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In this paper, we investigate the online convex optimization (OCO) with long-term con-
straints which is widely used in various resource allocations and recommendation systems.
Different from the most existing works, our work adopts a dynamic benchmark to analyze
the optimization performance since the dynamic benchmark is more common than the sta-
tic benchmark in practical applications. Moreover, compared with many constrained OCO
works ignoring the Slater condition, we study the effect of the Slater condition on the con-
straint violation bounds and obtain the better performance of the constraint violations
when the Slater condition holds. More importantly, we propose a novel iterative optimiza-
tion algorithm based on the virtual queues to achieve sublinear regret and constraint vio-
lations. Finally, we apply our dynamic OCOmodel to a resource allocation problem in cloud
computing and the results of the experiments validate the effectiveness of our algorithm.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Online convex optimization (OCO) is a kind of common framework to model the various real-time problems in the prac-
tical applications including network resource allocation [1–3] and spam filtering [4,5] and therefore it increasingly becomes
a popular topic in the optimization community. Unlike the other methods based on the time-variant optimization [6–8], OCO
can be understood as a multi-round learning procedure between a learner and the unknown environment. At every round,
the learner comes to a decision at from the convex setA � Rd and until the end of this round, the environment will divulge a
time-varying convex loss function lt �ð Þ : Rd ! R to the learner who sustains a loss lt atð Þ. The learner aims to keep the total
loss at a minimum over the time horizon T. To tackle the minimization problem, the widely adopted performance metric is
the regret defined as RegretT ¼

PT
t¼1lt atð Þ �

PT
t¼1lt a

�ð Þ where a� is the optimal solution to the cumulative loss
PT

t¼1lt atð Þ.
Obviously, when the regret is sublinear then the performance of the sequence atf g is not inferior to that of the optimal
sequence a�f g as the round tends to infinity.
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Many early works choose the static sequence a�f g as the optimal benchmark to solve mina2A
PT

t¼1lt að Þ. Although the static
regret is suitable for many real scenarios, such as training the SVM (support vector machine) for security vulnerability detec-
tion [9] and estimating the static vector by sensor network [10–12], it cannot be used to solve the time-varying and dynamic
problems like keeping track of the setpoint in online demand response [13–15] and locating the objects in motion [16,17].
Besides, as a typical dynamic scenario, the network nodes in cloud computing usually move dynamically and therefore they
could affect the distribution of the link loss functions such as link delays. It means that the route selections of the optimal
communication links will become dynamic eventually. As to these problems, it is required to utilize the dynamic regret for

analyzing the optimization performance where the dynamic sequence a�
t

� �T
t¼1 is chosen as the optimal sequence to minimizePT

t¼1lt atð Þ.
The above OCO model belongs to the unconstrained OCO frame, i.e., there is no constraint on decision at , but numerous

realistic OCO situations include some constraints h atð Þ : Rd ! Rmjh atð Þ 6 0m
� �

which are resulted from the undetermined
dynamic demands in diverse application scenes such as the access requirements from the users in data centers [18]. More-
over, we take the aforementioned cloud computing problem as an example again. In cloud computing, for a link optimization
problem, it is required for the decision-maker to simultaneously focus on the optimal link selection and the constraints on
the cumulative power consumption. In general, the optimal communication link keeps changing and the power consumption
is usually presumed as the i.i.d. function. More importantly, for this kind of power consumption produced from different
links, it tends to satisfy the physical power limits of mobile devices that conform to some power allocation policies. The
existing constrained OCO literature mainly focuses on the OCO problems with time-varying constraint ht atð Þ but a small
number of works discusses the effect of the time-invariant constraint h atð Þ. For plenty of OCO problems with time-
varying constraint, if the constraint is satisfied at each round t, a projection step by the round is required to make every sin-
gle at more feasible. As to general convex setA, it is probably computationally expensive for the projection step to resolve an
auxiliary optimization problem. What’s more, in real-world settings, the learner may only care about meeting long-term
constraints. In other words, the sequence atf gTt¼1 should give rise to the bounded accumulative constraint violations after

T rounds. Therefore, the aim of OCO problems with long-term constraints is to minimize
PT

t¼1lt atð Þ and satisfyPT
t¼1ht atð Þ 6 0 at the same time.
To further illustrate the broad potential application value of our dynamic OCOmodel subject to the long-term constraints,

we consider an optimal resource allocation for mobile edge computing. Because the computation traffic is random, in terms
of users, the rates of task arrival could have a drastic fluctuation in time and space. Besides, considering that the wireless
channel is equipped with randomness, it is also possible for the wireless energy acquired from the access point to vary nota-
bly with the time between different users. Therefore, it is required to study the dynamic computation requirements to satisfy
the computation and communication resource allocation at the users. More importantly, the operators may want to maxi-
mize the vendor revenue by deploying finite computing resources such as memory, CPU, or even bandwidth so they need to
guarantee that the dynamic resource violations will not exceed a pre-defined threshold. To address this challenge, we can
cast the problem of resource scheduling in the setting of dynamic OCO subject to the long-term constraints.

For the dynamic OCO problems with long-term constraints, we aim to minimize the cumulative loss while satisfying the
constraints in a long-termmanner, i.e., the long-term constraint is not violated too much. It means that we need to guarantee
that the time-averaged constraint violation approaches zero when the time slot goes to infinity, which can be understood as
a sublinear cumulative constraint violation. Lyapunov optimization [19] is a widely used method in network systems whose
advantage lies in using the system state and network queueing information to implicitly learn and adapt to changes in the
system even not knowing the statistical information of the system. The goal of this method is to satisfy the queue stability
constraints while optimizing some performance objectives like minimization of the average energy. Comparing our opti-
mization goal with Lyapunov optimization, it is straightforward to introduce the ‘‘virtual queues” to successively record
the cumulative constraint violations in our proposed OCO model and then the sublinear constraint violation can be con-
nected to the stability of the virtual queues. More importantly, we can also view the virtual queues as the penalizations
to the violations of the constraints and by applying the key drift-plus-penalty (DPP) technology [19] of Lyapunov optimiza-
tion, we can transform our constrained OCO problem into the DPP minimization problem. According to the above illustra-
tion, in this paper, we combine the virtual queue technique with the dynamic OCO subject to long-term constraints to
achieve the desired optimization performance, i.e., sublinear regret and constraint violation.

Compared with the conventional constrained optimization algorithms like the dual gradient method, the virtual queue
based approach owns a faster convergence rate. Besides, different from the common saddle point method whose step size
parameter is decided by the time frame T, the step size selection for the virtual queue based method is unrelated to T, which
guarantees that for any time including the unknown time point, the online optimization task can terminate. Furthermore, it
means that the performance criterion of the virtual queue based method can be satisfied at the arbitrary time point even
though the online optimization procedure is still running. More importantly, the other methods are just from the perspective
of optimization theory but our method is more meaningful in real scenario, especially in various network systems. To better
exhibit the practical application value and explain how to apply our ideas, we present a few representative examples of
virtual-queue-based dynamic OCO with long-term constraints.
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1.1. Motivating examples

Livecast Services with Cloud-Edge-Crowd Integration. Consider the crowdsourced live cast services (CLS) which lever-
age the cooperation of cloud, edge and crowd technologies. Since resource provision and network conditions are highly non-
stationary and unpredictable, the resource allocation of transmission and online transcoding is dynamic. Moreover, due to
the limited transcoding and link bandwidth resource, the transcoding and transmission rate are subject to the node and link
capacity in the long-time term. Then, we can build a queue model by converting transcoding task allocation to the virtual
queue control problem and the longer the task queue implies the more transcoding workloads. Similarly, we can use another
kind of virtual queue to record the transmission link in the edge servers. Therefore, for this kind of CLS system, we can use
our dynamic constrained OCO model based on the virtual queues to jointly minimizes the usage of transmission resources
like bandwidth and transcoding resources like CPU.

Energy Management for Multiuser Mobile-Edge Computing Systems. Take the power consumption in a multiuser MEC
system with energy harvesting devices as an example. Considering that the data arrivals are not static and the energy har-
vesting is intermittent, the data transmission power consumption in mobile users is dynamic. Besides, when the computa-
tion data produced by the mobile user transmits to the MEC server, the QoS constraints require that the proportion of
unprocessed data in the total arrival data is less than a prescribed threshold and apparently, these constraints should be sat-
isfied in a long time. For this dynamic constrained problem, we can utilize a virtual queue to track the uncompleted data
request of the current time slot and execute this request in the next slot. In this way, we can satisfy the QoS constraint
by stabilizing the virtual queue. Finally, we can utilize the drift-plus-penalty of virtual queue technique to solve the dynamic
power consumption minimization while satisfying the long-term QoS constraints.

