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1 Introduction

Online Social Networks (OSNs) have become popular venues for users to create contents and
share contents with friends, followers, and the like. The evolution of mobile social networks
has further transformed the way that people get along with online contents. On one hand, the
popularization of 4G and the birth of 5G make faster connections available and more affordable.
Not only pictures and texts but also high-quality videos can be consumed during daily commutes.
On the other hand, emerging mobile social platforms such as TikTok and Instagram lower the
bar to create contents and make consuming and sharing of contents more convenient. With such
a context, boosting the visibility of contents for users, i.e., making the contents reach a larger
audience on the OSN has been a heated topic [1, 14, 21, 43]. The importance of large visibility
can be well illustrated by the example of incentivized social advertising [4, 31], an emerging
marketing model which provides monetization opportunities to users. For instance, a user can
post an article or a video containing ads as a small portion to help a company advertise new
products and get a “cut” from the advertising revenue. Then the larger visibility the content gets,
the better reach of this product can be made, which indicates larger sales for the company and
more revenue for content creators. However, one of the main obstacles to getting large visibility
is that a content has to compete with many other contents [5] and the effect of “the strong get
stronger” makes less popular contents buried by the most popular ones.

Reposting, a content-sharing behavior, plays an essential role in visibility boosting. For example,
recently, an Atlanta-based e-sports organization Ghost Gaming posted a Tweet on X (formerly
known as Twitter) “Enter to win a $2,000 NZXT and a $100 gift card to the Ghost Gaming shop!”.!
They also added that users who retweet this Tweet would be able to join the lucky draw which
offers above valuable prizes to the winner. That Tweet got 8k retweets and 7.5k likes. By contrast,
the previous Tweets posted by Ghost Gaming not involved in prize-giving reposting only got about
0.1k likes on average. Obviously, this Tweet successfully stimulated many users to repost, so that
the content could finally reach many more users and get many more likes. One can refer to [25]
for more examples that show the power of reposting on Twitter.

Reposting services prevail in OSNs in a variety of forms. For example, RepostExchange? is a plat-
form powered by requesters and suppliers from SoundCloud,® where requesters are SoundCloud
artists who will pay other users for reposting, since they can benefit from boosting the visibility
of music records, and suppliers are SoundCloud users who will repost music if certain rewards are
given. The payment and the reward are in a form called “credit”, which serves as the currency on
RepostExchange. Another example is Sina Weibo in China, a microblogging platform similar to X.
The platform offers an official service named WeiTask,* where Weibo users can opt to participate.
Requesters can launch recruitment to call for reposting, and the platform would select suppliers.
If selected suppliers repost the content, they will receive rewards.

Note that the above-mentioned reposting services use simple heuristic pricing mechanisms,
whose efficiency and effectiveness have no theoretical guarantees. Having no theoretical guaran-
tees may lead the system to a “socially sub-optimal” state, which hurts the ecosystem of OSNs.
Thus, it is important to design theoretically efficient and effective mechanisms. To the best of our
knowledge, few works have studied this problem (please refer to Section 7 for more elaboration).
In this paper, we design protocols to incentivize reposting of contents with theoretical guarantees.
We assume all the users are rational. Specifically, there is a set of requesters who are content

https://twitter.com/GhostEsports/status/1161381978073116673

Zhttps://repostexchange.com

Shttps://soundcloud.com. This is a music platform powered by a global community of music artists and listeners.
4https://weirenwu.weibo.com
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creators and want to increase their content visibility by requesting other users to repost. There
is also a set of suppliers who are willing to repost requesters’ contents when a certain reward is
offered. A content is visible to the neighbors of the user who posts or reposts it. If a supplier s
reposts requester r’s contents, the visibility increase of r’s content is the marginal increase of the
number of users to whom the content is visible. Click is the actual action that users would take
after viewing the post, which eventually contributes to the revenue of content creators. Without
loss of generality, we use click to model a range of beneficial behaviors after viewing the content.
For example, it can model a thumbs up to show agreement on the opinion of a post, or purchasing
behavior after viewing an advertising post. We use click-through rate (CTR) to denote the
probability of a click after viewing the post. A requester has a personal unit valuation for each
click received and a supplier has a personal unit cost for each click contributed by his reposting.
The objective is to maximize the social welfare increase accumulated throughout T € N, rounds,
which is the total valuations increase of requesters minus the total cost of suppliers. The decision
variable is the assignment from suppliers to requesters.

We formulate the decision problem from two different aspects: (a) “user-centric” and (b)
“platform-centric”. The user-centric aspect deals with the situation where requesters and sup-
pliers collaborate to search for the optimal assignment among them. In this setting, requesters
and suppliers would share their valuations and costs, e.g., they can set up social groups and
report their valuations or costs. One challenge in searching for the optimal assignment is that the
CTRs are unknown, making the social welfare increase unable to be calculated. We propose an
online learning protocol to address this challenge. Our online learning protocol is built on the
observation that the outcome of each assignment from suppliers to requesters reveals samples on
the CTRs of requesters who are assigned at least one supplier. Note that for those requesters who
are assigned no supplier at all, no sample on their CTRs is revealed. This leads to the challenge
of balancing the exploration vs. exploitation tradeoff. In our online learning protocol, we employ
a combinatorial multi-armed bandit algorithm to address this challenge. We also prove that
our proposed protocol enjoys a sub-linear regret. The platform-centric aspect corresponds to
the setting where requesters and suppliers do not collaborate and there exists a service like
RepostExchange to determine the assignments. In this setting, requesters and suppliers would
be asked to report (not necessarily truthfully) their unit valuations and costs to the service.
Compared to the user-centric aspect, besides the challenge of unknown CTRs, one extra challenge
is that requesters and suppliers usually do not have the incentive to report truthfully. We design
a truthful “explore-then-commit” online protocol to address these challenges. In the exploration
phase, our protocol uses several rounds to estimate the CTRs. In the commit phase, our protocol
uses a charging and rewarding scheme which can incentivize requesters and suppliers to report
their true unit valuations and costs. We also prove the regret for this truthful online protocol.
Lastly, we conduct extensive experiments on real-world datasets to evaluate the efficiency and
effectiveness of the proposed protocols. The highlights of our contributions include:

— We formulate the mathematical model and the welfare increase maximization problem for
the reposting service from both the user-centric and platform-centric aspects.

— We propose an online learning protocol with a probable sub-linear regret to address the
challenge of unknown CTRs for the user-centric aspect.

— We propose a truthful “explore-then-commit” online protocol with a sub-linear regret to
address the challenge of unknown unit valuations and costs as well as unknown CTRs for
the platform-centric aspect.

— Lastly, we conduct extensive experiments on six public datasets to evaluate the effectiveness
and scalability of the proposed protocols. We also reveal fundamental insights into how
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the social network structure influences the effectiveness and scalability of the proposed
protocols.

The remainder of this paper is organized as follows. Section 2 presents the mathematical model
of reposting service in OSNs and problem formulation. Section 3 presents the online protocol for
user-centric welfare increase maximization. Section 4 presents the online incentive protocol for
platform-centric welfare increase maximization. Section 5 shows experiments on real-world OSNs.
Section 7 gives discussions on related literatures. Section 8 concludes the paper.

2 Model and Problem Formulation

In this section, we first present the mathematical model of the reposting service which qualities
the visibility, valuations, costs, CTRs, welfare increase, and so on. Then we formulate the problem
of assigning suppliers to requesters from both user-centric and platform-centric aspects.

2.1 The Model of Reposting Service

Consider an OSN characterized by a directed and unweighted graph G = (U, E), where U =
{1,...,N} denotes a set of N € N, users and & C U X U denotes a set of edges between users.
On X-like OSNs, a direct edge (u’, u) represents user u’ follows user u. On Facebook like OSNs, a
friendship link between u and u” can be modeled by two directed edges (u,u”) and (u’, u). The set
of incoming neighbors of user u € U is denoted by

N, 2{u'|u" e U, u) € E}.

