On Service Replication Strategy for Service
Overlay Networ ks

Kevin Y.K. Liu', John C. S. Lui', and Zhi-Li Zhang?

! Dept. of Computer Science & Engineering, The Chinese University of Hong Kong,
Shatin, Hong Kong
{ykl'i u, csl ui }@se. cuhk. edu. hk
2 Dept. of Computer Science, University of Minnesota,
Minneapolis, MN 55455
zhzhang@s. um. edu

Abstract. The service overlay network (SON) is an effective means to de-
liver end-to-end QoS guaranteed applications on the current Internet. In [5],
authors address the bandwidth provisioning problem on a SON, specifically,
in determining the appropriate amount of bandwidth capacity to purchase
from various autonomous systems so as to satisfy the QoS requirements of
the SON’s end users and at the same time, maximizes the total revenue of
operating the overlay network. In this paper, we extend the concept of the ser-
vice overlay network. Since traffic demands are time varying and there may be
some unexpected events which can cause a traffic surge, these will significantly
increase the probability of QoS violation and will reduce the profit margin of
a SON. To overcome these problems, we propose to replicate services on the
service gateways so as to dynamically adapt to these traffic surges. We show
that the service replication problem, in general, is intractable. We propose an
efficient service replication algorithm which replicates services for a subset
of traffic flows. Under our replication strategy, one does not need to increase
the bandwidth capacity of underlying links and at the same time, be able to
increase the average profit for the overlay network. Experiments are carried
out to illustrate that replication algorithm provides higher flexibility during
traffic fluctuations and can quickly find a near-optimal solution.

Keywords: provisioning and quality assurance, quality of Service Management,
Overlay networks, virtual topologies and VPN services.

1 Introduction

The Internet is being used for many different user activities, including emails, soft-
ware distribution, audio/video entertainment, e-commerce, and real-time games. Al-
though some of these applications are designed to be adaptive to available network
resources, they still expect different levels of services from the network in order

* This research is supported in part by the RGC Grant CUHK 4220/01E.

to have good performance. However, the primary service provided by the Internet
is the best-effort service model which does not perform any service differentia-
tion. Therefore end-to-end quality-of-service (QoS) guarantees are difficult to main-
tain. Another reason for the difficulty in providing end-to-end QoS guarantees is
that the Internet is organized as many different autonomous systems (ASs) wherein
each AS manages its own traffic, performance level and internal routing decisions.
These autonomous systems have various bilateral business relationships (e.g., peer-
ing, provider-customer) for traffic exchange so as to maintain the Internet global con-
nectivity. Since data traffic usually traverses multiple autonomous systems, it is dif-
ficult to establish multi-lateral business relationship which spans many autonomous
systems. Therefore, services which need end-to-end QoS guarantees are still far from
realization and the above mentioned problems hindered the deployment of many time
sensitive services on the Internet.

In [5], authors advocate the notion of service overlay network (SON) as an effec-
tive mean to address problems of providing end-to-end services. A SON is an over-
lay network that spans many autonomous systems. In general, the SON purchases
bandwidth with certain QoS guarantees from all ASs that the overlay network spans.
This way, a logical end-to-end service delivery infrastructure can be built on top of
the existing network infrastructure. On this logical overlay network, SON provides
different types of time sensitive services (e.g., video-on-demand, video/audio multi-
cast, VoIP, ..., etc). SON offers these services to different users who pay the SON
for using these value-added services. [11,8, 4,2, 12] are some examples of SON.

In deploying a service overlay network, one has to address the bandwidth pro-
visioning problem so as to reduce the operating cost and to maximize its profit. In
particular, one needs to decide the appropriate amount of bandwidth to purchase
from the underlying autonomous systems so as to provide end-to-end value-added
QoS sensitive services to different users and at the same time, recovering the cost
of deploying an overlay network. In [5], authors formulate a mathematical model
for the bandwidth provisioning problem by considering the stochastic traffic demand
distribution, bandwidth costs and the level of QoS guarantees. Note that once the
bandwidth provisioning is carried out, the overlay network is committed to a topol-
ogy wherein each link [in the overlay network has a fixed bandwidth capacity of ¢;
(units in Mbps). The capacity of each link is fixed until the next bandwidth provi-
sioning instant®.