Profit maximization problem of the wireless network operator. Consider a network operator that provides wireless
communications services to its own secondary users by acquiring spectrum resources from some frequency spectrum own-
ers and it aims to maximize revenue with pricing andmarket control and minimize the cost with proper resource investment
and allocation. Considering that the downlink communication system has various network characteristics including random
user demand, uncertain sensing spectrum resources and fluctuating spectrum prices, the optimization problem is dynamic.
In addition, when the secondary users detect the currently available spectrum resource, missed detections will lead to trans-
mission collisions with the primary users. To protect primary users transmissions, the operator needs to ensure that the
average collision in each channel does not exceed a tolerable level specified by the spectrum owner, i.e., collision constraint
should be satisfied in long term. For this kind of collision constraint, we can use virtual queues to track the number of col-
lisions happening in the sensing channel and if the virtual queue is stable, it implies that the average incoming rate is no
larger than the average serving rate. This exactly avoids the collision. Therefore, according to our proposed virtual-queue-
based method, we can achieve the optimization goal while satisfying the long-term collision constraints.
1.2. Contributions

In this work, we exploit the virtual queue based approach to tackle the OCO problem with long-term constraints. Com-
pared with recent researches, our work differs in the following two aspects: að Þ We bring forward a dynamic OCO algorithm
utilizing the virtual queues which greatly improves the optimization performance. It should be noted that we choose the
dynamic benchmark sequence to describe the regret since static benchmark is not appropriate to study the non-
stationary system whose potential optimum typically changes. Moreover, our results are functions of the trade-off param-
eter d which can guarantee that the regret and constraint violations have the adjustable upper bound. bð Þ We provide a for-
mal analysis of the Slater condition. While considering OCO with constraints, many papers (e.g.,[22,29,23]) drew their
conclusion by ignoring the Slater condition. However, it is necessary to consider the Slater condition because it is a common
assumption in constrained convex optimization problem and it has an impact on the analysis of convergence time and per-
formance [36,45]. Specifically, the slater condition requires that there exists at least one interior point in the feasible region
to make all inequality constraints are strictly satisfied, i.e., for the constraint function h atð Þ, it is required to exist at least one
point satisfying h atð Þ < 0m rather than h atð Þ 6 0m. Since the Slater condition can ensure that the strictly feasible solution
always exists, it plays a significant role in many practical problems related to the constrained convex optimization. For
example, in engineering, consider an inequality constraint to limit the force that usually satisfies the Slater condition. If
the Slater condition does not hold then for the inequality constraint F2

1=F2 � 0 with F2 > 0, it is possible to have a force
F1 ¼ 0 and it is obviously a unique solution. Considering that this solution is on the boundary of constraint function, it means
that there does not exist the interior point in the feasible region and then the slater condition is not satisfied. However, from
the perspective of the practical requirement, it is meaningless for a force with 0 Newton. Therefore, the slater condition is
natural for the analysis of convex optimization problems with constraints. More application scenarios including low latency
communication in wireless networks [20] and online advertising [21] also assume that the Slater condition holds. In [20], the
slater condition guarantees that the timely throughput constraints cannot be set arbitrarily and must be feasible under some
condition. In [21], the slater condition gives the chance for the investors not to bid for the advertising, i.e., money spent is
zero and therefore they can maintain their budget. Taking all of the above into consideration, we discuss the effect of the
Slater condition on the proposed virtual-queue-based dynamic OCO algorithm and make a comparison. The detailed infor-
mation is shown in Section 4. We sum up the major contributions of this work as follows:
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1. We propose a novel and efficient virtual-queue-based approach to solve the OCO problem subject to time-variant and
long-term constraints. The proposed approach possesses a better convergence rate and can guarantee that the sublinear
optimization performance is not affected by the time horizon. More importantly, our approach is applicable to the

dynamic OCO problem and can achieve dynamic regret bound O max TdD að Þ; T1�d
� �� �

and constraint violation bound

O max T1�d; Td
� �� �

, where D að Þ records the dynamic accumulative change about the optimal benchmark a� and d acts

as a trade-off parameter to make the upper bound of regret and constraint violations adjustable. The analyses and exper-
iments illustrate that our algorithm can obtain sublinear regret and the constraint violations as long as the dynamic accu-
mulative change D að Þ grows sublinearly.

2. Considering that the Slater condition is common in many practical OCO scenarios and can ensure the existence of a fea-
sible solution, we discuss the algorithm under the assumption that the Slater condition holds or not and analyze the
impact of the Slater condition on the optimization performance. We find that the dynamic regrets have the same bound
in both cases. However, the bound of constraint violation is remarkably improved if the Slater condition is satisfied.

Specifically, it can be reduced from O T1�d
2

� �
to O max Td; T1�d

� �� �
when the Slater condition holds.

3. We implement our OCOmodel to the resource allocation problem in cloud computing and conduct the performance anal-
ysis. The experiment results exhibit that the upper bound of constraint violation is smaller when the Slater condition
holds. More importantly, to compare our virtual-queue-based algorithm with state-of-the-art algorithms, we perform
extensive experiments on our synthetic dataset used in the cloud computing problem and two real datasets including
the social network ads dataset and adult dataset. The experiment results validate that our algorithm owns the faster con-
vergence characteristic and the better performance of regret and constraint violation.

We arrange the rest of this paper as following sections. We present the related work and comparisons in Section 2. In
Section 3, we state the OCOmodel subject to long-term constraints and propose an iterative algorithm assisted by the virtual
queue for studying the optimization performance of this constrained model. We analyze the optimization performance and
discuss the effect of the Slater condition in Section 4. Subsequently, we conduct experiment on resource allocation in cloud
computing to validate the feasibility of our algorithms in Section 5. Lastly, we state the conclusion of our work in Section 6.
2. Related work

Although the classical unconstrained OCO formulations are useful in some situations, e.g., signal processing and control
problems [4,24,27,26], it cannot deal with problems with constraints [25,28,32]. Therefore, the constrained OCO problem has
been actively explored recently. The early OCO problems with constraints [31,30] required that the constraints should be
satisfied all the time and did not permit instantaneous constraint violations. However, there always exists a projection oper-
ator in constrained OCO to obtain the feasible variable update at each step, but it could cause too much computational cost
for performing the projection operation if the constraints are complex. Therefore, Mahdavi et al. [29] attempted to solve the
OCO problems with long-term constraints where the constraint is not required to satisfy at each round but in a long-term
manner and they utilized an online gradient descent algorithm to achieve sublinear bound of regret and constraint viola-
tions. Following their results, [23] proposed an adaptive version where they used two adaptive step sizes instead of a single
step size to update dual variables. Besides, they introduced a trade-off parameter d to regulate the bound of performance.
Furthermore, [25] considered OCO problem with a squared long-term constraint and put forward methods to minimize
the convex or strongly convex regret function. For the above works, the constraint functions are all invariant while it is more
common for the optimization problem to be subject to the time-varying constraints in the real life. Therefore, Cao et al. [22]
studied the OCO problem coupled with the time-variant constraints and proposed two algorithms for the gradient and ban-
dit feedback, respectively. Similar works such as [32,43] also attached importance to the time-varying constrained OCO.

The traditional method to solve the constrained OCO problem is the online gradient descent method. The initial work [33]
proposed an algorithm that combined gradient descent with projection under the unconstrained OCO setting and achieved

O
ffiffiffi
T

p� �
regret. Motivated by this work, Mahdavi et al. [29] modified the gradient descent algorithm to be suitable for the

scene under long-term constraint. But for the gradient-descent-based algorithms [23,25,29,33], it usually requires a projec-
tion step at each iteration to return to the feasible region, which results in inefficient computation performance and low con-
vergence rate of the optimization algorithm. Therefore, many constrained OCO literature [35,1] solved the equality or
inequality constraint by adopting the saddle point method which was essentially a primal-dual approach. By alternating
between updates of decision variables (primal variables) and Lagrange multipliers (dual variables), the optimization could
be achieved whiling the constraint was satisfied. However, the step size parameter of the saddle point method is related
to the time horizon, which results in the bounds of optimization performance only hold at the iteration step where the online
procedure terminates.

Different from the above methods, some recent researches [37,38,41,39] designed the OCO algorithm utilizing the virtual
queue approach to tackle time-varying constraints. Virtual queue based technique is originated from the Lyapunov optimiza-
tion in the wireless communication and queueing systems and then extended to OCO by Neely et al. [34]. In virtual-queue-
based method, virtual queues can be regarded as the penalizations to the violations of the constraints and by applying the
143
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key drift-plus-penalty (DPP) technology [19] of Lyapunov optimization, the constrained OCO problem can be transformed
into the DPP minimization problem. Motivated by these works, our work also takes advantage of the virtual queues but
our performance criterion is different from theirs. In [37,38,41], the regret was defined about the static and off-line optimum
which is probably not a suitable optimal solution if the system to be optimized is essentially non-stationary. In our work,
instead of utilizing static offline benchmark, we adopt a dynamic optimal baseline a�

t

� �
which is more widely used in real

life. Although in [39], they also chose the dynamic benchmark, our virtual queue update is totally different from their update
method. In the latest work [40], the authors also presented the virtual queue based algorithm, but their constraint is time
invariant and benchmark is static, which is more simple than our work.

Comparing the performance guarantees of our algorithmwith those of the saddle-point-typed method including modified
online saddle-point (MOSP) approach [1], although we both study the constrained OCO problems with dynamic benchmark
sequence, there are two main differences between our virtual queue technique and their saddle point methods. The first is
the dual variables updating rule and the other is the means of integrating constraints into the Lagrangian. Specifically, MOSP
updates the dual variable to record the variation of the constraint and the step size of the update is dependent on the time
horizon. However, it is common for the practical system to have an unknown time horizon and therefore the online opti-
mization procedure may terminate at some unknown time in many real scenarios. It means that MOSP has a limited scope
of application since its optimization performance can only be guaranteed at the time point when the optimization process
terminates. Whereas our virtual-queue-based method tracks the constraint violations utilizing the virtual queues and it does
not rely on the time horizon. It implies our method can achieve sublinear optimization performance at an arbitrary time
point even when the online procedure is running. Besides, for MOSP, combining the constraint with a dual variable is a
well-worn approach in the saddle-point-typed method but our virtual queue-based method is more challenging because
we transform the time average constraint violation into the stability of virtual queues which is important for many practical

optimization systems. Moreover, compared to the conditions needed in MOSP (D að Þ ¼ O T
2
3

� �
and D h að Þð Þ ¼ O T

2
3

� �
), our

requirement is easier to be satisfied. In a word, these differences make our virtual queue algorithm surpass the saddle point
methods in performance guarantees.