Content posted by user u is visible to his incoming neighbors N,,, and this content can also be
visible to the incoming neighbors of user u’, i.e., Ny, if user u’ reposts it. However, the reposting
behavior should not be taken for granted, since reposting is associated with some cost, e.g., the
time, the social pressure of potentially annoying their incoming neighbors, and so on. Let R € U
denote a set of requesters who call for reposting to boost the visibility and are willing to pay for
that. Let S € U denote a set of suppliers who are willing to repost a content if some financial
reward is provided. We then give the formal definition of visibility.

Definition 1 (Visible Set and Visibility). If supplier s € S U {0} reposts a content created by
requester r € R, the visible set of this content is defined as

Ve(s) = N UN,

where s = 0 is to model that no supplier reposts this content and correspondingly, Ny = 0. The
visibility of this content is the cardinality of the visible set |V, (s)].

Among the visible set of r’s content, some users would click on this content. This fraction also can
be interpreted as the probability of receiving a click once the content is viewed, and it is called the
click-through rate (CTR). We assume that this probability only depends on the content creator. Let
0, denote the CTR of a content created by requester r, which reflects the overall content quality
(i.e., attractiveness) of r. Each requester r has a normalized unit valuation v, € [0, 1] for each click
of his content. Each supplier s has a normalized unit cost ¢; € [0, 1] for each increased click from
his incoming neighbors. For ease of presentation, we denote the CTR vector, valuation vector and
cost vector respectively as

0=0,:reR), v, :reR), c=(cs:5€8).

We consider a total number of T € N, rounds of assigning suppliers to requesters. Each round
t € [T] = {1,...,T} is associated with the same set of requesters R and the same set of suppliers
S. For the ease of presentation, we assume that users who are not suppliers, i.e., U \ S, do not
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repost contents when no payment is made. This assumption only simplifies the calculation of the
visible set of content. If users who are not suppliers repost contents, then a content will spread
faster in an OSN. In each round ¢, each requester creates and posts a new content. Without loss of
generality, in each round, each requester is allowed to have at most one supplier repost his content,
and a supplier is allowed to repost at most one requester’s content. Note that this assumption is not
a restriction, because the following trick of virtual requesters or virtual suppliers can handle the
setting that a requester has multiple contents to repost or a supplier would like to repost multiple
contents. In a situation where a requester has multiple contents, one can create multiple virtual
copies of this requester while satisfying that each virtual requester has only one content to repost.
In a situation where a supplier would like to repost multiple contents, one can create multiple
virtual copies of this supplier while satisfying that each virtual supplier would repost only one
content.

Let a;, € S U {0} denote the supplier assigned to requester r in round ¢. Here a; , = 0 models
that no supplier is assigned to requester r in round ¢. Denote the requesters who are assigned a
supplier in round ¢ as

R, = {rlr e R,a,, # 0}
Denote the assignment profile in round t as
a; = (a;,:reR).
We define a valid assignment profile as follows.

Definition 2 (Valid Assignment Profiles). An assignment profile a; is valid if it satisfies:
|{rla;, =s,re R} <1, VseS,Vtel[T] (1)

Condition (1) states that in a valid assignment profile, each supplier is assigned to at most one
requester in each time step. We denote the set of all valid assignment profiles by
A = {ala satisfies Equation (1)}.

Given time step t, we use S, q, ) to denote the visibility increase of requester r due to supplier
a;,r s reposting, formally

Strary) = INa,, \ Nrl.
Let V(r, a;,,) denote the corresponding expected valuation increase of requester r, formally
V(r,ae,r) = Sir.a,.,)0r0r-
Let C(r, a;,,) denote the corresponding expected cost of supplier a; , for reposting r’s content,
formally
C(r’ at,r) = S(r,a,,r)erca,,r-
Then, V(r,a;,,) — C(r, as,») quantifies the overall expected benefit of the requester-supplier pair

(r, a;,r) due to assigning supplier a; , to requester r. Thus, the expected welfare increase associated
with assignment profile a; is denoted by

W(a) = (V(r,a.,) - C(r.a,)).
reR

Finally, we denote the expected welfare increase accumulated throughout T time steps associated
with the assignment profile sequence ay, ..., ar as

wr= ) W(a),

te[T]

which is the objective to maximize in the reposting service.
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2.2 Problem Formulation

We formulate the assignment problem to maximize the cumulative welfare increase from both the
user-centric and platform-centric aspects.

User-centric welfare increase maximization. We consider the problem that requesters and
suppliers collaborate to maximize their total benefits, i.e., the welfare increase. They would share
their unit valuations and unit costs, but they do not know the CTR vector 6.

Ensuring that suppliers and requesters share their costs and valuations is an economic issue. In
particular, it is about how to divide the welfare increase among requesters and suppliers. Sharing
costs and valuations can improve the assignment, which in turn improve the total welfare increase
benefiting all requesters and suppliers. In other words, requesters and suppliers have the economic
incentive to collaborate. To ensure they tell the truth, i.e., report their true valuations or costs, one
needs to design a proper reward sharing rule. This is possible, as indicated by the platform-centric
welfare increase problem. One can extend the rule to achieve this.

The challenge is to estimate the CTRs and maximize the cumulative welfare increase simultane-
ously. The optimal assignment profile can be stated as

a* € argmax W(a).
acA

Our objective is to design a protocol to select a sequence of assignment profiles (a;,t € [T]) to
minimize the regret, which is defined as follows:

T
R & 3" [W(a") - W(a,)]. (2)
t=1
Minimizing regret Ry is equivalent to maximizing welfare increase Wr, since regret Rt quantifies
how well our protocols compared with the optimal assignment which has full knowledge. One
can directly compare different methods using regret which can contribute to a better theoretical
conclusion.

Platform-centric welfare increase maximization. We consider the problem that requesters
and suppliers do not collaborate, i.e., they do not share unit valuations and unit costs. In this case,
we design a reposting service for the platform to determine the assignment profiles. Compared
with the user-centric setting, one additional challenge is that requesters’ valuations and suppli-
ers’ costs are unknown to the platform. Our objective is to design a protocol to solicit the unit
valuations and unit costs and also estimate the CTRs so that we can maximize the cumulative wel-
fare increase or equivalently minimize the regret. Formally, the protocol is parameterized by the
charging scheme

Pt = (prr:r€R),

and reward scheme
q: = (qrs :s€S8),

where p; ,,qrs € [0,1],Vt € [T]. More specifically, at time step ¢, each requester is charged
pr.r for each of his clicks increased due to the assignment, and each supplier is rewarded
q:,s for each increased click contributed by him. The goal is to design a charging and reward
scheme to incentivize requesters and suppliers to report their unit valuations and unit costs
truthfully.

To provide a clear understanding of the notations used throughout this study, Table 1 presents
a comprehensive description of each notation. This table includes the notation names and their
definitions.
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Table 1. Main Notations

Notation Definition

G a directed and unweighted graph

U a set of N € N, users

& a set of edges between users
Ny the set of incoming neighbors of user u € U
R a set of requesters who call for reposting

S a set of suppliers who are willing to repost a content
0 the click-through rate vector

v the valuation vector

c the cost vector

a assignment profile

S(r.a..,) | the visibility increase of requester r due to supplier a;,,’s reposting
Vir.a..,) | the expected valuation increase of requester r at round ¢

C(r,a,,) | the expected cost increase of supplier a; , at round ¢

W(a;) | the expected welfare increase with assignment profile a;

a the optimal assignment profile

P: the charging scheme

q: the reward scheme

b|x the reported valuation profile of a subset of requesters X € R
b|y the reported cost profile of a subset of requesters Y C S

b|r the reported unit valuation

b|s the reported unit cost

U, the utility of a requester r € R

Us the utility of a supplier s € S
Nir,s) the increased number of clicks of r contributed by s’s reposting

2.3 Discussion on Model Assumptions

Our model makes certain simplifications in order to strike a delicate balance between the expres-
siveness and mathematical tractability. One simplification is that the visibility is modeled by one-
hop neighbors. In practice, neighbors of suppliers may repost interesting contents, leading to multi-
hop spreading of contents. This can be captured by multi-hop neighbors [66]. Our method can be
straightforwardly extended to this setting. Another simplification is the model of virtual requester
or virtual supplier. Note that this modeling trick mainly simplifies the presentation. It does not
increase algorithmic complexity, since the algorithmic problem is to assign each content to a sup-
plier and assigning multiple contents to the same supplier is equivalent to assigning these contents
to the corresponding virtual suppliers in a one-to-one manner.