Since traffic is time varying and stochastic in nature, it is possible that there
will be a sudden surge on traffic due to some unexpected event (e.g., a popular pay-
per-view sport or musical event). This traffic surge may not be well-represented or
characterized in the original measured traffic distribution that was used for the band-
width provisioning. In this case, the allocated bandwidth for the SON may not be
sufficient to provide the end-to-end QoS guarantees. This translates to lower profit

3 In [5], the authors also address the dynamic bandwidth provisioning problem, however it is
technically difficult to implement [7].

for the SON operator since the operator needs to pay for the penalty for these QoS
violations.

To solve this problem, we propose a methodology to replicate services on nodes
of a SON so as to make the overlay network more adaptive to traffic flow varia-
tion. Rather than using the dynamic bandwidth provisioning approach as suggested
in [5], we propose to use the static bandwidth provisioning cost model (which is usu-
ally more cost effective than the dynamic bandwidth provisioning cost model) and
dynamically replicate services on the SON so as to reduce the operating cost and
reduce the probability of violating the end-to-end QoS guarantees.

The paper is organized as follows: In Section 2, we introduce the background
and the architectural framework of the service overlay network. In Section 3 we
formulate the replication problem of a SON and present our replication algorithm.
In Section 4 we present the numerical experiment results and show the effectiveness
of the replication algorithm. Finally, we conclude our paper in Section 5.

2 Background on SON

In this section, we provide the necessary background on a service overlay network
and the bandwidth provisioning problem.

Table 1 illustrates the notations used for describing the bandwidth provisioning
problem.

Parameter Remarks
N the set of all nodes in the SON.
L the set of all links in the SON.
R the set of all source-destination (SD) paths in the SON.
ol a non-negative random variable describing the traffic flow on link [€ L.
D average traffic flow on link I € L.
e allocated capacity (Mbps) on link [€ L.
®;(c;) |cost per unit of time for reserving ¢; amount of bandwidth for link [€ L.
er revenue for carrying one unit of traffic flow along a SD path r € R.
T penalty of QoS violation for one unit traffic flow on SD path r € R.

Table 1. Notations

A SON is a logical overlay network with a set of nodes A and a set of links L.
Each node in AV is a service gateway which performs service-specific data forward-
ing and control functions. A service gateway is a physical end host on the Internet,
for example, a server controlled and managed by the SON operator. A link in £ is a
logical connection between two service gateways and this logical link is an IP level
path provided by the underlying autonomous system(s). The advantages of the SON
architectural framework are: 1) one can purchase different bandwidth for different

links in the SON; and 2) one can bypass congested peering points among ASs and
thereby provide end-to-end QoS guarantees.

Bandwidth provisioning problem [5, 6, 10] is one of the major issues in designing
a service overlay network. To guarantee the delivery of end-to-end services, the SON
needs to purchase sufficient amount of bandwidth for each (logical) link from differ-
ent underlying ASs so that certain QoS guarantees can be maintained. The bandwidth
provisioning problem for a SON is to determine the appropriate amount of bandwidth
to purchase for each of its links such that the QoS sensitive traffic demand for any
source-destination path in R can be satisfied and at the same time, the total net profit
of the SON is maximized.

In [5, 6], authors provide the formal mathematical framework for performing the
bandwidth provisioning. Given a network topology A and £, the source-destination
(SD) path requirements in R, the stochastic traffic demand {p,.} for eachr € R, and
the routing method, the model [5, 6] provides an lower bound of expected net profit
for the service overlay network.

Let » denote a path in the source-destination path set R. Assume that the traffic
demand distribution on path r is known 4 and traffic of all paths in R is described by
the stochastic traffic demand matrix {p,.}, the total net income for the SON, denoted
by the random variable W, can be expressed as:

{pr Z €rPr — Z Di(cr) Z mrprB {pr ®

r€R leL TER

where >~ erp, is the total revenue received by a SON for carrying {p, } traffic in
R > e Pi(cy) is the total bandwidth cost that a SON must pay to all its underlying
autonomous systems; > . m-p-B-({p-}) is the total penalty that a SON suffered
when the QoS guarantees for those traffic demands are violated. The variable B,
represents the probability that QoS guarantees for the traffic along path r is violated.
The problem of bandwidth provisioning can thus be formulated as the optimization
of the average total net profit E(W), i.e.:
max E(W). 2
cl

In other words, determining the appropriate amount of capacity {¢;} for each link
lel

To derive the lower bound on the average net profit, one additional notation is
introduced: define a very small real number ¢, for each SD path r, define g, > p,
such that f prdp, < 8. Therefore, Pr{p, > p.} < §/p,. This basically says that
pr 1S such that the probability the traffic demand along r exceeds g, is very small,
and thus negligible. Then, E(W) is lower bounded by V' (£, R), wherein:

R) = 3 eope= Y.)= 3 mopeBrlpr)= 3 .1+ 2 20, @)

TER lel TER reER ’-—,aér

4 This traffic demand distribution can be obtained, for example, through long-term observa-
tion and measurement of past traffic history.