Last but not least, we compare our work with [39] which discussed the constrained OCO with or without the Slater con-
dition. Noting that although our results are similar to theirs, they focus on the distributed network while we mainly consider
the centralized architecture. Because of the distinct benefits of low construction cost and simple deployment architecture,
the centralized system plays an increasing role in addressing optimization problems like resource allocation for the data cen-
ters. Therefore, we consider the centralized optimization in this paper and refer the readers interested in the distributed OCO
problems to [10,11,14,16]. Additionally, the specific update approach in [42] is the gradient-descent-based method whose
convergence characteristic is inferior to our virtual-queue-based algorithm.

To conclude, we make a comparison of our result with the main related works in Table 2 and give some comparison of
results against these alternative approaches. For [37,39,40], these methods are all related to the virtual queue based method.
In [37,40], the results of regret and constraint violations are all fixed while our bounds are all adjustable and therefore we
can always get the better bounds of performance. In [39], the bounds of the regret and constraint violation depend on the
cumulative variation of action and constraint function so our condition for achieving the sublinear results is easier. The
results of [43] are obtained from the primal–dual online algorithm in a distributed setting which is different from our cen-
tralized structure and the results of constraint are obviously worse than ours. Compared with [29] which is based on the
online gradient descent, our virtual-queue-based method is better than theirs. For example, when d ¼ 1

2, our constraint vio-

lation bound is
ffiffiffiffi
T

p
which is smaller than that in [29]. It is consistent with the analysis that OGD needs to perform projection

which results in more constraint violations. [1] is the saddle point typed method and we can see that our condition is easier
to satisfy to obtain the sublinear bounds since the result of regret in [1] is dependent on the accumulative variation of action
and constraint function.
3. Problem statement and new algorithm

In this part, we firstly establish the OCO problem with time-varying and long-term constraint functions and then propose
an online iterative algorithm grounded on the virtual queues to handle this problem.
3.1. OCO problem with long-term constraints

The common framework for OCOwith long-term constraints is represented as follows: At every single round t, the incom-
ing learner chooses a vector at 2 Rd in the convex set A � Rd. After the selection of the decision at , the environment reports
the loss function lt : Rd # R and the constraint function on at to the learner. In this paper, we consider multiple constraints
and define the constraint function in vector form as ht : R

d # Rm. We denote ht;k �ð Þ as the k-th element of constraint vector

function ht �ð Þ, that is, ht að Þ ¼ ht;1 að Þ; . . . ;ht;m að Þ½ �T . Both lt að Þ and ht;k að Þ are determined via the environment and can change
within every round, whereas they are presumed as the convex functions. Moreover, the function lt að Þ and ht;k að Þ are pre-
sumed to possess subgradients l0t að Þ : Rd # Rd and h0

t;k að Þ : Rd # Rd;8a 2 A.
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Table 1
Summary of Main Notations.

at an adaptive parameter at time t

a�
t the per-slot minimizer at time t
V a trade-off parameter used in Lagrangian function

Q tð Þ the virtual queue introduced in this paper
d the dimensionality of vector parameters
m the number of constraint functions

lt að Þ loss function
ht að Þ vector-valued constraint function
a learning rate or stepsize
U the upperbound of ka� bk
C the upperbound of klt að Þj and jht;k að Þj, respectively
S the upperbound of kl0t að Þk and kh0t;k að Þk, respectively

D að Þ PT
t¼1ka�

t � a�
t�1k

D h að Þð Þ PT
t¼1kht að Þ � ht�1 að Þk

Table 2
A Summary of Related Work on Constrained OCO.

Ref. Benchmark VQ Slater Condition Regret Constraint Violation

[29] Static No No O T
1
2

� �
O T

3
4

� �
[43] Dynamic No No O max T1�d; Td

� �� �
O max T

1
2þ

d
2; T1�d

2

� �� �
[37] Static Yes Yes O T

1
2

� �
O T

1
2

� �
[39] Dynamic Yes No O max D að Þ;D h að Þð Þð Þð Þ O max D að Þ;D h að Þð Þð Þð Þ
[1] Dynamic No Yes O max T

1
3D að Þ; T1

3D h að Þð Þ; T2
3

� �� �
O T

2
3

� �
[40] Static Yes Yes O T

1
2

� �
O 1ð Þ

No O T
1
4

� �
[42] Dynamic No Yes O max TdD að Þ; T1�d

� �� �
O max T1�d; Td

� �� �
No O T1�d

2

� �
our work Dynamic Yes Yes O max TdD að Þ; T1�d

� �� �
O max T1�d; Td

� �� �
No O T1�d

2

� �
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We define the cumulative regret as well as the constraint violation for a type of online learning algorithm by:

Reg Tð Þ ¼
PT

t¼1lt atð Þ �
PT

t¼1lt a�
t

� �
and Vio Tð Þ ¼

PT
t¼1ht atð Þ, wherein a�f g representing the optimal benchmark for minimizingPT

t¼1lt atð Þ. Herein, unlike the static sequence chosen by [37,38,40], our work adopts a�
t

� �1
t¼1 to be a dynamic baseline. It can

be seen that compared with the static benchmark, the dynamic benchmark is more appropriate for describing the underlying
optimum of a dynamic system such as tracking a moving target.

In summary, we aim at efficiently generating the vector sequence atf gTt¼1 which minimize the accumulative regret while
satisfying the long-term constraints, namely,
minReg Tð Þ ¼ min
XT
t¼1

lt atð Þ �
XT
t¼1

lt a�
t

� �" #
; ð1Þ

s:t: Viok Tð Þ ¼
XT
t¼1

ht;k atð Þ 6 0; k ¼ 1; . . . ;m: ð2Þ
Here, the action benchmark a�
t

� �
is dynamic and the loss function lt �ð Þ is time-varying. It should be noted that ht;k atð Þ is the k-

th element of constraint vector function ht atð Þ and ht atð Þ � 0 means ht;k atð Þ 6 0; 8k. Clearly, the long-term constraint

Vio Tð Þ ¼
PT

t¼1ht atð Þ � 0 can be transformed to Viok Tð Þ 6 0. Therefore, our goal is to make both regret and constraint violation
sub-linear about T, namely, regarding all k 2 1; . . . ;mf g, we can obtain Reg Tð Þ < O Tð Þ and Viok Tð Þ < O Tð Þ. Then, we can finally

get Reg Tð Þ
T < O 1ð Þas well as Viok Tð Þ

T < O 1ð Þ with the increase of horizon T. It means the time-average regret and constraint vio-
lation will approach zero when T tends to infinity, which guarantees that in the aspect of the optimization performance, the
decision sequence atf g is not inferior to the benchmark a�

t

� �
asymptotically.
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3.2. Dynamic OCO algorithm based on virtual queue

It is important to introduce some technological assumptions before formally proposing our algorithm since they are use-
ful for the subsequent performance analysis.

Assumption 1. (Fundamental Assumption).

a) The decision set A is closed convex subset of Rd, where d is the dimensionality of decision vector.
b) For any a;b 2 A, there exists a constant U > 0 guaranteeing ka� bk 6 U.
c) All loss function lt and the constraint function ht;k are convex and uniformly bounded continuous functions, that is,

there exists a constant C > 0 guaranteeing jlt að Þj 6 C; jht;k að Þj 6 C;8a 2 A; t 2 1; . . . ; Tf g and k ¼ 1; . . . ;m.
d) The subgradients of lt and ht;k are uniformly bounded, that is, there is a constant S > 0 guaranteeing kl0t að Þk 6 S and

kh0
t;k að Þk 6 S;8a 2 A; t 2 1; . . . ; Tf g and k ¼ 1; . . . ;m.
Assumption 2. (Slater Condition). There exist k > 0 and an interior point a 2 A making ht að Þ � �km for any round t.
From Assumption 2, we can get ht;k að Þ 6 �k;8k 2 1; . . . ;mf g. The Slater condition is innate under numerous circum-

stances even when the constraint functions are given offline, i.e., ht;k ¼ hk. Moreover, we can guarantee the existence of
bounded Lagrange multiplier Q tð Þf g when the Slater condition holds [44].

In this paper, the main idea of tackling the constrained optimization problem is the virtual-queue based method that is
essentially a kind of Lagrange multiplier method:
Lt að Þ ¼ Vlt að Þ þ Q tð ÞTht að Þ þ aka� at�1k2; ð3Þ
It means at : arga2A min Lt að Þ. With the preceding decision at�1 and the current virtual queue Q tð Þ, this problem can be
transformed into the following online version:
at ¼ argmin Vlt að Þ þ Q tð ÞTht að Þ þ aka� at�1k2
n o

¼ argmin Vl0t�1 at�1ð ÞT þ
Xm
k¼1

Qk tð Þh0
t�1;k at�1ð Þ

" #T
a� at�1ð Þ þ aka� at�1k2

8<
:

9=
;:
Besides, it is required to update the virtual queue Q t þ 1ð Þ, that is, for k ¼ 1; . . . ;m, it has
Qk t þ 1ð Þ ¼ max Qk tð Þ þ ht�1;k at�1ð Þ þ h0
t�1;k at�1ð ÞT at � at�1ð Þ;0

n o
:

Note that the above update strategy is much the same as the ordinary update of the virtual queue with an additional item
ht�1 atð Þ and therefore the virtual queues Q tð Þ can represent the accumulative constraint violations, that is, it is simple to
transform the bound of the virtual queues into that of constraint violations.