A requester creates and posts different contents across different time slots. Our model treats
different contents independently in quantifying social visibility. Given two requesters r; and r;
in time slot #, it may happen that the intersection Ng,, N N, ,, is non-empty. Each user in the
intersection Ny, , N Ng, ,, would see contents created by requester ry and r,, respectively, and its
clicking behavior across these two contents is modeled as an independent click. We are aware that
the object (or types) of contents would have a subtle impact, i.e., complementary or competition,
on the click behavior and thus affect the social visibility qualification. We leave it as an interesting
future work for further study.

When CTRs change infrequently over time, one can divide the time slots into different intervals
according to the change of CTRs, such that each interval does not contain any change point of
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CTRs. Our model and algorithms can be applied to handle each interval independently. To further
improve the learning efficiency, one can cluster intervals based on CTRs such that in each cluster
the CTRs have a slight difference. Our model and algorithms can be applied to handle each clus-
ter independently. When CTRs change frequently, one can apply non-stationary combinatorial
bandits to handle them [30, 38, 65]. We leave it as an interesting future work.

3 User-centric Welfare Increase Maximization

This section studies the problem of user-centric welfare increase maximization, where requesters
and suppliers share their unit valuations and unit cost. We start from a warm-up case where the
CTR vector 0 is accessible, then design a protocol to address the challenge of unknown 6.

3.1 Offline Optimal Assignment Protocol

Optimal assignment. We first consider the setting that the CTR vector 6 is known to users and
the goal is to design a protocol that can find out the optimal assignment a* to maximize the welfare
increase. This protocol serves as a building block to study the setting that € is unknown to users.
Note that under this setting with full knowledge there is no need to vary the assignment with time
step t, and the welfare increase in different time steps are identical. Thus, we omit the subscript or
superscript of ¢ for ease of presentation.

To facilitate the protocol design, we first construct a complete weighted and undirected bipartite
graph denoted by 8 = (R, S, E), where R and S are two disjoint node sets representing requesters
and suppliers respectively, and E = [e, s : r € R, s € S] denotes the weights. The weight of edge
(r,s) is set as

er,s = V(r,s) — C(r,s),
which is the expected welfare increase of requester-supplier pair (r,s). We define a matching in
the bipartite graph 8 as follows.

Definition 3 (Matching). The edge set M C R X S of graph B is a matching if it satisfies that
[{s|(r,s) e M}| < 1,Vr € Rand |{r|(r,s) e M}| <1,Vs € S.

The following lemma states the connection between an assignment profile a and a matching in
graph 8.

LEMMA 1. An assignment profile a can be mapped into a matching M(a) = {(r, a,)|r € R, a, # 0}

which satisfies
W= > e
(r,s)eM(a)
A matching M in B can be mapped into an assignment profile a(M) witha,(M) = Ycs slir, s)em}
which satisfies
D ers = WiaM)).

(r,s)em

Lemma 1 implies that an effective approach to find the optimal assignment profile is to locate
the maximum weighted matching and then map it to an assignment profile a*. Based on this
observation, Protocol 1 outlines the protocol OptAssign to find the optimal assignment profile.
In protocol OptAssign, we first construct the complete weighted bipartite graph 8. Then we find
the maximum weighted matching via the algorithm MaxWeightMatching(R, S, E). There are a
variety of implementations of MaxWeightMatching and one example is the Hungarian algorithm
[29]. Lastly, we map the maximum weighted matching into the optimal assignment.

Approximate protocol. Since it is computationally expensive to find a maximum weight
matching for a large-scale graph using exact algorithms, e.g., O(N®) if using the Hungarian
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Protocol 1: OptAssign(R, S, 0,v,c¢).

1: Construct complete undirected bipartite graph 8 = (R, S, E)
2: M* «—MaxWeightMatching(B)

30 ar(M") = Xses slj(r.s)em}

4: return assignment profile (a,(M*) : r € R)

Protocol 2: GreedyAssign(R, S, 0, v, c).

: Construct complete undirected bipartite graph 8 = (R, S, E)
: Initialize M = 0
: for all (r,s) € E in descending order by weights do
if (r,s) is still in B then
add (r,s) to M.
delete r and s from B.
else
skip this edge and continue.
end if
: end for
s ar(M) = Xses slyr,s)emy
: return assignment profile (a,(M) : r € R)

D A A R T

_ ==
N = O

algorithm, we propose an approximation protocol to improve computational efficiency. Protocol 2
outlines GreedyAssign, which uses a greedy approach for approximating the maximum welfare
increase. After constructing the bipartite graph, we rank all the edges in descending order by their
weights and traverse them according to this order. If an edge (r, s) still exists in graph B, we add it
into the matching. Then delete the corresponding requester and supplier, as well as their adjacent
edges from graph 8. We repeat until there is no edge left in 8. Finally, we get a matching and we
map it to the corresponding assignment profile which is the result of the approximate protocol.

THEOREM 1. Protocol GreedyAssign (Protocol 2) guarantees an approximation ratio of 1/2. The
running time complexity of GreedyAssign is bounded by O(|E| log |E|).

Remark. Theorem 1 states that GreedyAssign can achieve a guaranteed approximation ratio of
at least 1/2 for user-centric welfare increase with much smaller time complexity than OptAssign
which uses an exact search algorithm like the Hungarian algorithm. The technical proof of
Theorem 1 is presented in supplementary file.

3.2 Online Learning Protocol

Protocol design. Now we use Protocol 1 as a building block to study the assignment problem in
the user-centric aspect where the CTR vector 6 is unknown to requesters and suppliers. In this
setting, one needs to balance the exploration and exploitation tradeoff. We achieve this tradeoff via
the upper confidence bound (UCB) method [6]. At time step ¢, for each requester, an unbiased
estimator of 6, can be

N arr
—~ Zre[t] S ol ]I{ar,r # 0}
er — (r.az,r) , (3)
Zre[t] Ka.,» # 0}
where N((:)a ) is the observed number of increased clicks of r received due to a, ,’s reposting at

time step 7. Based on Equation (3), we apply Hoeffding inequality to derive UCB index for 6,. Then,
we apply these UCB indexes to Protocol 1 for selecting the assignment profile.
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Protocol 3: OnlineAssign(R, S, v,c).
1: Input: v, ¢, (Ny : Yu € U)
2: fort =1to|R| do
3:  Select r from {r|r € R, N, = 0}
Select a random supplier s
Select an assignment profile a;:
(at,r =s;ar,r =0,VF € R\ {r})
Observe number of increased clicks N((:’)S)
Initialize N, = 1
Initialize 0, = N( /S5
end for
10: fort = |R|+1to T do
11:  Denote 8 = (0} : r e R)
12:  a; «OptAssign(R,S,0",v,c)

13 Observe N for Vr e R),
(7, at,r) t
14:  forr e R} do
15: Update N, = N, +1
16: Update 0, = (N, — 1), + Nf:,)at,» /Str.a )/ Ny

17: Update 6, = 0, + +/3logt/2N,
18:  end for
19: end for

Protocol 3 outlines details of the above UCB-based method, leading to our protocol
OnlineAssign. Initially, we use |R| rounds of forced exploration to obtain samples of the CTR
for each requester r. In the meantime, we keep track of some statistics of the assignment history:
N, which is the number of times the requester r has been assigned a supplier till the current round;
0, which is the empirical mean of sampled CTRs till the current round; and the UCB index ;" which
adds an adjustment term to 0,. In the remaining rounds after the forced exploration, we take the
UCB index vector 8© = (0 : r € R) as the input CTR vector of oracle OptAssign (Protocol 1) to
decide the best assignment profile for this round, and we update N;, §, and ;" for each requester
according to the observed clicks.

Protocol analysis. First, the time complexity of Protocol 3 mainly depends on the number of
calls of oracle OnlineAssign which is smaller than T, as well as the implementation and the time
complexity of OnlineAssign. Besides, the following theorem states the performance guarantee of
Protocol 3.