Intuitively, Equation (3) can be interpreted as follows: the first term represents the
earning of the SON, the second term is the cost for bandwidth provision on all the
links, the third term is the QoS violation cost conditioning on that the traffic on each
route is bounded by p,-, and the last term is the QoS violation cost for those extremal
traffic, i.e. the traffic exceeding the bound ... Given this model, we then compute
the optimal bandwidth allocation ¢} for all link I € £, by solving that g—x = 0. Thus,
one can find the optimal bandwidth provision of each link I € £ which maximizes
V, the least average profit for a service overlay network.

Note that the above mentioned bandwidth provisioning is only practical in an
off-line manner. That is, once bandwidth is provisioned, it cannot be changed until
the next bandwidth provisioning instance. However, due to difficulties in implemen-
tation and in adjusting the multi-lateral agreements, the period between two band-
width provisioning instants is usually quite long (e.g., days, weeks or even months).
However, during this period, the traffic demand of a SON could fluctuate. This is
especially true for a SON that spans a large geographical area where the time-of-day
effect is significant, e.g., some part of the network is congested during rush hours,
while other part of network is very lightly loaded because it is at a different time
zone. Also, it is possible that there may be a surge in traffic demand due to some
unexpected events, e.g., a popular pay-per-view sport or musical event that attracts
many users. The variation of traffic flow will increase the QoS violation probability
B,.. Therefore, it is crucial for the SON to have the adaptive capability to traffic flow
fluctuation. In this paper, we propose to dynamically replicate services within a SON
S0 as to reduce the traffic demands on “overloaded” links and to maximize the net
income of an SON operator.

3 Replication in SON

Since the time scale of two consecutive bandwidth provisioning instances is gener-
ally quite long, while the traffic demand could change during this period due to some
unexpected events, therefore, it is crucial for an overlay network to have the adaptive
ability to such traffic demand fluctuation. One way to solve this problem via the
static bandwidth provisioning method is to provision more bandwidth for each link
in the SON (e.g., having a smaller value of § and larger value of 4, in Equation (3)).
However, the drawback of this approach is that one has to pay a much higher cost
for bandwidth provisioning. In this paper, we propose a service replication approach
which makes the SON more flexible and adaptive to traffic variation without pur-
chasing extra bandwidth resource from the underlying autonomous systems.

Note that service gateway inside a SON is a network host managed by the SON
operator. The service gateway has sufficient storage space and processing power to
perform the basic packet forwarding function as well as some service-specific func-
tions (e.g., video-on-demand service). The replication strategies make use of these
service gateways and extend their functionalities. Therefore, each service gateway
can be a potential server and deliver the content to users in the SON. In the follow-
ing, we present the service replication problem.

Given the source-destination paths in R, the stochastic traffic demands {p,.} for
all » € R, one can choose a set of demands in R to replicate. An SD pathr € R
consists of a source node s,., a destination node d,., and its stochastic traffic demand
pr along the path r. It is important to point out that a destination node may consist of
a large number of users, i.e., a set of users within the same network edge who wants
to receive a video-on-demand service. In the following context, we use ~y to denote
one replication event. We also introduce the following notations:

loc(y): the node which ~ chooses to install the replicated service.
target(vy) : the SD path that v chooses to replicate.

path(vy) : the new path taken by ~ to deliver the replicated service.

B(7) : the fraction of traffic we need to shift from target(~y) onto path(y).

Consider Figure 1, suppose the replication event ~ is for a SD path r € R and
we choose node ¢ € A to install the replicated service, then target(y) = r and
loc(y) = 1. Let the average traffic demand on r be p,.. After the replication process,
the traffic demand on r will decrease because loc(+y) is serving some of the clients in
r. Therefore, the average traffic demand on r after the replication process is p,.(1 —
B()). The replication process will create a new path(~y) with source node in
loc(y) and destination node in d,. for the replicated service. The traffic on this new
path needs to deliver, on the average, 3(y)p, amount of traffic to a set of users in r.