Based on the above analysis, we put forward Algorithm 1 which utilizes the virtual queues. In this algorithm, we want to
maintain and update the dynamic decision sequence atf g as well as the virtual queues Q tð Þf g. The procedure of Algorithm 1
can be summarized as: With the previous iteration at�1 and current virtual queue Q tð Þ, we update at at each round according
to the below update expression:
argmin Vl0t�1 at�1ð ÞT þ
Xm
k¼1

Qk tð Þh0
t�1;k at�1ð Þ

" #T
a� at�1ð Þ þ aka� at�1k2

8<
:

9=
; ð4Þ
and at the same time, update every single virtual queue Qk t þ 1ð Þ for all k ¼ 1; . . . ;m:
Qk t þ 1ð Þ ¼ max Qk tð Þ þ ht�1;k at�1ð Þ þ h0
t�1;k at�1ð ÞT at � at�1ð Þ;0

n o
: ð5Þ
To facilitate the analysis, we introduce scalar ~ht�1;k að Þ : Rd # R to depict the variation of the convex function ht�1;k að Þ and
define
~ht�1;k að Þ ¼ h0
t�1;k at�1ð ÞT a� at�1ð Þ;

~ht�1 að Þ ¼ ~ht�1;1 að Þ; . . . ; ~ht�1;m að Þ
h iT

:

Substituting ~ht�1;k að Þ into (4) and (5), we can obtain the more simple update expression:
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at ¼ argmin Vl0t�1 at�1ð ÞT a� at�1ð Þ þ Q tð ÞT ~ht�1 að Þ þ aka� at�1k2
n o

; ð6Þ

Qk t þ 1ð Þ ¼ max Qk tð Þ þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ;0
n o

: ð7Þ
Many works [40,39] solved the minimization expression based on Eq. (3) to study the constrained OCO problems. In their
work, ltðÞ and htðÞwere used to describe loss function and constraint function, respectively. However, in this paper, we intro-
duce the subgradient l0t�1ðÞ and h0

t�1;kðÞ to minimize the online optimization problem (4) and (5). This slight discrepancy plays
a vital role in analyzing the later performance.

Algorithm 1: Dynamic OCO Algorithm Based on the Virtual Queue

1: Input: trade-off parameter V and stepsize parameter a; primal iterate a0 2 A; initial value Qk 1ð Þ ¼ 0; k ¼ 1; . . . ;m;
maximum iteration T. When each round t ends, report loss function ltf g1t¼1 and constraint function sequences htf g1t¼1

2: for t ¼ 1;2; . . . ; T do
3: obtain at via:

argmin Vl0t�1 at�1ð ÞT a� at�1ð Þ þ Q tð ÞT ~ht�1 að Þ þ aka� at�1k2
n o

4: Calculate each virtual queue Qk t þ 1ð Þ:
Qk t þ 1ð Þ ¼ max Qk tð Þ þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ;0

n o
5: end for

Remark 1. Some recent works [37,38] also made use of the virtual queue based approach for solving the constrained OCO
problem. Howerver, the authors of these works chose the static offline optimal sequence a�f g to study the regret. As
illustrated earlier, when the system is non-stationary, it is improper to use static optimum to investigate the optimal point of
the system. Hence, considering the broader application prospect, we choose dynamic benchmark a�

t

� �
to discuss the regret.
Remark 2. In [39], Cao et al. also focused on the dynamic OCO constrained problem assisted by the virtual queue method.
Similarly, the dynamic sequence a�

t

� �
was used to analyze the minimization problem of regret in their work. However, com-

pared with their method, our optimization algorithm differs in the following two aspects. First, we introduce the subgradient
l0t �ð Þ and h0

t �ð Þ to better analyze the loss function and constraint function, while in [39], they adopted the minimization expres-
sion based on (3) which only contains the loss function lt �ð Þ and constraint function ht �ð Þ. Secondly, our virtual queue updat-
ing method (5) is completely different from theirs.
4. Dynamic OCO algorithm analysis

In this section, under basic Assumption 1, we mainly investigate the dynamic OCO problem with cumulative constraints.
Firstly, we evaluate the performance for Algorithm 1 with the Slater condition and give the upper bounds of regret as well as
constraint violation. Then, we discuss the corresponding results without the Slater condition. By comparison, we summarize
the impact of Slater condition on the constraint violations bound. Finally, according to the aforementioned bounds of per-
formance, we give the sufficient conditions to ensure that Algorithm 1 can make both regret and constraint violations
sublinear.

Firstly, we present a definition and some valuable lemmas for our later performance analysis.

Definition 1. (Lyapunov Drift). For virtual queue Q t , a Lyapunov function F t ¼ 1
2 kQ tk

2
2 is defined for quantifying the size of

the queue backlog at time t. Moreover, a Lyapunov drift D tð Þ is defined as follows for describing the change of the queue
backlog:
D tð Þ :¼ F tþ1 � F t ¼
1
2

kQ t þ 1ð Þk2 � kQ tð Þk2
h i

:

From [37,38], it can be known that for this type of virtual-queue-related problem, drift-plus-penalty (DPP) technique as a
classical tool can be used to analyze the regret but also the constraint violations:
D tð Þ|ffl{zffl}
drift

þakat � at�1k2 þ Vl0t�1 at�1ð ÞT at � at�1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weighted penalty

; ð8Þ
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where D tð Þ is used to evaluate the constraint violation and is closely related to the virtual queues. The weighted penalty

includes the regularization term kat � at�1k2 which is used to smoothen the difference between the coherent actions. The
remaining terms is used to describe the optimization problem. a is the step size parameter. V is acted as the trade-off param-
eter to balance the optimization and the penalty of constraint violations. Moreover, as we all know, for the OCO with long-
term constraints, it is a core work to analyze the DPP expression so as to discuss the bounds of the regret as well as the con-
straint violations. Therefore, we first give some useful lemmas about drift and penalty for our algorithm analysis.

Lemma 1. (Simple upper bound of drift). From the definition of the Lyapunov drift, at the t-th iteration, it has
D tð Þ 6 Aþ Q tð ÞT ht�1 at�1ð Þ þ ~ht�1 atð Þ
h i

;

where A ¼ m
2 C þ SUð Þ2 and m;C; S;U are defined in Table 1.
Proof. Considering that max j;0½ � 6 j2;8j 2 R and then for the virtual queue update expression (5), it has:
Qk t þ 1ð Þ2 6 Qk tð Þ þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ
h i2

¼ Qk tð Þ2 þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ
� �2

þ 2Qk tð Þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ
h i

:

Define qk tð Þ ¼ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ and then get:
Qk t þ 1ð Þ2 � Qk tð Þ2 6 qk tð Þ2 þ 2Qk tð Þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ
h i

:

Sum up the above inequality for k ¼ 1; . . . ;m and utilizing the Definition 1, it has:
D tð Þ 6 1
2

Xm
k¼1

qk tð Þ2 þ
Xm
k¼1

Qk tð Þ ht�1;k at�1ð Þ þ ~ht�1;k atð Þ
h i

:

Note that jqk tð Þj 6 C þ SU and write in vector-valued form, we can get the result in Lemma 1. h

Next, we start to present the lemma about the penalty. Because of the kat � at�1k2 term, the discussion in penalty is
related to minimizing a strongly convex function. Therefore, we introduce the following lemma.

Lemma 2. (Strong convexity analysis). Suppose that z 2 A is an arbitrary vector variable. Then, it has
Vl0t�1 at�1ð ÞT at � at�1ð Þ þ Q tð ÞT ~ht�1 atð Þ þ akat � at�1k2

6 Vl0t�1 at�1ð ÞT z � at�1ð Þ þ Q tð ÞT ~ht�1 zð Þ þ akz � at�1k2 � akz � atk2:
Proof. As we all know, for c-strongly convex function q : A ! R which has a minimization point amin 2 A0 then we have

q aminð Þ 6 q að Þ � c
2 ka� amin k2. Then, considering that the minimization update expression (4) is strongly convex with mod-

ulus 2a and at is a minimization value, therefore we can get the above lemma. h

Besides, in the previous work [37], they considered the regret and constraint violation problem which was partially sim-
ilar to ours. Therefore, we also conclude their results about constraint violation and regret in the following lemmas. Note that
although we present the following lemmas about regret and constraint violations in the related constrained OCO work, it is
still not trivial to analyze the regret and constraint violation bound for our algorithm since our work considers the dynamic
benchmark and the effect of the Slater condition.

Lemma 3. For k ¼ 1; . . . ;m and T P 1, it has
XT�1

t¼0

ht;k atð Þ 6 kQ T þ 1ð Þk þ VS2T
2a

þ
ffiffiffiffiffi
m

p
S2

2a
XT
t¼1

kQ tð Þk:
The above lemma is directly from Corollary 2 in [37]. Moreover, we can get the useful lemma about regret from the proof
of Theorem 1 in [37].
Lemma 4. (The drift bound directly connected to regret [38])..
4.1. Performance based on the Slater condition

In this subsection, we aim to bound the regret and constraint violation of Algorithm 1 under the Slater condition based on
the above lemmas. Now, we begin to discuss the regret function. In this paper, we choose the dynamic benchmark atf g1t¼1

rather than the static benchmark a� in [37,40,38] to bound the regret function. To quantify the temporal variations of func-
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tion sequences, we define D að Þ as the accumulated variation of the optimal sequence a�
t , i.e., D að Þ ¼

PT
t¼1ka�

t � a�
t�1k. Next,

we give the main result regarding the regret of Algorithm 1 in the following theorem.