THEOREM 2. Forall T > |R|, protocol OptAssign (Protocol 3) achieves a sub-linear regret
E[Rr] < O(klog(T)),
where k is defined as:
6 min(|R|, |S|)*

k= s? Amaxs
B v
Amax = max W(a") - W(a),
acA\{a*}
Amin= min W(a") - W(a).
min = i W(a) = W(a
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Remark. Theorem 2 states that the regret of protocol OnlineAssign is sub-linear to T, which
implies the average single-round regret decreases with T and the average single-round welfare
increase asymptotically approaches the optimal W(a™).

The constant parameter 6 is due to tuning the confidence interval in the proof. In particular, its
precise value is smaller than 6 but in a complicated form. We make it 6 for the purpose of making
the expression clean. The technical proof of Theorem 2 is presented in supplementary file [20].

4 Platform-centric Welfare Increase Maximization

In this section, we consider the problem of platform-centric welfare increase maximization where
unit valuations and unit costs are private information and not accessible to the platform. We first
study a setting where the CTR vector 6 is known to the platform, then we generalize it to the
setting where 6 is unknown.

4.1 Truthful Offline Protocol

We first consider the setting that the CTR vector 6 is known, but the requesters’ unit valuations and
suppliers’ unit costs are unknown to the platform. The protocol for this setting serves as a building
block for the setting where 0 is also unknown. The core idea is to design a protocol to solicit true
unit valuations from requesters and true unit costs from suppliers, and then apply Protocol 1 to
find the optimal assignment profile to optimize welfare increase. Note that such protocol design is
independent of time step ¢. Thus, we omit the subscript or superscript of ¢ for ease of presentation.

Protocol design. Before assigning suppliers to requesters, the platform asks each requester r € R
to report their unit valuation b,, and asks each supplier s € S to report their unit cost bs. We define
the reported valuation profile of a subset of requesters X € R as

blx=(b, : u € X),
and the reported cost profile of a subset of suppliers Y C S as
bly=(b, :ucY).

We then use OptAssign (Protocol 1) as an oracle to get the optimal assignment profile. Note that
here we use the reported unit valuations b|g and reported unit costs b|s as the input unit val-
uations and unit costs of OptAssign. One can easily see that if requesters and suppliers report
truthfully, i.e., b|g = v and b|s = ¢, then the output assignment profile is exactly the optimal
assignment profile. However, the challenge lies in designing a protocol to stimulate requesters
and suppliers to report truthfully. Before diving into the protocol design, we define the following
optimal assignment function to assist our presentation.

Definition 4 (Optimal Assignment Function and Pseudo Welfare Increase). Suppose only a subset
of requesters X C R and a subset of suppliers Y C § are available. Define the corresponding
optimal assignment function as A*(X, Y, 0) = (A,,(X,Y,0) : u € X), where

AY(X,Y,0) = OptAssign(X, Y, 60,b|x,b|y).
Furthermore, we define the corresponding pseudo welfare increase with respect to X and Y as
WH(X,Y.0) = Z Su,a5,(X.Y.0)0u(bu = bay(x..6))-
ueX

Namely, A*(X, Y, 0) is the optimal assignment profile when only a subset of requesters X C R
and a subset of suppliers Y C S are available and their unit valuations and unit costs are assumed
to be b|x and b|y.
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Protocol 4: TruthOfflineAssign(R, S, 0).
1: Select assignment a = A*(R, S, 0)

2: for r € Rdo

3:  Requester r is charged by p,(b|g, b|s, 0)
4: S« ar
5
6

Supplier s gets reward gs(b|g, bls, 0)
: end for

Based on the Vickrey-Clarke-Groves (VCG) mechanism [13, 19, 56], we design the charging
scheme and reward scheme where each requester (resp., supplier) is charged (resp., rewarded) for
the externality, which is the difference between the welfare increase in the absence of him and the
welfare increase in the presence of him. In the presence of requester r € R, the expected welfare
increase of other requesters R \ {r} and suppliers S can be calculated as

*
W (R,S.0) = S¢aur.8,0)00br,
—_—

welfare increase of S and R valuation increase of r

In the absence of requester r € R, the expected welfare increase of other requesters R \ {r} and
suppliers S can be calculated as W*(R \ {r}, S, 0). To stimulate the requester r € R to report his
true unit valuations, we design a charging scheme where the platform charges r by the marginal
deduction on the welfare increase of other requesters R \ {r} and suppliers S, formally,

pr(blr, bls, 0) = WHR\{r},S,0)  —[W*(R,S,0) = S a:(%.5.0))0rr | - (4)

welfare increase in the absence of r welfare increase in the presence of r

The above can be interpreted as the loss of other participating users’ welfare increase due to the
existence of r. Note that this charging scheme p,(b|g, b|s, ) applies to all requesters r € R.

Similarly, we calculate the reward for suppliers as follows. In the presence of the supplier s € S,
the welfare increase to requesters R and other suppliers S \ {s} can be calculated as

W*(R, S, 9) + S(A:_I(R,S,0),3)9A§_1(R,S,9)b3 .
———

welfare increase of R and S cost of supplier s

where AY1(R, S, 0) denotes the requester who is assigned to supplier s under the assignment
profile A*(R, S, 0), and we set A*1(R, S, 0) = 0 by default when s is not assigned to any requester.
In the absence of supplier s € S, the welfare increase to requesters R and other suppliers S \ {s}
can be calculated as W*(R, S \ {s}, 0). To stimulate the supplier s € S to report his true unit
costs, we design a reward scheme where the platform rewards s by the marginal contribution to
the welfare increase of requesters R and other suppliers S \ {s}, formally,

qs(b|g,bls, 0) = W' (R,S.,0) + S(A*s-l(ye,s,9),3)9,4;-1(73,3,9)[95 - W (R, S\ {s}.6) 6

welfare increase in the presence of s welfare increase in the absence of s

The above can be interpreted as the gain of other participating users’ welfare increase due to
the existence of s. Note that this reward scheme q;(b|r, b|s, €) applies to all suppliers s € S. To
summarize the above derivations, Protocol 4 states our truthful offline protocol.

Protocol analysis. We analyze the properties of our protocol specified by the charging scheme
pr(b|g,bls, 0),Vr € R and the reward scheme gs(b|g,b|s,0),Vs € S. We first define the utility
for requesters and suppliers.
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Definition 5 (Utility). Given the reported profile (b|g, b|s), the CTR vector 8, and the assignment
profile A*(R, S, 0) (i.e., the result of OptAssign(R,S, 0, b|g, b|s)), then the utility of a requester
r € R is defined as:

Ur(b|g,bls;0) = v,N ax(® s,0) — Pr(blr, bls, 6),

and the utility of a supplier s € § is also defined as his marginal gain:

Us(b|g, bls; 0) 2qs(b|g,bls, 0) — csNa-1(® s, 0),5)>

where N, ;) is the increased number of clicks of requester r contributed by s’s reposting, i.e., the
number of clicks from users in Ny \ N,.

In the following, we introduce some conceptions of mechanism design from the perspective of
reposting service.

Definition 6 (Efficient). A protocol is efficient if the selected assignment profile a maximizes the
welfare increase, i.e., @ € argmax,e 4 W(a).

The efficient property states that by using this protocol, the assignment profile achieves the maxi-
mum welfare increase.

Definition 7 (Dominant Strategy Incentive Compatible (DSIC) [40]). A protocol is DSIC (or truth-
ful) if it satisfies the following conditions. For Vr € R, Vb,, Vb|g\ (1, Vb|s we have

E[U:((vr, blg\(r}), bls; €)] = E[U,((br, blr\(r}); bls; 0)],
and for Vs € S, Vb, Vb|z, Vb|s\ (s} we have

E[Us(b|, (cs, bls\(s}); 0)] = E[Us(b|g, (bs, bls\(s}); 0)].

The DISC property states that reporting unit valuation (resp., cost) truthfully is a weakly-dominant
strategy for each requester (resp., supplier). Given that users are all rational, DSIC implies that all
requesters and suppliers will report truthfully.