(1-BW)B,

......... »> target(y)
- - » path(y)
@ loc(y)

Fig. 1. llustration of replication event in a SON.

In general, each node ¢ € A/ may only be able to support a finite set of services.
For example, if path r, carries service a while path r; carries service b. It is possible
that a certain node ¢ can only provide service a but not b due to some storage or
processing constraint. Therefore this node ¢ can target for path r,, but not . So we
denote S; as the set of paths that node ¢ can target for.

Let D denote the set of all replication events v. Let R' denote the set of all source-
destination paths of the SON after the replication events D. The single source, single

destination replication is to find a set of replication events D which maximizes the
increase in (the lower bound V' of) the total net income E (W) of SON by performing
service replication, i.e., to maximize the following objective function ° :

max V(R - V(R)
subject to: loc(y) €

target(’y) € Sloc('y);
0<B(y) <

Since the replication will not change the sum of all the traffic demands for the
SD paths in R and the total bandwidth cost, we have,

V(RI Z err ﬁr) - Z WrﬁrB
reR reER'
+Zﬂ'r6r 1+Zp7‘ _ZWTT 1+Zpr (4)
reRr ’;ér rer’ ’767“

Theorem 1. The time complexity to solve the optimal replication problem using ex-
haustive search is O(JV|/R')

Proof: Denote the set of all service gateways as N, and N C A Each service gate-
way ¢ has a set of supported services S; C R. Therefore, in the worst case, when
N = N and S; = R, the exhaustive search must try all the possible replications,
therefore we have || ®! choices. |

As shown in Theorem 1, the problem is in general intractable. Therefore we
propose the following heuristic algorithm. Numerical examples will be given in the
next section to illustrate the effectiveness of our approach.

The motivation of our replication is as follows. Note that although the replication
strategy cannot alter the capacity of each link in SON, it may change and divert part
of traffic demands from some of the highly congested links and redirect them to a
replicated server. A key observation is that for a given link [, the total net income is
more sensitive to the change of total traffic demand on this link if 'T is large. In
other words, a small decrease in the traffic demand on link [can cause a large drop
in the total net income of the SON. This is an idea similar to the optimal routing
problem in [3] Therefore we focus on those links for which —ﬂ is large and attempt
to reduce the traffic demands on these links by service repllcatlon In deciding which
path r to select for service replication, we introduce the following notion.

5 We assume the cost of setting-up the replicated server is a small constant overhead which
does not depend on the traffic demand, so it will not influence the total cost in the long run.

Definition 1. Let a path r having n > 1 links I4,1s,...,1,. The “negative first
derivative sum” (NFDS) of the path r is

NFDS(r) = -) %.

i=1

In deciding which path to replicate, we choose a path r that has the most negative
NFDS value.

To determine which node (i.e., service gateway) to place the replication, we adopt
the following strategy. For all the traffic going to a certain user, they must go through
the link connecting that user to the SON (the “last-mile” link). So to place a replica-
tion whose target is path r, we only consider those nodes along path r. The rationale
for this approach is that if one sets up replication on nodes not along the path in r, it
will increase the traffic demands on other links (which may in turn increase the prob-
ability of violating the QoS requirements for those links). Therefore, our replication
strategy only targets those nodes along path r. Figure 2 illustrates this strategy. In

Sr Sy

0,

g et tarGet(y) s taGRA(Y)

Z - - = path(y) - - path(y)

\. @ locly) @ loc(y)
(a) (0)

Fig.2. Illustration of replication in SON. (a) replicating node loc(7y) is not along the path
target(-y); (b) replicating node loc(+y) is along the path target(vy).

Figure 2(a), the replication ~y takes on the path(+y) and we need to increase the traffic
on the first two links along path(+). On the other hand, Figure 2(b) illustrates that a
replication at node ¢ does not increase any extra traffic in the SON.

Based on these observations, the replication algorithm is shown in Figure 3. Our
replication algorithm uses a greedy iterative method to compute one replication in
each iteration. Steps 1-4 create a replication event - based on the NFDS(r) for all
r € R. Once we determine which SD path r to replicate, we need to determine the
fraction of traffic shift from target(y) to path(vy). From theorem 2, we know 3(v)
can be determined if B; is known. Step 9 tests whether the current replication will
benefit the SON. If there is any benefit, it will continue to the next iteration, else it
will stop and output the total income as well as the set of replication events.