Theorem 1. (Regret). Supposing t 2 0;1; . . . ; T � 1f g, it has
XT�1

t¼0
lt atð Þ 6

XT�1

t¼0

lt a�
t

� �
þ aU2

V
þ 2aUD að Þ

V
þ TVS2

4a
þ TA

V
;

where D að Þ represents the accumulative change of the optimal dynamic sequence and A is defined in Lemma 1.
Proof. From Lemma 4, let z ¼ a�
t�1 and we can get, for t ¼ 1;2; . . . Tf g,
Vlt�1 at�1ð Þ 6 Vlt�1 a�
t�1

� �
� D tð Þ þ aka�

t�1 � at�1k2 � aka�
t�1 � atk2 þ

V2S2

4a
þ A:
To simplify, we rewrite it as, for t ¼ 0;1; . . . ; T � 1f g
Vlt atð Þ 6 Vlt a�
t

� �
� D t þ 1ð Þ þ aka�

t � atk2 � aka�
t � atþ1k2 þ

V2S2

4a
þ A:
Sum it and we can get
V
XT�1

t¼0

lt atð Þ 6 V
XT�1

t¼0

lt a�
t

� �
�
XT�1

t¼0

D t þ 1ð Þ þ a
XT�1

t¼0

ka�
t � atk2 � ka�

t � atþ1k2
� �

þ T
V2S2

4a
þ A

 !
: ð9Þ
We note
PT�1

t¼0D t þ 1ð Þ ¼ F T þ 1ð Þ � F 1ð Þ and F 1ð Þ ¼ 1
2 kQ 1k

2 ¼ 0;F T þ 1ð Þ ¼ 1
2 kQ T þ 1ð Þk2 P 0. Therefore,
�
XT�1

t¼0

D t þ 1ð Þ � 0: ð10Þ
Besides, we can see that
ka�
t � atk2 � ka�

t � atþ1k2 ¼ kat � a�
t k

2 � katþ1 � a�
tþ1 þ a�

tþ1 � a�
t k

2

6
að Þ
kat � a�

t k
2 � katþ1 � a�

tþ1k
2 � 2katþ1 � a�

tþ1kka�
tþ1 � a�

t k þ ka�
tþ1 � a�

t k
2

� �
6
bð Þ
kat � a�

t k
2 � katþ1 � a�

tþ1k
2 þ 2Uka�

tþ1 � a�
t k;
where (a) is from kn1 þ n2k
2 P kn1k

2 � 2kn1kkn2k þ kn2k
2
;8n1; n2; (b) is from Assumption 1 and drop the positive term

ka�
tþ1 � a�

t k
2. Next, we sum above inequality from t ¼ 0 to T � 1, then
XT�1

t¼0

ka�
t � atk2 � ka�

t � atþ1k2
� �

6 ka0 � a�
0k

2 � kaT � a�
Tk

2 þ 2U
XT�1

t¼0

ka�
tþ1 � a�

t k6
að Þ
U2 þ 2U

XT�1

t¼0

ka�
tþ1 � a�

t k; ð11Þ
where (a) is due to ka0 � a�
0k

2 � kaT � a�
Tk

2 6 U2 by Assumption 1-b. The residual term
PT�1

t¼0 ka�
tþ1 � a�

t k reflects the influence

of our dynamic benchmark in regret function. From the definition D að Þ ¼
PT�1

t¼0 ka�
tþ1 � a�

t k and according to (11), it has
XT�1

t¼0
ka�

t � atk2 � ka�
t � atþ1k2

� �
6 U2 þ 2UD að Þ: ð12Þ
Substituting (10) and (12) into (9), we can get the bound of regret:
XT�1

t¼0
lt atð Þ 6

XT�1

t¼0

lt a�
t

� �
þ aU2

V
þ 2aUD að Þ

V
þ TVS2

4a
þ TA

V
:

h

Next, we start to investigate the bound of constraint violations. In fact, according to (5), the virtual queue is closely related
to the constraint violation. To this end, we first discuss the upper bound of Q tð Þ.

Lemma 5. Suppose Qk 1ð Þ ¼ 0;8k 2 1; . . . ;mf g. When the Slater condition hold, it has for each round t:
kQ tð Þk 6 Aþ VSU
k

þ aU2

kV
þ V þ 1ð Þ

ffiffiffiffiffi
m

p
C þ SUð Þ

2
; ð13Þ
where A is given in Lemma 1.
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Proof. According to Lemma 2, then
Vl0t�1 at�1ð ÞT at � at�1ð Þ þ Q tð ÞT ~ht�1 atð Þ þ akat � at�1k2

6 Vl0t�1 at�1ð ÞT z � at�1ð Þ þ Q tð ÞT ~ht�1 zð Þ þ akz � at�1k2 � akz � atk2:
Note that the definition of ~h represents the variation of a convex function h. Then, we have ~ht�1 zð Þ þ ht�1 at�1ð Þ 6 ht�1 zð Þ.
Adding Q tð ÞTht�1 at�1ð Þ on both side, then we have
Vl0t�1 at�1ð ÞT at � at�1ð Þ þ Q tð ÞT ~ht�1 atð Þ þ ht�1 at�1ð Þ
h i

þ akat � at�1k2

6 Vl0t�1 at�1ð ÞT z � at�1ð Þ þ Q tð ÞTht�1 zð Þ þ akz � at�1k2 � akz � atk2:
Rearranging terms yields
Q tð ÞT ~ht�1 atð Þ þ ht�1 at�1ð Þ
h i

6 Vl0t�1 at�1ð ÞT z � at�1ð Þ � at � at�1ð Þ½ � þ akz � at�1k2 � akz � atk2 � akat � at�1k2 þ Q tð ÞTht�1 zð Þ

6
að Þ
Vl0t�1 at�1ð ÞT z � atð Þ þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ

6
bð Þ
Vkl0t�1 at�1ð Þkkz � atk þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ

6
cð Þ
VSU þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ;
where (a) drops the nonnegative term akat � at�1k2; (b) uses the Cauchy–Schwarz inequality; (c) considers Assumption 1-d
and 1-b. Combining the above result with Lemma 1, we obtain the drift bound directly connected to constraint violations:
D tð Þ 6 Aþ Q tð ÞT ht�1 at�1ð Þ þ ~ht�1 atð Þ
h i

6 Aþ VSU þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ: ð14Þ
From the queue update Eq. (4), we can konw that for every single round t, the maximum variation range of Qk tð Þ is C þ SU.
Therefore, kQ tð Þk can change by at most

ffiffiffiffiffi
m

p
C þ SUð Þ over one slot. Suppose V is a positive integer, when round t satisfies

t 2 0;1; . . . ;Vf g it has kQ tð Þk 6
ffiffiffiffiffi
m

p
C þ SUð ÞV . Subsequently, we use mathematical induction to find the upper bound of

kQ tð Þk denoted as MAX.
First, choose a round T P V and assume that kQ tð Þk 6 MAX always hold when t 6 T.

Next, it is required to ensure that kQ T þ 1ð Þk 6 MAX still holds for t ¼ T þ 1. It should be noted that V P 1 then
T � V þ 1 6 T, and thus kQ T � V þ 1ð Þk 6 MAX according to the above assumption. Here, we consider two following cases:
kQ T þ 1ð Þk 6 kQ T � V þ 1ð Þk and kQ T þ 1ð Þk > kQ T � V þ 1ð Þk. Therefore, it is required to ensure that kQ t þ 1ð Þk 6 MAX in
both cases. As to the case 1, assume kQ T þ 1ð Þk 6 kQ T � V þ 1ð Þk and due to kQ T � V þ 1ð Þk 6 MAX, then we get
kQ T þ 1ð Þk 6 MAX. For the case 2, assume kQ T þ 1ð Þk > kQ T � V þ 1ð Þk. Sum (14) for t ¼ T � V þ 1; . . . ; T then:
F T þ 1ð Þ � F T � V þ 1ð Þ6
að Þ

Aþ VSUð ÞV þ a z � aT�Vk k � z � aTk k2
� �

� k
XT

t¼T�Vþ1

kQ tð Þk

6
bð Þ

Aþ VSUð ÞV þ aU2 � k
XT

t¼T�Vþ1

kQ tð Þk;
where (a) follows Q tð ÞTht�1 zð Þ ¼
Pm

k¼1Qk tð Þht�1;k zð Þ, the Slater condition ht�1;k zð Þ 6 �k and
Pm

k¼1Qk tð Þ > kQ tð Þk; (b) follows

kz � aT�Vk � kz � aTk 6 U2 by Assumption 1-b. Considering that for case 2, kQ T þ 1ð Þk > kQ T � V þ 1ð Þk holds and then
F T þ 1ð Þ � F T � V þ 1ð Þ > 0. Hence, it has
k
XT

t¼T�Vþ1

kQ tð Þk 6 Aþ VSUð ÞV þ aU2: ð15Þ
Because the maximum variation range of the queue norm is
ffiffiffiffiffi
m

p
C þ SUð Þ and then

kQ T þ 1ð Þk � kQ tð Þk 6 T þ 1� tð Þ
ffiffiffiffiffi
m

p
C þ SUð Þ. Therefore,
XT

t¼T�Vþ1
kQ T þ 1ð Þk 6

XT
t¼T�Vþ1

kQ tð Þk þ
XT

t¼T�Vþ1

T þ 1� tð Þ
ffiffiffiffiffi
m

p
C þ SUð Þ:
Substituting (15) and our requirement kQ T þ 1ð Þk 6 MAX into the above inequality, then we have