Definition 8 (Ex-interim Individually Rational (EIIR)). A protocol is EIIR if for Vr € R we have

E[U,((vr, blr\(r}). bls; 0)] = 0,
and for Vs € S we have
E[Us(blg, (cs, bls\(s)); €)] = 0.

The EIIR property states that participating in and reporting unit valuation/cost truthfully will not
lead to a negative expected utility. This guarantees that requesters and suppliers have the incentive
to participate in the reposting service.

THEOREM 3. The TruthOfflineAssign (Protocol 4) is efficient, DSIC and EIIR.

Remark. Theorem 3 states that our proposed protocol can guarantee that requesters and suppli-
ers would achieve the optimal and non-negative utilities by reporting their unit valuations/costs
truthfully. As a result, the protocol can guarantee the maximum welfare increase even without

given unit valuations and unit costs at first. The detailed proof is presented in supplementary
file.
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Protocol 5: StrategicOnlineAssign(R,S).

Input: (N, : Yu € U)

Solicit unit valuations b|g and unit costs b|g

Initialize N, = 0,6, = 0,Vr € R

for t = 1 to max{y, %} do
Select an assignment a;, s.t. [M(a;)| = min{|R|, |S|}
for r € R; do

Observe N, ()

(r,ae,r)
Update N, = N, +1
Update 0 = (N = D0 + NI /S(r.a, ))/Nr
end for ’
: end for
Denote 0 = (6, : r € R)
Denote a* «OptAssign(R,S, 0,b|z, bls)

: fort = max{y,%}+ltono

R A A~ S v

e e
LN 2

—
'S

15:  Select assignment a; = A*(R, S, 0)

16:  for r e R; do

17: r is charged pt.r = pr(b|g.b|s, 0)

18: s = ag,r isrewarded g, s = qs(b|g, bls, 0)
19:  end for

20: end for

4.2 Truthful Online Protocol

Now we study the most challenging setting where the CTRs 0, requesters’ unit valuations v and
suppliers’ unit costs ¢ are all unknown to the platform.

Protocol design. Since 0 is unknown, the charging scheme p,(b|g, b|s, ) and the reward scheme
qs(b|g,b|s, @) which depend on 6 are also unable to calculate. To address this challenge, we
propose an “explore-then-commit” online protocol StrategicOnlineAssign, which is outlined
in Protocol 5. This protocol has two phases: the exploration phase and the commit phase. The
exploration phase runs for max{y, y|R|/|S|} rounds so that each requester is selected for at least
y rounds. Exploration rounds do not involve charges and rewards. After the exploration phase,
we use 0, the empirical mean of CTR samples, to estimate 6. Then, the protocol goes into the
commit phase. In this phase, we use 0 to estimate the optimal assignment profile, i.e., A*(R, S, é),
and this assignment profile is fixed for the remaining rounds. We also use 6 to calculate the
charging scheme p,(b|g,b|s,0) and the reward scheme g¢,(b|g,b|s,0) in each round in the
commit phase.

Protocol analysis. We analyze the properties of Protocol StrategicOnlineAssign. With
the conceptions defined in Section 4.1, we have the following theorem for Protocol
StrategicOnlineAssign.

THEOREM 4. Protocol StrategicOnlineAssign (Protocol 5) is DSIC and EIIR.

Remark. Theorem 4 implies that Protocol 4 can stimulate requesters/suppliers to report their
unit valuations/costs truthfully. Note that StrategicOnlineAssign cannot be guaranteed to be
efficient, since it uses estimated CTRs in the commit phase to get the estimated optimal assignment
profile. We also have the following theorem to state the performance on regret. The technical proof
of Theorem 4 is presented in supplementary file.
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THEOREM 5. Protocol StrategicOnlineAssign (Protocol 5) has a worst-case expected regret

R
BIR;] < max {y, %} Smax min{IRL,|SI}

+(T_ max{ s %})Smax m1n{|7€|, |S|} 2 log ! + 2Smaxe (6)
V Y

where Spax = Max(r s)erxS S(r,s)- 10 achieve the tightest upper bound, one can choose the value of y
such that the right-hand side of (6) is minimized.

Remark. Theorem 5 indicates a higher regret than Theorem 2. The reason is that to guar-
antee DSIC, the protocol needs to perform exploration-exploitation separately according to the
main result Theorem 1.3 in [7], and this constraint would cause higher regret than classic
multi-armed bandit algorithms. Moreover, Theorem 4.1 in [7] derives a lower bound E[Rr] >
Q(max,cg v, |R|/3T?/?) on regret. It indicates that any online algorithm must suffer this extra
regret to guarantee the DSIC property. The detailed proof is presented in a supplementary file.

5 Evaluating Welfare Increase on Real-world Datasets

In this section, we conduct experiments on four real-world datasets to evaluate the welfare increase
of our proposed protocols.

5.1 Experimental Settings
The real-world datasets we use for evaluation are described as follows.

— Google+ Social Network [37]: It is a sub-network of the Google+ user-user following net-
work which contains 23,628 nodes and 39,242 directed edges. A node represents a user and
a directed edge denotes that one user has the other user in his circles.

— X Social Network [37]: It is a sub-network of the X user-user following network which
contains 23,370 nodes and 33,101 directed edges. A node represents a user and a directed
edge indicates that a user follows another user.

— GitHub Social Network [45]: It is a sub-network of the GitHub user-user following net-
work which contains 37,700 nodes and 289,003 undirected edges. Nodes are developers who
have starred at least 10 repositories and edges are mutual follower relationships between
them.

— Deezer Europe Social Network [46]: It is a sub-network of Deezer which contains 28,281
nodes and 92,752 undirected edges. Nodes are Deezer users from European countries and
edges are mutual follower relationships between them.

In the above four datasets, there are no requesters or suppliers. Thus, we sample four subsets
of users uniformly at random as requesters and suppliers in each dataset. Specifically, we sam-
ple 0.25% users as requesters and 0.25% users as suppliers. Besides, the datasets do not contain
CTRs 0. The CTR of each requester is independently sampled from [0, 1] uniformly at random. We
synthesize the unit valuation of a requester with degree d as

(1 +d/dmax)*

24
and synthesize the unit cost of a supplier with degree d as
| (U d/dnan)?

24

e [0,1], (7)

€ [0,1], (8)
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Fig. 1. Compare the welfare of OptAssign and GreedyAssign across different datasets.

where d;, 4 is the largest degree in the network and A > 0 is a parameter of the function to control
the relationship between degree and unit valuation/cost. Specifically, Equation (7) models that a
requester with a larger degree tends to have a larger unit valuation v, and Equation (8) models
that a supplier with a smaller degree tends to have a larger unit cost c;. We use 4 = 0.8 in the
experiments unless otherwise specified.

We compare our protocols with other baselines. We use Optimal to refer to the optimal result
that can be achieved under the setting with full knowledge, i.e., CTRs, unit valuations and unit
costs are all accessible. We also have the following three heuristic methods: DegradedAssignI,
DegradedAssignII and DegradedAssignIII. They use a framework similar to OptAssign to de-
termine the assignment in each round. The only difference is the step in Line 1 of Protocol 1,
which is to compute the weight e, ; of each edge (r, s) when constructing the bipartite graph. More
specifically, DegradedAssignI use e, s = S, 5)(vr —cs), DegradedAssignII use e, s = S, )0y, and
DegradedAssignIII use e, s = S, ).

5.2 Evaluate OptAssign and GreedyAssign

We compare two protocols, i.e., OptAssign which uses the Hungarian algorithm to find the maxi-
mum weighted matching in Protocol 1, and GreedyAssign which uses the greedy algorithm stated
in Protocol 2 to find the maximum weighted matching, concerning welfare increase and running
time. We evaluate these two protocols on datasets in the setting with full knowledge. From Figure 1,
one can observe that for all the datasets, the welfare increase achieved by GreedyAssign is only
slightly less than that achieved by OptAssign. Moreover, one can observe that the Google+ can
achieve much more welfare increase. The reason is that the requesters and suppliers in Google+
network have a larger average degree.