Replication Algorithm:

FOR EACH r € R, Compute NFDS(r)
Choose r*€R which has the largest NFDS(r)
Choose the last possible node ¢ € A along path r* such that r € S;
Create replication -y, such that loc(y) = 4, target(y) = r*
Determine the optimal traffic split 3(-y)
D+ DU{y}
R’ + R U {path(v)}
Compute the lower bound average profit V (R')
IF(V(R') > V(R)) THEN
R+ R
V(R) + V(R')
GoTo 1l
. ELSE
RETURN V(R) and D
. ENDIF

NG~ WNE

N
a s whEOo.

Fig. 3. Pseudocode of the replication algorithm.

Theorem 2. Given particular form of B;, 5() can be determined for each v € D
intime O(|£]).

Due to the page limit, we omit the details of the proof here, which is givenin [9]. B

Also, our replication algorithm has the following computational complexity.
Theorem 3. Our replication algorithm has time complexity of O(|R||£]).

Proof: In each iteration of our algorithm, step 1-4 can be finished in O(|£]) time,
from Theorem 2, we can also finish step 5 in time O(|£]), and all the others steps
only O(1) time each. Since one replication serves for one SD path r. In the worst
case, there are | R| replications. Therefore, the total time of our algorithm at the worst
case is O(|R||L]). |

4 Numerical Experiments

In this section we perform numerical studies for different network settings to eval-
uate the proposed heuristic algorithm. The first experiment shows the performance
of our algorithm and the second experiment tests the scalability of our replication
algorithm.

Experiment 1: (Comparison of our replication algorithm with the exhaustive
search approach): In this experiment, we analyze the performance of our repli-
cation algorithm by comparing our solution with the optimal solution obtained by
performing exhaustive search.

Fig. 4. Topology for experiment 1.

Figure 4 shows the SON topology used in this experiment. Table 2 shows the
traffic demands of each SD requirements and links on each SD path. The bandwidth
to be allocated on each link is obtained by using the static bandwidth provisioning
model and shown in Table 3.

Src-Dest|Links Used|Demand
ri|a—g | 1-2-5-8 100
rol a — h | 1-3-6-9 300
rsl a =1 1-3-10 100
ral f =g 7-5-8 200
rs| f—i 7-4-10 300

Table 2. SD paths and the traffic demands for Experiment 1.

The expected total net income using the static bandwidth provisioning model is
4358.8. Now suppose that the traffic demands of all SD paths increase 10%. This
increase in traffic demands will result in larger QoS violation penalty, and conse-
quently the total income will be reduced to 2608.5 without service replication. This
is a significant loss (40%) of profit to the SON.

By using our replication strategy, this situation can be considerably improved
even if we only allow a single replication. Assuming that nodes b, ¢, d, e can accom-
modate any replication, thus, altogether we have 20 possible replications as illus-
trated in Table 4. For example, the first entry in the table implies that if we replicate
path 1 on node b, then the total net income is 2467.5. Obviously, the optimal replica-

10

Link ID| 2 |4,5,6,8,9(3,10(1,7
pr (100|300 |400|500
¢ |175| 467 |607|746

Table 3. Bandwidth provisioned on each link.

tion v* is such that loc(y) = d, and target(y) = ro ,namely, placing the replicated
server on node d for SD path 2 will yield a total income equal to 3058.1, which
reduce the loss of proft from 40% to 30%.

T1 T2 T3 T4 Ts
2467.5|2737.2|2467.5|2569.6(2614.9
2487.0|12670.0{2444.9(2702.4|2798.4
2587.7|3058.1(2315.7(2822.0{2583.7
2354.2|2908.9|2637.9|2593.4(2930.7

3
(‘DD_OCTQ_
[)

Table 4. All possible results for a single replication. The number in boldface (3058.1) is the
optimal solution.

Using our replication algorithm, the NFDS computed for SD path r; to r5 are:
9.0541, 11.2258, 8.3201, 7.6974 and 7.2453, respectively. So r, has the largest
NFDS, and node d is the last node along the patha — b — e — d — h. Therefore, it
will lead us to do replication for r» at node d, that is loc(y) = d, and target(y) = 2
which is same as the optimal replication v* as illustrated in Table 4.