MAX 6 AþVSU
k þ aU2

kV þ Vþ1ð Þ
ffiffiffi
m

p
CþSUð Þ

2 . Therefore, choose MAX ¼ AþVSU
k þ aU2

kV þ Vþ1ð Þ
ffiffiffi
m

p
CþSUð Þ

2 and then we find the upper bound of
kQ tð Þk. h

From the aforementioned analysis, we finally give the bound related to the constraint violations.
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Theorem 2. (Constraint Violation). Suppose the deterministic Slater condition hold and then for each constraint k 2 1; . . . ;mf g we
have:
XT�1

t¼0
ht;k atð Þ 6 Aþ VSU

k
þ aU2

kV
þ V þ 1ð Þ

ffiffiffiffiffi
m

p
C þ SUð Þ

2
þ VS2T

2a
þ

ffiffiffiffiffi
m

p
S2

2a
Aþ VSUð ÞT þ aU2

k
;

where m is the number of constraints and constant A is defined in Lemma 1.
Proof. Combining Lemma 3 with Lemma 5, we can get the constraint violation bound
XT�1

t¼0

ht;k atð Þ 6 MAX þ VS2T
2a

þ
ffiffiffiffiffi
m

p
S2

2a
XT
t¼1

kQ tð Þk; ð16Þ
where MAX denotes the upper bound of kQ tð Þk. Then, we start to discuss the upper bound of
PT

t¼1kQ tð Þk. From (14), we can
get
D tð Þ 6 Aþ Q tð ÞT ht�1 at�1ð Þ þ ~ht�1 atð Þ
h i

6 Aþ VSU þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ; ð17Þ
and under Slater condition, we can get
D tð Þ 6 Aþ VSU þ akz � at�1k2 � akz � atk2 � kkQ tð Þk: ð18Þ
On both sides, summing from 1 to T, we can get
F T þ 1ð Þ � F 1ð Þ 6 Aþ VSUð ÞT þ a z � a0k k2 � z � aTk k2
� �

� k
XT
t¼1

kQ tð Þk:
Note that kz � a0k2 � kz � aTk2 6 U2 by Assumption 1-b and F 1ð Þ ¼ 0;F T þ 1ð Þ > 0 by Definition 1, then
XT
t¼1

kQ tð Þk 6 Aþ VSUð ÞT þ aU2

k
:

Substituting the above inequality and MAX into (16), we get the upper bound of constraint violation:
XT�1

t¼0
ht;k atð Þ 6 Aþ VSU

k
þ aU2

kV
þ V þ 1ð Þ

ffiffiffiffiffi
m

p
C þ SUð Þ

2
þ VS2T

2a
þ

ffiffiffiffiffi
m

p
S2

2a
Aþ VSUð ÞT þ aU2

k
:

h

Remark 3. Different from [38], in our analysis of constraint violation, we rediscuss the drift bound for the constraint viola-
tion. That is to say, we use (17) rather than Lemma 4 to study the constraint violation. However, in [38], the authors used the
same drift bound in both regret and constraint violation analysis. Therefore, it brings more terms about V and a in the con-
straint violation bound, which is inconvenient to analyze the upper bound of constraint violation. The method similar to ours
is also adopted in Appendix B of [37].
Remark 4. It should be noted that in the proof of Theorem 2, we already get the upper bound for every kQ tð Þk; t 2 1; . . . ; Tf g
according to (13). In [37,38], they directly used this upper bound to calculate the upper bound of

PT
t¼1kQ tð Þk, which equals

T �MAX. However, in this paper, we recalculate the upper bound for
PT

t¼1kQ tð Þk and it is helpful to get tighter upper bound.
Thus, we can get tighter upper bound of constraint violation.

From the above proof process, we realize that the regret bound is independent of the parameter k, i.e., the Slater condition
does not affect the regret bound. Hence, in Section 4.2, we will not discuss the regret bound without the Slater condition.

4.2. Performance without the Slater condition

.

Theorem 3. For each constraint k 2 1; . . . ;mf g, we obtain the constraint violation bound without the Slater condition:
XT�1

t¼0
ht;k atð Þ 6 1þ

ffiffiffiffiffi
m

p
S2T

2a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 2VSUð ÞT þ 2aU2

q
þ VS2T

2a
;

where m is the number of constraints and constant A is defined in Lemma 1.
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Proof. Without the Slater condition, the upper bound of kQ tð Þk changes, i.e., Lemma 5 is not satisfied anymore. However, as
shown in (17), the drift bound directly connected to constraint violation still holds, i.e.,
D tð Þ 6 Aþ VSU þ akz � at�1k2 � akz � atk2 þ Q tð ÞTht�1 zð Þ:
It should be noted that without the Slater condition, we still have ht að Þ � 0;8a 2 A when t 2 0;1;2; . . .f g. Then, we can
transform the above inequality into
D tð Þ 6 Aþ VSU þ akz � at�1k2 � akz � atk2:
Summing up the above inequality from 1 to t (t 6 T), it has
F t þ 1ð Þ � F 1ð Þ 6 Aþ VSUð Þt þ a z � a0k k2 � kz � atk2
� �

6 Aþ VSUð ÞT þ aU2:
According to Definition 1, we can get F t þ 1ð Þ ¼ 1
2 kQ t þ 1ð Þk2 and F 1ð Þ ¼ 0. Then we have
kQ t þ 1ð Þk 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 2VSUð ÞT þ 2aU2

q
: ð19Þ
Based on the above queue bound, we can give the upper bound of constraint violation without Slater condition. Recall
that in Lemma 3, it has
XT�1

t¼0
ht;k atð Þ 6 kQ T þ 1ð Þk þ VS2T

2a
þ

ffiffiffiffiffi
m

p
S2

2a
XT
t¼1

kQ tð Þk;
then substituting (19) into the above inequality, we can get
XT�1

t¼0
ht;k atð Þ 6 1þ

ffiffiffiffiffi
m

p
S2T

2a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 2VSUð ÞT þ 2aU2

q
þ VS2T

2a
:

h

4.3. Performance characterisation

In the above two subsections, we obtain the upper bounds with variable V and a. Now, let a ¼ T;V ¼ T1�d where d 2 0;1ð Þ
and then we further simplify the above results.

Corollary 1. :
XT�1

t¼0
ht;k atð Þ 	 O max T1�d; Td

� �� �
: ð20Þ
Corollary 2. :
XT�1

t¼0
ht;k atð Þ 	 O T1�d

2

� �
: ð21Þ
Remark 5. is always sublinear. Comparing (20) and (21), we can easily sum up the impact of the Slater condition on the

constraint violation. When the Slater condition holds, the constraint violation bound reduces from O T1�d
2

� �
to

O max T1�d; Td
� �� �

.

Corollary 3. :
XT�1

t¼0
lt atð Þ � lt a�

t

� �
 �
	 O max TdD að Þ; T1�d

� �� �
:

Remark 6. Note that the regret upper bound is closely linked to the drift of the benchmark sequence D að Þ but independent
of the Slater condition. The dynamic regret can achieve sublinear bound if the order TdD að Þ is sublinear, i.e., the drift of the
benchmark grows sublinearly with a given upper bound. Moreover, there exists a lower bound O 1ð Þ for the cumulative drift
D að Þ. If there is a constant c 2 0;1½ Þ satisfying D að Þ ¼ O Tcð Þ, we shall set d 2 0;1� cð Þin order to achieve a sublinear regret

bound. Compared to the conditions needed in [1] (D að Þ ¼ O T
2
3

� �
and D h að Þð Þ ¼ O T

2
3

� �
), our requirement is easier to be

satisfied.
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Besides, although the saddle point methods such as the modified saddle-point method (MOSP) in [1] can also
guarantee that the regret and constraint violations grow sublinearly, the performance assurances for these methods
cannot be achieved unless the online process comes to an end. Additionally, the step-size parameters of various saddle-
point methods are all dependent on the time horizon T, but for our Algorithm 1, the setting of the step-size parameter is
unrelated to T, which allows the online optimization procedure to terminate at any time. It means that we can achieve
the performance guarantees of our algorithm at an arbitrary time point even for those before the ending of the online
optimization process.
5. Numerical experiments

In this part, we investigate the optimization performance of Algorithm 1 under a resource allocation problem assisted by
cloud computing. Specifically, we firstly discuss the effect of the drift of the benchmark sequence D að Þ as well as the trade-
off parameter d on the regret and constraint violations. Then, we analyze the effect of the Slater condition when assuming the
Slater condition hold or not. Finally, we compare our algorithm with state-of-the-art optimization algorithms to validate the
effectiveness of our algorithm.

5.1. Experiment setup

Let us consider a resource allocation problem in cloud computing. In general, resource allocation can be regarded as a
kind of OCO application scenario with QoS requirements from users and it can be tackled with instant scene information
in real time. Through adopting cloud computing, massive historical scenario data is sampled to calculate similarities
between the different scenarios using online learning which essentially belongs to the OCO algorithm. By analyzing these
similarities, it is effective to utilize the remedies of resource allocation under historical scenarios to strengthen the resource
allocation under the current scene. Concretely, when the measured data under a scenario reaches, it is worth making a com-
parison between the current scenario and the historical scenario to get the closest result. After that, the best scheme in the
most similar historical scenario is exploited for allocating the radio resources of the current scenario.