5.3 Evaluate OnlineAssign

We now evaluate OnlineAssign (Protocol 3) which is designed for the user-centric aspect with
unknown CTRs. We run T = 200 rounds. We assume that for requester r, the observed samples
of CTRs across different rounds are independent and identically distributed Gaussian distribution
with mean 6, and variance 1. For comparison, we also show the cumulative welfare increase of
heuristic method DegradedAssignI, which can be interpreted as a situation where the CTRs of
all the requesters are assumed to be 1 seeing as CTRs are unknown. Figure 2 shows the cumu-
lative welfare increase of different methods. For all the datasets, one can observe that the slope
of the OnlineAssign curve increases with time and converges to the slope of Optimal. This ob-
servation verifies the logarithmic growth of regret stated in Theorem 2. In other words, protocol
OnlineAssign can achieve a near-optimal single-round welfare increase in the later rounds, even
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Fig. 2. Compare welfare increase of different methods.

though the exact values of CTRs are unknown at the beginning. Besides, in each dataset, after
round 20 or so, the curve of OnlineAssign is always above DegradedAssignI and steeper than
DegradedAssignI, which shows OnlineAssign performs much better than the heuristic method
when the time horizon is large.

5.4 Evaluate Truthful Offline Protocol

We evaluate our truthful protocol proposed in Section 4.1 for the platform-centric aspect where
the platform knows CTRs but does not know the unit valuations and unit costs. Recall that the pro-
tocol charges requesters according to Equation (4) and rewards suppliers according to Equation (5).
We compare users’ utilities achieved by truthful reporting and untruthful reporting to verify the
DSIC property. For untruthful reporting, the reports of requesters and suppliers are twisted as
by = av, and bs = fcg respectively, where a, f € R, are twist coefficients. Specifically, we sample
one requester and one supplier uniformly at random from each dataset. The values of twist coef-
ficients @ and f are ranged from 0 to 2, with step size 0.2. Figure 3 shows the utilities of sampled
requesters and suppliers when they use different reporting strategies. For all the datasets and all
the requesters and suppliers, the utilities achieved by untruthful reporting (i.e., twist coefficients
are not 1) are lower than or equal to the utilities achieved by truthful reporting. It implies that
reporting truthfully is a weakly-dominant strategy which maximizes one’s utility.

To show the performance associated with welfare increase, we compare our proposed protocol
with heuristic method DegradedAssignII, which can be interpreted as a situation where the unit
valuations of all the requesters are assumed to be 1 and unit costs of all the suppliers are assumed
to be 0 seeing as unit valuations and unit costs CTRs are unknown. Figure 4 shows the single-
round welfare increase achieved by different methods. For all the datasets, one can observe that the
welfare increases achieved by our proposed protocol are the same as the welfare increase achieved
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Fig. 4. Compare welfare increase of different methods.

by OptAssign (results in Figure 1). This observation verifies the efficient property of our protocol.
Besides, the welfare increase achieved by our proposed protocol are higher than the heuristic
method. Note that the difference between DegradedAssignII and optimum is not too much. The
reason is that the unit valuation of many requesters are closed to 1 and the unit valuation of many

suppliers are closed to 0, which make the assumed situation in DegradedAssignII relatively closed
to real situation.

5.5 Evaluate StrategicOnlineAssign

We evaluate the protocol StrategicOnlineAssign proposed in Section 4.2 for the platform-
centric aspect with unknown CTRs, i.e., the setting where the platform does not know the CTRs,
unit valuations and unit costs. We apply protocol StrategicOnlineAssign on all the datasets for
T = 200 rounds. We vary y, the number of rounds in the exploration phase, to study its impact
on cumulative welfare increase. We also compute the value y* that minimizes the regret upper
bound of Protocol 5 (please refer to supplementary file for the regret upper bound) and ensures
the tightest upper bound given T = 200. For all the datasets, the solution are y* = 26. For com-
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Fig. 5. Compare cumulative welfare increase of different methods and different values of y.

parison, we compare it with heuristic method DegradedAssignIII which can be interpreted as
a situation where the CTRs of all the requesters are assumed to be 1, the unit valuations of all
the requesters are assumed to be 1 and unit costs of all the suppliers are assumed to be 0, see-
ing as all of these are unknown to the platform. Figure 5 shows the cumulative welfare increase
when we use DegradedAssignIII and StrategicOnlineAssign with different values of y. We
can observe that for all the datasets, the protocol using y = y* achieves a larger cumulative wel-
fare increase in the end than using other y values. Besides, compared with DegradedAssignIII,
StrategicOnlineAssign (y = y*) achieves a larger cumulative welfare increase in the end in
all the datasets. However, if T is relatively small (e.g., 50), we can find that the performance of
DegradedAssignIII is also relatively good, especially for the X dataset. We can also observe that,
for all the datasets, the slope of StrategicOnlineAssign (y = y*) in round 200 is steeper than
DegradedAssignIII and similar to Optimal, which implies a near-optimal single-round welfare
increase in the later rounds.

6 Evaluating Scalability and Parameter Sensitivity

In this section, we conduct experiments on two large scale datasets to to evaluate the scalability
and parameter sensitivity of our proposed protocols.

6.1 Experimental Settings
The larger scale datasets we use for evaluation are described as follows.

— Twitch Gamers Social Network [47]: It is a sub-network of Twitch users which contains
168,114 nodes and 6,797,557 undirected edges. Nodes are Twitch users and edges are mutual
follower relationships between them.
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Fig. 6. Evaluating the running time of OptAssign and GreedyAssign.

— Pokec Social Network [51]: It is a sub-network of the Pokec user-user following network
which contains 1,632,803 nodes and 30,622,564 directed edges. A node represents a user and
a directed edge indicates that a user follows another user.

The CTRs 0 of the two datasets are defined same as Section 6.1. And the unit valuation of a
requester is defined same as Equation (7). The unit cost of a supplier is defined same as Equation (8).
In this section, we conduct our experiments in three parts. The part one is to compare two protocols,
i.e., OptAssign and GreedyAssign in welfare and running time. The part two and part three are
to compare protocol OnlineAssign and protocol StrategicOnlineAssign with two baselines
methods (POSTA-TSM [23] and ICT [64]).

6.2 Evaluating Scalability

Note that the computational complexity of our proposed protocols are dominated by the
assignment algorithms, i.e., OptAssign and GreedyAssign. Therefore, evaluating the scala-
bility of proposed protocols boils down to evaluating the running time of OptAssign and
GreedyAssign.

We evaluate the running time of them on Twitch dataset and Pokec dataset with full
knowledge. In this part, we set the sample ratio = 0.15% as default and vary sample ratio
= [0.05%, 0.1%, 0.15%, 0.2%]. We set parameter A = 0.6 as default and vary A = [0.2,0.4,0.6,0.8]
in Equations (7) and (8). We use control variable method to study the impact of sample ratio and
A to the scalability. Figure 6(a) shows the impact of sample ratio on Twitch dataset. Figure 6(a)
shows the running time of OptAssign and GreedyAssign. From Figure 6(a), one can observe
that OptAssign takes much more running time than GreedyAssign does, i.e., around 100 times
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Fig. 7. Impact of sample ratio on the welfare increase of OptAssign and GreedyAssign.

more. When the sample ratio increases from 0.05 to 0.2, the running time increases significantly,
i.e,, increased by around 100 times. One can observe that the impact of sample ratio has similar
results on Pokec dataset as shown in Figure 6(b). Figure 6(c) shows the impact of A on Twitch
dataset. From Figure 6(c), one can observe that OptAssign takes much more running time than
GreedyAssign does, i.e., around 180 times more. When the A increases from 0.2 to 0.8, the running
time has hardly changed. One can observe that the impact of sample ratio has similar results on
Pokec dataset as shown in Figure 6(d).

6.3 Evaluating the Impact of Sample Ratio

We study the impact of sample ratio on the welfare increase of our proposed protocols on the
Twitch dataset and Pokec dataset.