If we allow up to two replications, then all the combinations of possible replica-
tions are shown in Table 5. The optimal solution is D* = {~f,~v5}, where loc(y§) =
d, target(yy) =r2 and loc(v3) =d, target(v3) = rs. The resulting net income is
3422.7.

Using our replication algorithm, we choose replication ¢, (which is the same
as ~y;) in the first iteration. After that, we evaluate the NFDS of each paths again,
and now the value for r; to r5 becomes: 7.2309, 6.8087, 4.8771, 8.2094 and 7.9012,
respectively. Thus, r4 will be chosen, and the last node along the path f —+ ¢ — d —
g path is the node d. Therefore, in our second iteration loc(7y2) = d, target(y2) = ra.
The resulting net income is 3331.0.

Although our result is not the same as the optimal solution, it is still close to the
optimal. In fact, it is the second best among all the possible choices. This implies
that our replication algorithm is very efficient in placing the near-optimal replicated
server.

Experiment 2: (Scalability Analysis): In this experiment we use the topology gen-
erator “BRITE” [1] to generate a more realistic SON network with 40 nodes and
72 links. We randomly create 50 SD paths for this SON as the services request by

11

replication| paths | paths | paths | paths | paths | paths | paths | paths | paths | paths
nodes |ri,ra|T1,73 |T1,7a |71, 75 | T2, T3 | T2, Ta | T2, 75 | T3, T4 | 73,75 | T4, T
(b, b) |2504.2|2189.2|2421.3|2418.2|2504.2| 2702.0 |2669.0({2421.5|2418.0|2401.4
(b,c) |2437.0|2167.5|2590.3|2717.2|2482.5| 2871.2 |2969.5|2590.3(2717.2|2585.0
(b,d) |2825.1|2187.5|2729.0{2502.5{2504.2| 3010.1 |2754.7|2728.9|2502.5|2585.0
(b,e) |2675.9|2360.4|2421.1|2849.5(2675.4| 2701.1 |3101.7|2421.0{2849.5|2717.2
(c,b) |2523.7|2208.7|2468.5|2437.7|2437.0| 2712.4 |2718.6|2277.2|2482.3|2534.2
(c,c) |2437.0{2187.0{2609.8|2736.7|2244.1| 2712.4 |2810.7|2446.0|2572.9(2717.7
(c,d) |2844.6|2207.0|2758.8|2522.0{2437.0| 2860.0 |2687.5|2584.6(2479.9|2717.7
(c,e) |2695.4/2380.0{2450.9|2869.0|2437.0| 2860.0 {2942.9|2159.8|3019.9/2850.0
(d,b) |2624.6|2309.6|2543.1|{2586.6|2825.1| 3022.9 |3198.3(2305.8|2381.9|2653.8
(d,c) |2509.1|2287.9|2758.8/2885.7(2632.1| 3192.2 {3290.4|2438.5(2565.4|2837.3
(d,d) |2945.5(2307.7|2758.8(2622.7|2825.1|3331.0* |3075.6{2558.1|2350.7|2837.3
(d,e)]2796.3|2480.9|2450.9/3017.9(2825.1| 3331.0 |3422.7|2329.6(2697.7|2969.6
(e, b)]2390.1|2075.1|2309.6/2515.1|2675.9| 2873.7 |3080.2|2591.9(2482.3|2509.7
(e,c) |2509.1{1937.0{2525.3|2652.1|2482.9| 3042.9 |3141.2|2760.7|2887.6/2608.8
(e, d) |2945.5|2074.1|2525.3|2389.1|2675.9| 3181.8 |2926.4|2899.3(2672.9|2608.8
(e, e) |2445.112130.0(2378.8|2784.4|2675.9| 2754.8 |3273.4|2474.4|3019.9/2741.1

Table 5. Total income after all possible two replication events. The bold faced value (3422.7)
is the optimal total income after the exhaustive search. The underlined value (3331.0) is the
total income obtained by our replication algorithm, which is the second best among all possible
choices.

users, and each of them has a traffic demand g, = 400. The link capacity are given
as ¢; = 1.2p;. The shortest-path routing is used here. Figure 5 shows the topology of
this network. The total net income of this network before replication is 101210.