The optimization problem of the resource allocation performed at the base station can be modeled as:
min
a2Rd

XT
t¼1

log 1þ exp �ytaTxt
� �� �

;

subject to kak1 6 ct;

ð22Þ
where yt jyt 2 �1;1f gf g represents a sequence of label vector for feature selection. To reduce the dimensionality of fea-
ture vectors, the feature selection is only conducted on the information useful for resource allocation. All useful infor-
mation can be classified as time-varying or time-invariant information. Some constant elements, such as antenna
number, subcarrier number and maximum transmit power should be labelled as time-invariant parameters. Other
fast-changing elements like interference level, user number and channel state information of all users should be labelled
as time-varying parameters since it is necessary to keep on measuring and feeding back this information to the resource
allocator. a represents the weight vector which explains the allocation scheme of the radio resources and each element
of a is used for describing the configuration or allocated amount of radio resources, such as the assigned subcarrier
index and the transmit power level. xtjxt 2 Rd

� �
represents a sequence of training vectors. The log-loss function

expresses the characteristics of possible optimal solutions and exhibits the key performance indicators for resource allo-
cation. Besides, ct > 0 is a qualifying parameter for describing the particular scenario or limitation in resource allocation
like the QoS requirements from the users or the available amount of radio resources. This optimization problem (22) can
be cast into our formulation (1) and (2) by setting lt að Þ ¼ log 1þ exp �ytaTxt

� �� �
and ht að Þ ¼ kak1 � ct . The best scheme of

resource allocation denoted by a� aims to get the best value from the loss function and simultaneously meets all
constraints.

We can generate the time-variant sequences xt ; ctf gTt¼1 as follows. First, in the current scenario, we have known xt and ct
at time t so we can update xtþ1 by xtþ1 ¼ xt þ ht where each element of vector ht 2 Rd is uniformly distributed over � 1

2t2
; 1
2t2

h i
.

Likewise, we can also update ct by ctþ1 ¼ max ct þ gt ;0f g where gt is an uniformly distributed function over � 1
2t2

; 1
2t2

h i
. Sec-

ondly, we can generate atþ1 by following the steps below. With at in hand, we define an auxiliary vector âtþ1 ¼
Q

A at þ mtð Þ
where each element of vector mt is uniformly distributed over � 1

2t2
; 1
2t2

h i
. When the constraint condition is satisfied, i.e.,

kâtþ1k1 6 ctþ1, we let atþ1 ¼ âtþ1. Otherwise, we set atþ1 ¼ ctþ1
âtþ1

kâtþ1k1
. By this way, we can ensure that the all the constraint

have at least one feasible solution. As discussed in former sections, we set the default parameter values of our problem
as: d ¼ 3;m ¼ 1; T ¼ 1000;C ¼ 4; S ¼ 8;U ¼ 2; k ¼ 2;a ¼ T and V ¼

ffiffiffi
T

p
.
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5.2. Performance analysis

In this part, we investigate the effect of the drift of benchmark sequence D að Þ, the trade-off parameter d and the Slater
condition on the performance of Algorithm 1.

Drift of the benchmark sequence D að Þ. From our above setups, we can obtain that the update rate of the vector-valued

decision at is 1
t2
so the order in the difference of neighboring benchmark sequence is also 1

t2
, that is, ka�

t � a�
t�1k2 ¼ O 1

t2

� �
. Then,

when T tends to infinity, the drift D að Þ ¼
PT

t¼1ka�
t � a�

t�1k < O 1ð Þwhich approaches zero. Therefore, from Corollary 3, we can

get the optimal sublinear regret Reg Tð Þ 	 O
ffiffiffi
T

p� �
when the drift is sublinear and d ¼ 1

2. Similarly, under the same condition,

we can get the optimal sublinear constraint violations Viok Tð Þ 	 O
ffiffiffi
T

p� �
from Corollary 1.

To study the effect of D að Þ on the performance of Algorithm 1, we increase the update rate of at to 1
t , i.e., we set the update

rate of mt in the auxiliary vector ât to be an uniformly distributed function over � 1
t ;

1
t


 �
. Thus,

ka�
t � a�

t�1k2 ¼ O 1
t

� �
;D að Þ ¼

PT
t¼1ka�

t � a�
t�1k ¼ O log Tð Þ so we can get the regret bound Reg Tð Þ 	 O

ffiffiffi
T

p
log T

� �
and the con-

straint violation bound Viok Tð Þ 	 O
ffiffiffi
T

p� �
, both of which are sublinear. We apply Algorithm 1 to the optimization problem

(22). Fig. 1 shows the results of the time-average regret Reg tð Þ
t and the time-average constraint violation kViok tð Þk

t . As we see,
the time-average regret and time-average constraint violation both converge to zero when the iteration approaches infinity,
which implies that our algorithm can achieve the desirable sublinear optimization performance. Moreover, from Fig. 1, it
shows the time-average regrets with D að Þ ¼ O log Tð Þð Þ are larger than that with D að Þ ¼ O 1ð Þ and the constraint violations
barely change given the different values of D að Þ, which validate our analysis in Remark 5.

Trade-off parameter d. To study the effect of the trade-off parameter d on the dynamic regret bound and constraint vio-
lations bound, we set the different d as d ¼ 1

4 ;
1
3 ;

1
2 and substitute them into Corollary 1 and 3. We show the results of the time

average regret Reg
T but also constraint violations kViokk

T under the different d in Fig. 2. It can be seen that the convergence rates of
the time average regret and constraint violations decrease faster as d increases. Besides, we can see that the variation trends
of these two performance metrics are the same when d varies. Notably, the above results are acquired under the Slater con-
dition and we omit the corresponding simulation results without the Slater condition since in Section 4, we have pointed out
the optimization performance is better when the Slater condition hold.Fig. 3.

Slater condition. To investigate the effect of the Slater condition on the constraint violations, we run Algorithm 1 with or
without the Slater condition. Set d ¼ 0:5;D að Þ ¼ O 1ð Þ and then according to Corollary 1 and 2, we can get the constraint vio-

lation bound is O T
1
2

� �
when the Slater condition hold and it becomes O T

3
4

� �
when the Slater condition does not hold. As we

can see, in Fig. 3(b), when the iteration arrives at 963, the time average constraint violation kViokk
T is 0.856 when the Slater

condition hold but this value becomes 2.37 if we do not consider the slater condition. It implies that the performance of con-
straint violations enhances significantly when the Slater condition is guaranteed, which validates the theoretical analysis in
Remark 5. Moreover, from Fig. 3(a), we can see that the time average regret Reg

T is the same when the slater condition holds or

not. Actually, with the prescribed parameter, the bound of regret is O
ffiffiffi
T

p� �
which is a constant independent of the Slater

condition. Therefore, this result validates the correctness of the analysis in Remark 6.

5.3. Comparing with state-of-the-art algorithms

To illustrate the advantages of the proposed virtual-queue-based algorithm, we compare Algorithm 1 with some latest
algorithms related to the constrained OCO problems. According to the optimization technique, we divide them into the cat-
egories including the Lagrangian descent method [41], the online gradient descent (OGD) method [23,25] and saddle point
method [1]. Next, we give a brief description of these algorithms as following.


 COLD [41] is a kind of Lagrangian descent algorithm which computes a stationary point of the optimization problem in
each round and then performs the projection whiling updating the constraint by the Lagrangian multiplier.


 Adap [23] adopts the online gradient descent method to transform the OCO problem with the constraint condition into
the primary-descent and dual-descent and then solves this problem by the gradient descent method in an online manner.


 Clipped [25] is an extension of the OGD method which aims to reduce the cumulative constraint violation by clipping the
dual-gradient.


 MOSP [1] is a modified online saddle point approach which takes a modified saddle-point recursion for updating the opti-
mization problem and conducts a dual ascent step at each time slot in a Gauss–Seidel manner.

To compare all the algorithms with our algorithm on the same criteria, we set the following default parameters: Algo-
rithm 1 with d ¼ 0:5 and D að Þ ¼ O 1ð Þ, Adap in [23] with d ¼ 0:5, Clipped in [25] with d ¼ 0:5, COLD in [41] with

K ¼ T
1
2;V ¼ T

3
4 and MOSP in [1] with a ¼ l ¼ T�1

3. Considering that the constraint violations in the other algorithms could
be always satisfied, i.e., the constraint violation could be always negative, we choose Viok Tð Þ rather than kViok Tð Þk as the met-
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Fig. 1. The effect of the drift of benchmark sequence D að Þ.

Fig. 2. The effect of the trade-off parameter d.
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ric to describe the constraint violation. For a clearer comparison, we firstly investigate the evolution of the cumulative regret

Reg Tð Þ ¼
PT�1

t¼0 lt atð Þ �
PT�1

t¼0 lt a�
t

� �
and cumulative constraint violation Viok Tð Þ ¼

PT�1
t¼0 ht;k atð Þ for all the algorithms including

our algorithm. Fig. 4 shows the comparative results of different algorithms about Reg tð Þ and Viok tð Þ, respectively. As shown in
Fig. 4(a), we observe that when iteration round comes to 1000, our algorithm generates the cumulative regret as 1250, but
compared with our algorithm, this value for the other algorithms is: COLD with 1500 (increased by 20%), Clipped with 2750
(increased by 120%), Adap with 2800 (increased by 124%) and MOSP with 4400 (increased by 252%). It is obvious that our
algorithm remarkably improves the regret performance because our algorithm has the smallest cumulative regret. Moreover,
we can also see that the cumulative regret of our algorithm reaches stable in the shortest time slot, which means that our
virtual-queue-based method has better convergence characteristics. From Fig. 4(b), we can see that when the round arrives
at 1000, the cumulative constraint violation is 2 and this value for COLD is 5 which increases by 150% compared with our
result. The other three results are much bigger than that of our algorithm and it exhibits that our algorithm has the better
performance of constraint violation because our upper bound of the cumulative constraint violation is the lowest.