Impact of sample ratio on OptAssign and GreedyAssign. We set 1 = 0.6 as default, and
vary the value of sample ratio to evaluate the impact of sample ratio. From Figure 7(a), one can
observe that under different sample ratios on Twitch dataset, the welfare increase achieved by
GreedyAssign is only slightly less than that achieved by OptAssign, i.e., the difference is less than
1%. When the sample ratio increases from 0.05% to 0.2%, the welfare increase of both GreedyAssign
and OptAssign increases significantly, i.e., approximately 5 times. From Figure 7(b), one can
observe that under different sample ratios on Pokec dataset, the welfare increase achieved by
GreedyAssign is only slightly less than that achieved by OptAssign, i.e., the different is less than
1%. When the sample ratio increases from 0.05% to 0.2%, the welfare increase of both GreedyAssign
and OptAssign increases significantly, i.e., approximately 2 times more.

Impact of sample ratio on OnlineAssign. We now evaluate OnlineAssign (Protocol 3) which
is designed for the user-centric aspect with unknown CTRs. We run T = 200 rounds. We assume
that for requester r, the observed samples of CTRs across different rounds are independent
and identically distributed Gaussian distribution with mean 6, and variance 1. For comparison,
we show the cumulative welfare increase of two baselines methods POSTA-TSM [23] and ICT
[64]. We set sample ratio = 0.05% and 0.2% respectively. We use control variable method to
conduct the experiments. Figures 8(a) and 8(b) show the cumulative welfare increase under
different sample ratios on Twitch dataset. For the experiment results, one can observe that the
slope of the OnlineAssign curve increases with time and converges to the slope of Optimal.
Besides, under each sample ratio, after round 30 or so, the curve of OnlineAssign is always
above POSTA-TSM [23] and ICT [64] and steeper than POSTA-TSM [23] and ICT [64], which shows
OnlineAssign performs much better than the baseline methods when the time horizon is large.
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Fig. 8. Impact of sample ratio on the welfare increase of OnlineAssign.

Similar experiment results conducted on Pokec dataset are shown in Figures 8(c) and 8(d). Both
experiment results verify the logarithmic growth of regret stated in Theorem 2. In other words,
protocol OnlineAssign can achieve a near-optimal single-round welfare increase in the later
rounds, even though the exact values of CTRs are unknown at the beginning.

Impact of sample ratio on StrategicOnlineAssign. We evaluate the protocol
StrategicOnlin- eAssign proposed in Section 4.2 for the platform-centric aspect with un-
known CTRs, i.e., the setting where the platform does not know the CTRs, unit valuations and
unit costs. We apply protocol StrategicOnlineAssign on all the datasets for T = 200 rounds. We
set y = 20 as default. For comparison, we show the cumulative welfare increase of two baselines
methods POSTA-TSM [23] and ICT [64]. We set sample ratio = 0.05% and 0.2%, respectively. We use
control variable method to conduct the experiments. Figures 9(a) and 9(b) show the cumulative
welfare increase under different sample ratios on Twitch dataset. For the experiment results,
one can observe that the slope of the StrategicOnlineAssign curve increases with time and
converges to the slope of Optimal. Besides, under each sample ratio, after round 20 or so, the
curve of StrategicOnlineAssign is always above POSTA-TSM [23] and ICT [64] and steeper
than POSTA-TSM [23] and ICT [64], which shows OnlineAssign performs much better than the
baseline methods when the time horizon is large. Similar experiment results conducted on Pokec
dataset are shown in Figures 9(c) and 9(d). Both experiment results verify the logarithmic growth
of regret stated in Theorem 2. In other words, protocol StrategicOnlineAssign can achieve a
near-optimal single-round welfare increase in the later rounds, even though the exact values of
CTRs are unknown at the beginning.
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Fig. 9. Impact of sample ratio on the welfare increase of StrategicOnlineAssign.

6.4 Evaluating the Impact of A

We study the impact of A on the welfare increase of our proposed protocols on the Twitch dataset
and Pokec dataset.

Impact of A on OptAssign and GreedyAssign. We set sample ratio = 0.15% as default, and
vary the value of A to evaluate the impact of A. From Figure 10(a), one can observe that under
different A, the welfare increase achieved by GreedyAssign is only slightly less than that achieved
by OptAssign, i.e., the different is less than 1%. When the A increases from 0.2 to 0.8, the welfare
increase of both GreedyAssign and OptAssign decreases significantly, i.e., approximately 33%.
Figure 10(b) shows the impact of A on Pokec dataset. From Figure 10(b), one can observe that under
different A, the welfare increase achieved by GreedyAssign is only slightly less than that achieved
by OptAssign, i.e., the difference is less than 1%. When the A increases from 0.2 to 0.8, the welfare
increase of both GreedyAssign and OptAssign decreases significantly, i.e., it is approximately
halved.

Impact of A on OnlineAssign. We now evaluate OnlineAssign (Protocol 3) which is designed
for the user-centric aspect with unknown CTRs. We run T = 200 rounds. We assume that for
requester r, the observed samples of CTRs across different rounds are independent and identically
distributed Gaussian distribution with mean 0, and variance 1. For comparison, we show the
cumulative welfare increase of two baselines methods POSTA-TSM [23] and ICT [64]. We set
A = 0.2 and 0.8 respectively. We use the control variable method to conduct the experiments.
Figures 11(a) and 11(b) show the cumulative welfare increase under different A on Twitch dataset.
For the experiment results, one can observe that the slope of the OnlineAssign curve increases
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Fig. 11. Impact of A on the welfare increase of OnlineAssign.

with time and converges to the slope of Optimal. Besides, under each A, after round 40 or so, the
curve of OnlineAssign is always above POSTA-TSM [23] and ICT [64] and steeper than POSTA-TSM
[23] and ICT [64], which shows OnlineAssign performs much better than the baseline methods
when the time horizon is large. Similar experiment results conducted on Pokec dataset are shown
in Figures 11(c) and 11(d). Both experiment results verify the logarithmic growth of regret stated
in Theorem 2. In other words, protocol OnlineAssign can achieve a near-optimal single-round
welfare increase in the later rounds, even though the exact values of CTRs are unknown at
the beginning.

ACM Trans. Web, Vol. 19, No. 2, Article 20. Publication date: May 2025.



Online Incentive Protocol Design for Reposting Service in Online Social Networks 20:25

S Optimal 2| | - Optimal
’ —— StrategicOnlineAssign 81 —— StrategicOnlineAssign
—— POSTA-TSM —— POSTA-TSM

b
o

41— ICT | — ICT

£y

e
W
|

welfare increase
l‘v -

welfare increase
>
=)

e
>
"
o
:

0 50 100 150 200 0 50 100 150 200

repost round repost round
(a) =02 (b) A=0.8
----- Optimal 1.6 -——-- Optimal
g 247 StrategicOnlineAssign 8 —— StrategicOnlineAssign
< —— POSTA-TSM < —— POSTA-TSM
) @ 1.2
~ 1.84 — ICT - — ICT
[3) Q
E E
> 12 2 081
= =
S S
D 0.6 o 041
S 3
0.0 0.0
0 50 100 150 200 0 50 100 150 200
repost round repost round
(c) A=0.2 (d A=0.8

Fig. 12. Impact of A on the welfare increase of StrategicOnlineAssign.

Impact of 1 on StrategicOnlineAssign. We evaluate the protocol StrategicOnlineAssign
proposed in Section 4.2 for the platform-centric aspect with unknown CTRs, i.e., the setting
where the platform does not know the CTRs, unit valuations and unit costs. We apply protocol
StrategicOnlineAssign on all the datasets for T = 200 rounds. We set y = 20 as default. For
comparison, we show the cumulative welfare increase of two baselines methods POSTA-TSM
[23] and ICT [64]. We set A = 0.2 and 0.8 respectively. We use control variable method to
conduct the experiments. Figures 12(a) and 12(b) show the cumulative welfare increase under
different A on Twitch dataset. For the experiment results, one can observe that the slope of the
StrategicOnlineAssign curve increases with time and converges to the slope of Optimal.
Besides, under each A, after round 25 or so, the curve of StrategicOnlineAssign is always
above POSTA-TSM [23] and ICT [64] and steeper than POSTA-TSM [23] and ICT [64], which
shows OnlineAssign performs much better than the baseline methods when the time horizon
is large. Similar experiment results conducted on Pokec dataset are shown in Figures 12(c) and
12(d). Both experiment results verify the logarithmic growth of regret stated in Theorem 2.
In other words, protocol StrategicOnlineAssign can achieve a near-optimal single-round
welfare increase in the later rounds, even though the exact values of CTRs are unknown at the
beginning.

