that time all keys are
queried at the same rate under both access patterns; however,
when the number of back-end nodes becomes large (the front-
end cache is relatively small), the workload on system remains
stable under uniform access pattern, while it increases under
adversarial access pattern. Therefore, we can see that under
adversarial access pattern (using our strategy), the adversary
can indeed increase the workload on back-end nodes.

Fig. 5(a) shows the best achievable normalized max work-
load on the system by an adversary under different cache
sizes. From Fig. 5(a) we can see that: 1) the normalized
max workload that an adversary could achieve decreases with
the increase of cache size, since large cache can serve more
frequently-queried keys and reduces the workload towards
back-end nodes; 2) there is a critical point. When the cache
size is smaller than this critical point, the adversary could al-
ways launch an effective attack (normalized max load > 1.0);
however, when the cache size is larger than this critical point,
the adversary can never gain advantages (normalized max load
< 1.0); and 3) our bound is tight as it is very close to the
critical point.

3 : : .

—— uniform
% Zipf(1.01)
2.5 | —+—adversarial |
©
©
R}
3 2t l
1S
el
o
N
© 1.5¢]
£
S
z
1 .
xxxxxxxxxxxxxxxxx
0.5 - ' . .
0 200 400 600 800

Number of back-end nodes

Fig. 4. Normalized max workload on back-end nodes under different access
patterns

Fig. 5(b) shows the number of keys queried by the adversary
under different cache sizes. Since in our simulation, we deter-
mine the best normalized max workload by either querying a
number of keys that are one more larger than the cache size
or querying all keys, the result shown is well in accordance
with our result on the best strategy for the adversary.

V. CONCLUSION

This paper investigates the effectiveness of the front-end
cache size on providing provable DDOS prevention for cluster
systems with replication. We show that a small and fast
popularity-based front-end cache with an O(nloglogn/logd)
lower bound on the cache size can ensure provable DDOS
prevention. For most of today’s clusters, our result implies an
O(n) lower bound on the required cache size. Our analysis
and results are well validated through extensive simulations.

REFERENCES

J. Dean and S. Ghemawat, MapReduce:Simplified data processing on
large clusters, In Proc. 6th USENIX OSDI, Dec. 2004.

Hadoop. http://hadoop.apache.org/, 2011.

M. Al-Fares, A. Loukissas, and A. Vahdat, A scalable, commodity, data
center network architecture, In Proc. ACM SIGCOMM, Aug. 2008.

D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barros,
C. Grimes, and S. Quinlan, Availability in globally distributed storage
systems, In Proc. 9th USENIX OSDI, Oct. 2010.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, Finding a needle
in Haystack: Facebooks photo storage, In Proc. 9th USENIX OSDI, Oct.
2010.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: Distribut-
ed Data-Parallel Programs from Sequential Building Blocks, In Proc.
EuroSys, Mar. 2007.

O. O’Malley and A. Murthy, Winning a 60 Second Dash with a Yellow
Elephant, http://sortbenchmark.org/Yahoo2009.pdf, Apr. 2009.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, Wide-
area cooperative storage with CFS, In Proc. 18th ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2001.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web, In Pro. 29th
annual ACM symposium on Theory of computing, 1997.

[10] I Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for Internet applications,
In Proc. ACM SIGCOMM, Aug. 2001.

63

2 :
ke
EREL
x
g 1.6 \
E 141
T 1.2F Critical Point
€
'g 1+ S
@0l | T
= 0. | ~
© |
% 0.6 \ \\
£ | ™
& 0.4 ! o
D ! \x
g 0.2 : Our Bound e
0 / L \\\
107 10° 10*
Cache size
(a) best achievable normalized max workload
10000+
€ 8000
=}
(=}
£
[
> 6000
]
el
2
S 4000f
=]
g
2000y Critical Point
174
0 f— L
107 10° 10*

Cache size (logscale)

(b) number of keys queried by the adversary

Fig. 5. The best max workload and number of keys queried by an adversary
under different cache sizes

[11] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two
random choices: A survey of techniques and results. In Handbook of
Randomized Computing, pages 255-312. Kluwer, 2000.

[12] S. Ghemawat, H. Gobio, and S.-T. Leung, The Google file system, In
Proc. 19th ACM Symposium on Operating Systems Principles (SOSP),
Oct. 2003.

[13] Memcached. A distributed
http://memcached.org/, 2011.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo: A-
mazon’s highly available key-value store, In Proc. 21st ACM Symposium
on Operating Systems Principles (SOSP), Oct. 2007.

[15] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, FAWN: A fast array of wimpy nodes, In Proc. 22nd ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2009.

[16] HBase. http://hbase.apache.org/, 2011.

[17] E Chang, J. Dean, S. Ghemawat, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber, Bigtable: A distributed storage
system for structured data, In Proc. 7th USENIX OSDI, Nov.2006.

[18] B. Fan, H. Lim, D.G. Andersen, M. Kaminsky, Small Cache, Big Effect:
Provable Load Balancing for Randomly Partitioned Cluster Services, In
Proc. 2011 ACM Symposium on Cloud Computing (SOCC’11), Oct.
2011, Cascais, Portugal.

[19] P. Berenbrink, A. Czumaj, A Steger, and B. Vocking, Balanced Alloca-
tions: The Heavily Loaded Case, In Proc. 32nd Annual ACM Symposium
on Theory of Computing (STOC’00), 2000.

memory object caching system.