Table 6 compares the result after each iteration of our replication algorithm ver-
sus the optimal result that is obtained by enumerating all the possible replications.
Since the search space of the true optimal solution will grow exponentially as the
number of replications grows, it is not feasible to use the enumeration method to
find the optimal solution. So the optimal result at iteration is obtained by enumer-
ating only the possible choices at that iteration.

Iteration|Replication |[Exhaustive

Algorithm | Search
106320 | 106320
108950 | 108950
109370 | 109480
109700 | 110500

A WN -

Table 6. Comparison of expected total income of our algorithm with exhaustive search.

12

Fig.5. A SON network with 40 nodes and 72 links.

In Table 6, we observe that for the first two iterations, our replication algorithm
generates a result that has the same total income as the one produced by the exhaus-
tive search. Even at the 3rd and 4th iterations, our result is still very close to the
optimal result.

Iteration|CPU Time 1|{CPU Time 2
1 0.09 82.43
2 0.11 83.32
3 0.11 84.52
4 0.10 88.28

Table 7. CPU Time 1 is the CPU time used in our replication algorithm; CPU Time 2 is the
time used to compute optimal result.

Another important thing to note is the time complexity of our algorithm. Since
in the real SON network, the replication process must be done dynamically to adapt
to the traffic demand surge, we need an efficient algorithm to determine the right
replication event in a timely manner. Table 7 shows the CPU time used by our al-
gorithm and the time used by the exhaustive search. Our algorithm has much better
performance, and it can still find a near-optimal result.

13

5 Conclusions

We have studied the bandwidth provisioning problem in a service overlay network
(SON), in particular, the static bandwidth provisioning model proposed by Zhang et
al [5, 6]. We extend this model by applying our replication strategy.

Since traffic demands are time varying and there may be some unexpected events
which can cause a traffic surge, these will significantly increase the probability of
QoS violation and will reduce the profit margin of a SON. To overcome these prob-
lems, we propose to replicate services on the service gateways so as dynamically
adapt to these traffic surges. We propose an efficient service replication algorithm
which replicates services for a subset of traffic flows. Under our replication strategy,
one does not need to increase the bandwidth capacity of underlying links and at the
same time, be able to increase the average profit for the overlay network. Our repli-
cation algorithm works well in a wide range of network settings. It can cope with
dynamic flow change on links so as to reduce the QoS violation cost of the network
and at the same time, able to find the appropriate path to replicate.

References

1. BRITE. http://www.cs.bu.edu/brite/.
MIT Resilient Overlay Networks (RON) Project. http://nms.lcs.mit.edu/ron/.

3. D. Bertsekas and R. Gallager. Data Networks, chapter 5.5, pages 451-455. Prentice Hall,
2nd edition, 1992.

4. Y. Chu, S. G. Gao, S. Seshan, and H. Zhang. Enabling conferencing applications on the
internet using an overlay multicast architecture. In ACM SIGCOMM 2001, Apr. 2001.

5. Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service Overlay Networks: SLAs, QoS and
Bandwidth Provisioning. In IEEE 10th International Conference on Network Protocols
(ICNP’02), Paris, France, Nov. 2002.

6. Z.Duan, Z.-L. Zhang, and Y. T. Hou. Service Overlay Networks: SLAs, QoS and band-
width provisioning. Technical report, Computer Science Department, University of Min-
nesota, Feb. 2002.

7. J. Jannotti. Network Layer Support for Overlay Networks. PhD thesis, Department of
Electrical Engineering and Computer Science, MIT, Aug. 2002.

8. J.Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole, Jr. Overcast:
Reliable Multicasting with an Overlay Network. In the Fourth Symposium on Operating
System Design and Implementation (OSDI), pages 197-212, Oct. 2000.

9. K. Y. Liu, J. C. Lui, and Z.-L. Zhang. On service replication strategy for service overlay
networks. Technical Report CS-TR-2003-09, Dept. of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, May 2003.

10. D. Mitra and Q. Wang. Stochastic traffic engineering, with applications to network rev-
enue management. In IEEE Infocom 2003, San Francisco, USA, 2003.

11. J. Touch. Dynamic Internet Overlay Deployment and Management Using the X-Bone.
Computer Networks, pages 117-135, July 2001.

12. J. D. Touch, Y.-S. Wang, and L. Eggert. Virtual Internets. Technical Report ISI-TR-2002-
558, Information Sciences Institute, July 2002.

N

14