7 Related Work

This section will discuss research works related to this paper from application perspective and
methodology perspective.
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7.1 Application Aspect

Social advertising. Numerous existing works [1, 14, 21, 43] focus on boosting the content
visibility for users who are product sellers, whose target can be categorized into the field of
social advertising [4, 31]. Social advertising models are typically employed by platforms such
as X, Instagram, Weibo and Facebook through broadcasting [27, 49, 55, 60, 61]. The behavior
of “reposting” content is the most typical type, which can be a video, an image, or simply a
textual post containing an advertising message or idea to spread. The influence of reposting has
been studied broadly [48, 58, 59, 62]. Some recent works [31, 57, 64] also study the rewarded
reposting in OSN. Chouaki et al. [12] proposed a comprehensive approach using data donations
to capture a realistic and detailed picture of news consumption. Swift et al. [50] addressed the
fairness and efficiency in content spread across different demographic groups in social networks.
Zheng et al. [66] studied maximizing revenue and welfare while addressing the challenges of fair
reward distribution among suppliers. In short, social advertising as an emerging marketing model,
is powerful to boost the visibility of contents (including ads), which can bring monetization
opportunities not only to the advertisers but also to the platform and its users.

Assignment mechanism. We then introduce several applications related to our reposting ser-
vice concerning the assignment aspect. The first application that is related to assignment is crowd-
sourcing. Crowdsourcing has attracted extensive attention from both academia and the industry
[22, 36, 54]. Its core function is task assignment, i.e., assigning tasks to suitable workers, so that
the total payoff from these assignments is maximized. To this end, maximum weight matching
algorithms are often used to maximize the total payoff. There have been many successful crowd-
sourcing platforms such as Amazon Mechanical Turk (MTurk) and Upwork. Apart from the
assignment aspect, crowdsourcing also needs to design proper incentive mechanisms to attract
users to participate and judiciously leverage the supply and demand in the system. The second re-
lated application is sponsored search auction (SSA) [7] which is also a similar problem to ours
due to the way of modeling factors such as CTRs, valuations of requesters, costs of suppliers and
welfare. Liu et al. [33] proposed a method to ensure a balance between task diversity and assign-
ment accuracy. Huang et al. [23] proposed a heuristic algorithm for maximizing task utility and
stable online matching, incorporating both offline and online task assignment scenarios. However,
solutions in SSA cannot be applied to our problem for the following major reasons: (1) SSA simply
uses a greedy assignment rule while our assignment rule is matching-based; and (2) SSA involved
one-side private information while our problem has two-sides private information (unit valuations
and costs).

7.2 Methodology Aspect

Maximum weighted matching. The maximum weighted matching (MWM) problem serves
as a building block of our proposed protocols. The MWM problem is to find a set of vertex-disjoint
edges with maximum weight in given a weighted bipartite graph. In the 1950s, Kuhn [29] and
Munkres [39] developed the Hungarian algorithm to solve the MWM problem. Later, Edmonds
and Karp [16] observed that implementing the Hungarian algorithm for MWM amounted to com-
puting single-source shortest paths n times on a non-negatively weighted graph. Thus, the run-
ning time of their algorithm depends on the implementation of Dijkstra’s algorithm [17, 24, 52, 53].
Faster algorithms are proposed when the weights are bounded integers in [-N, N|, Duan and Su
[15] present a new scaling algorithm that runs in O(m+v/nlog N) time, with the constraint that
weights are integers within the range of [0, N]. Angriman et al. [3] presented a batch-dynamic
algorithm for maintaining a 1/2-approximation of maximum weighted matching in fully dynamic
graphs, highlighting its practical efficiency in handling large-scale updates with time complexity
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O(m + n). Koana et al. [28] extended kernelization techniques to maximum-weighted matching,
proposing efficient data reduction rules that significantly speeded up existing algorithms, and its
time complexity is O(mn log n). Chaudhary and Zehavi [10] explored the parameterized complexity
of acyclic matchings, providing significant insights into maximum weighted matching in various
graph classes.

Online mechanism design. For another research line, our work is closely related to com-
binatorial multi-armed bandit (CMAB), mechanism design and MAB mechanism design.
Combinatorial multi-armed bandit [11, 18] is a variant of the classic MAB model [9], where
multiple arms (a.k.a. a super arm) can be pulled in each round in contrast. Basu and Sankararaman
[8] introduced a mechanism for double auctions where both buyers and sellers learned their valu-
ations through bandit feedback. Min and Russo [38] and Li et al. [30] developed bandit algorithms
with theoretical guarantees for nonstationary environments, focusing on adapting to changing re-
ward distributions over time. Zheng et al. [65] proposed a neural network-based bandit algorithm
that efficiently handled non-stationary environments and context-dependent reward structures
for combinatorial decisions. Zhang and Luo [63] explored online learning strategies for predicting
click-through rates in contextual PPC auctions to maximize revenue and minimize regret. For
the user-centric social aspect, we customize the framework of CMAB to our setting by taking an
assignment as a super arm. One difference is we have defined a valid assignment profile, which
means not all the combinations are valid. Mechanism design [41, 42, 44] aims to incentivize players
to act truthfully. Vickrey-Clarke-Groves (VCG) mechanism [13, 19, 56] is one of the most well-
known auction mechanisms. Lyu et al. [34] investigated using offline reinforcement learning to
design dynamic mechanisms in VCG auctions, emphasizing the balance between pessimistic and
optimistic strategies. Kandasamy et al. [26] presented a bandit-based approach to VCG mechanism
design, where agents’ values were learned over time to ensure truthful reporting and efficient
outcomes. Our algorithms in a platform-centric setting are variants of the VCG mechanism. MAB
mechanism is in the intersection of the above two fields. The traditional MAB model simply
assumes that all arms are static choices. However, in many applications [2, 35], the arms can repre-
sent rational and selfish individuals. Thus, mechanism design has been applied in the MAB context
to deal with the interplay between online learning and the strategic players, leading to MAB
mechanisms [32].

8 Conclusion and Future Work

In this study, we have developed and analyzed online incentive protocols for reposting services in
online social networks (OSNs). Our work addresses the need for effective mechanisms to boost con-
tent visibility through reposting, focusing on both user-centric and platform-centric aspects. From
a user-centric perspective, we formulated the reposting problem as a welfare maximization task,
where the goal is to optimize the assignment of suppliers (users willing to repost) to requesters
(users seeking reposts) based on their click-through rates (CTRs), valuations, and costs. Our pro-
posed online learning protocol OnlineAssign, which employs a combinatorial multi-armed ban-
dit approach, effectively balances the exploration-exploitation tradeoff. We demonstrated that this
protocol achieves sub-linear regret, ensuring that the performance asymptotically approaches the
optimal solution. For the platform-centric aspect, where users’ valuations and costs remain private,
we designed an “explore-then-commit” online protocol StrategicOnlineAssign. This protocol
not only estimates the unknown parameters but also guarantees truthfulness through a carefully
crafted charging and rewarding scheme by using the Vickrey-Clarke-Groves (VCG) mechanism.
We proved that our protocol maintains a sub-linear regret, providing robust performance in real-
istic settings where user behaviors and preferences are not fully known. Extensive experiments
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on six public datasets validated the efficiency and effectiveness of our proposed protocols. The
results highlighted the superiority of our approach in terms of welfare maximization and compu-
tational efficiency, offering fundamental insights into how social network structures influence the
efficacy of reposting services. Future work can explore the integration of more sophisticated ma-
chine learning models to predict user behavior and further enhance the accuracy of CTRs estimate.
Additionally, extending our protocols to handle dynamic and evolving user interactions in OSNs
would be a valuable direction for subsequent research.
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