Next, we want to investigate the regret and constraint violation in a time averaged manner because it is beneficial to eval-
uate the final optimization performance. Fig. 5 shows the comparative results of these algorithms and our algorithm. From
Fig. 5(a), we can see that the time average regret of all the optimization algorithms has a downward trend and it can be esti-
mated that all the optimization algorithms will achieve sublinear regret because all the curves are approaching zero when
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Fig. 3. The effect of the Slater condition.

Fig. 4. Comparing our algorithm with the state-of-the-art algorithms in a cumulative manner.
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the time slot increases to infinity. Moreover, it is apparent that the result of our algorithm has the fastest rate to decrease to
zero and therefore it validates that the convergence characteristic of our regret is better than that of the other method. Fig. 5
(b) shows the time average constraint violation of all the algorithms also has a downward trend, which implies that all the
algorithms can achieve sublinear constraint violation. But from the rate of decrease, we can see that our time average con-
straint violation decrease to zero in a short time slot and therefore our algorithm can better satisfy the long-term constraint.

Finally, we want to analyze the reason for these results in more detail. Firstly, we can see that COLD has the closest result
with our result since the COLD is a Lagrangian multiplier method and our virtual-queue-based method is essentially a kind of
Lagrangian method. But compared with our method, the performance or rate of COLD degrades as the horizon increases. Sec-
ondly, Clipped and Adap are both based on the online gradient descent technique and as we discussed before, the gradient-
descent-based algorithms usually require a projection step at each iteration to return to the feasible region, which results in
inefficient computation performance and a low convergence rate of the optimization algorithm. Thirdly, as for the saddle
point methods like MOSP, we have pointed that the step size parameter of the saddle point method is related to the time
horizon, which results in the bounds of optimization performance only hold at the iteration step where the online procedure

terminates. Moreover, compared to the conditions needed in MOSP (D að Þ ¼ O T
2
3

� �
and D g að Þð Þ ¼ O T

2
3

� �
), our requirement is

easier to be satisfied which make our result better.
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Fig. 5. Comparing our algorithm with the state-of-the-art algorithms in a time average manner.
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To further illustrate that our algorithm possesses the better optimization performance, we run our algorithm on two real
datasets including social network ads dataset1 and adult dataset.2 In the above experiment, the label yt and training data xt in
(44) is the synthetic data under the scenario of the cloud computing. But in the real social network ads dataset, it has 400 train-
ing data and each data is with four attributes containing user id, gender, age and estimated salary. In our experiment, we only
use the age as the training attribute and therefore the dimension of xt is 1. The label is chosen from 0;1f g and it is used to indi-
cate whether the user purchases the product. Adult dataset contains 32,500 training data and each data includes 14 attributes,
such as age, eduction and occupation. The label is chosen from 0;1f g and it implies whether a person makes over 50,000 a year.
Likewise, the performance of the optimization algorithm is also evaluated by the regret and constraint violation of the weight
vector at , i.e., we aim to obtain the sublinear regret and constraint violation. For comparison, we also perform the aforemen-
tioned latest algorithms on these two datasets. The default parameter is same as that in the above experiment setup but the
number of iterations T is equal to the number of samples in each datase. Specifically, we set d ¼ 1; T ¼ 400 in social network
ads dataset and give d ¼ 14; T ¼ 32;500 in the adult dataset.

Fig. 6(a) shows the cumulative regret for the different optimization algorithms on the social network ads dataset. From
this figure, we can see that the cumulative regret of our algorithm is also the smallest one and reaches stable in the shortest
time slot. For the other algorithms, the closest result is also COLD since this method is based on the Lagrangian multiplier
technique but the other three algorithms still have the larger cumulative regret. Fig. 6(b) exhibits the cumulative constraint
violation for different algorithms on the social network ads dataset. Different from the former results on the synthetic data-
set, the cumulative constraint violation of our algorithm and COLD is always negative, which implies that our algorithm and
COLD always satisfy the constraint. Besides, the absolute cumulative constraint violation kViok tð Þk of our algorithm is smaller
than that of COLD, which contributes to generating less loss when the constraint has been satisfied. For the online gradient
descent method like Clipped and Adap, we can see that they all keep the cumulative constraint violation around zero and it
means that they can also satisfy the constraint in the long term. For MOSP, it causes the largest result. To present the opti-
mization performance more intuitively, we also plot the regret and constraint violation in time average manner in Fig. 7.
Fig. 7(a) shows that the time average regret for all the algorithms are around zero and it can be estimated that all the algo-
rithms could achieve the sublinear regret. But we can still observe that our algorithm has the lowest result and can tend to
zero in the shortest time slot, which validates that our algorithm has the best regret performance. From Fig. 7(b), we can
observe that the time average constraint violation of our algorithm and COLD are always negative so the constraint is always
satisfied. The results of Clipped and Adap are both around zero so the long-term constraint is satisfied. For MOSP, the time
average constraint violation is approaching zero so MOSPmight achieve the sublinear constraint violation eventually. Appar-
ently, all the observations on the social network ads dataset are consistent with the former analysis for the synthetic dataset,
which further validates the advantages of our algorithm.

Fig. 8 exhibits the cumulative regret and constraint violation for the different algorithms on the adult dataset. The results
are similar to that on the social network ads dataset and also illustrate that our algorithm achieves the better performance of
regret and constraint violation. However, it should be noted that compared with the synthetic dataset and the social network
ads dataset, the training data and its dimension in the adult dataset are both much more than the corresponding value in the
1 https://www.kaggle.com/rakeshrau/social-network-ads.
2 https://archive.ics.uci.edu/ml/datasets/adult.
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Fig. 6. Cumulative performance of different algorithms on the social network ads dataset.

Fig. 7. Time average performance of different algorithms on the social network ads dataset.
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other two datasets so our loss is also much more than that of the other two datasets. More importantly, we adopt a new way
to evaluate the performance of regret. According to the definition of regret, we can consider the loss gap between the opti-
mization method and the offline benchmark to track the evolution of the regret. Therefore, in Fig. 9(a), we present the time
average loss of all the algorithms compared with the offline benchmark which is solved by CVXPY [46]. From this figure, we
can see that the time average loss of our algorithm is really closest to that of the offline benchmark, which implies that our
algorithm has the best regret performance. At last, when it comes to the constraint violation, among all the state-of-the-art
algorithms, only MOSP discusses the Slater condition so we make a comparison with MOSP under the assumption that the
Slater condition holds or not. From Fig. 9(b), whether the Slater condition holds or not, our algorithm has negative results but
MOSP always has positive results, which validates that our algorithm achieves the better performance of constraint violation.
Besides, our absolute time average constraint violation under the Slater condition hold is 0.2 but this value is 0.6 (increased
by 200%) if the Slater condition is not assumed. Similarly, the corresponding values in MOSP are 0.1 and 0.2 (increased by
100%). From the observation, we validate the importance of the Slater condition for the constraint violation again.
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Fig. 8. Cumulative performance of different algorithms on the adult dataset.

Fig. 9. Time average performance of different algorithms on the adult dataset.
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6. Conclusion

In this paper, we investigate the OCO problem subject to time-varying as well as long-term constraints and present an
iterative OCO algorithm that makes use of the virtual queues. Compared with the traditional optimization like the dual gra-
dient method, our method possesses better algorithm performance and a faster convergence rate. Besides, our approach is

suitable for solving the dynamic OCO problem and can not only achieve the dynamic regret bound O max TdD að Þ; T1�d
� �� �

but also the constraint violation bound O max T1�d; Td
� �� �

, where trade-off parameter d can make the upper bound of regret

and constraint violations adjustable. We can achieve the sublinear regret and constraint violations when the accumulated
variation of optimal dynamic benchmark sequence grows sublinearly. Additionally, we discuss the algorithm under the
assumption that the Slater condition holds or not and analyze the impact of the Slater condition on the optimization perfor-
mance. We find that the dynamic regrets have the same bound in both cases but the bound of constraint violation is remark-
ably improved if the Slater condition is satisfied. Finally, we present some numerical simulations of resource allocation in
cloud computing to conduct the performance analysis and compare the proposed virtual-queue-based method with the
online-gradient-descent and saddle-point-typed methods. To further validate that our algorithm possesses a faster conver-
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gence rate and the lower upper bound of regret and constraint violation, we run our algorithm on two real datasets contain-
ing social network ads dataset and adult dataset to make more convincing experiment results.

Nowadays, dynamic OCO problems and constrained OCO problems are both attracting more and more attention from the
optimization community. We prepare to investigate the more general dynamic situation for the OCO problem and it means
that we aim to extend the dynamic model to the adaptive model in future work. Specifically, in a real-world situation, many
scenes impose constraints and need to consider constraints violations under the adaptive framework. Different from the
existing OCO algorithms with constraints, the adaptive algorithm needs to consider the status of the different decisions in
the different time slots. Therefore, it a meaningful future work to search the decision in each time interval and then make
the final decision by considering the weight possibility. Secondly, as there is two updating process in the adaptive algorithm
so the loss functions and constraint violations need to be optimized together. It brings in a great challenge to the theoretical
analysis, which is also a valuable future work. Finally, the trade-off between the optimization problem and the long-term
constraints plays an important role in improving the algorithm performance and it is also an interesting future research
topic.
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