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Abstract— While the practical coding scheme [1] has been
shown to be able to improve throughput of wireless networks, s, S,
there still lacks fundamental understanding on how the codig
scheme works under realistic settings, namely, when it opates
on a realistic physical layer and the medium access is contiled
by some random access methods. In this paper, we provide a for
mal analysis on the performance of the practical coding sclme D, D,
under such realistic settings. The key performance measurés
the encoding number, i.e., the number of packets that can be
encoded by a coding node in each transmission. We provide an
upper bound on the encoding number for the general coding
topology, and derive the average encoding number and system pig 1. Basic scenarios of XOR coding under idealized liokesluling.
throughput for a general class of random access mechanisms.
Based on the practical coding scheme, we also derive a tighte
upper bound on the throughput gain for a general wireless
network. Our results can be particularly useful for coding-related
MAC/Routing protocol design and analysis.
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number, the higher bandwidth efficiency and throughput can
be achieved. One fundamental questiowrgether there is an
I Introduction upper bound on the encoding number for a general coding

The practical XOR coding scheme proposed in [1] hafructure While former works ( [1], [5]) assume that there
been shown to be able to improve the throughput of wirelesgn be infinite nodes around the relay node such that the
networks. Consider an example in Fig.1(a), suppose rfyde encoding number is unbounded, we show that this number is
wants to transmit a packe?, to nodeD; via nodeC, while upper bounded by eonstantfor a general coding structure (in
node S, wants to transmifP, to D, via nodeC. The dashed Section Il). As we will show in later sections, the upper boun
arrows S; --» Dy and S, --» D, indicate thatD,, D; are of encoding number directly affects the highest throughput
within the transmission ranges 6f, S, respectively. There- gain by the coding scheme, as well as other performance
fore, D, D, can perform bpportunistic listening when S;  measures like throughput and packet loss ratio.
(S2) transmitsP; (P) to nodeC, nodeD, (D;) can overhear  Another important question that we addreshasv well the
the transmission of?; (P). Without network coding, node coding scheme works under random access link-scheduling
C needs to transmif’; and P, separately. However, whenmechanismsFor example, in Fig.1(a), if the link-scheduling
one uses the XOR coding scheme, n@de&an broadcast an is such that the transmitters always transmit following the
encoded packetP; @ P,) to both D; and D,, thenD; can cycle of Sq,S5,,C,--- (or S3,51,C,---), then nodeC' can
decodeP; by performingP, @ (P& P,), while D, can decode always encode two packets in each transmission and max-
P, by performingP; @ (P, ¢ P»). Therefore, nod€' delivers imize the total throughput. However, if the link-schedglin
two packets worth of information using a single transmissids Si,C, S2,C, S1,C, -- -, then nodeC cannot encode any
so thatl/4 of the bandwidth is saved. Another typical codingpackets. In practice, most of the wireless link-schedudityp-
scenario is shown in Fig.1(b), whene opportunistic listening rithms areprobabilistic(due to the random access mechanism)
is required because each of the two source nodes are asdnon-coding-oriented.e., the potential coding opportunity
destination nodes. Finally, Fig.1(c) showshgbrid form of may not be fully utilized. In Section Ill, we model how the
coding which combines the former two cases, namely, somendom accesaffects the encoding number in different coding
packets for decoding are obtained via opportunistic lisign structures. In particular, we formally characterize theriplay
while other packets are obtained by the fact that the nodeoikthroughput, buffer size and the random access mechanisms
the source of that packet. In this scenario, nétean at most used. Surprisingly, we find that the simpkgual access
encode four packets together and save three transmissionsnechanism outperforms other sophisticated mechanisms in

We use the ternencoding numbeto refer to the number of most cases. We then use the analysis in the coding structures
packets that can be encoded by a relay node (i.e., abde to provide an upper bound on throughput gain for a general
Fig.1) in each transmission. Intuitively, the higher theailing wireless network (in Section V).



In summary, the main contributions of this paper are:  “logical view of a coding structure in Fig. 2(a), wheretwo-

« We derive an upper bound on the encoding number f8PpP coding flows intersect at the coding nadeOne possible
general coding structures. This shows the contradicti@¥ysical representatidnof this logical coding structure is
to the assumption made in [1], [5]. shown in Fig. 2(b): there are nodes evenly spaced apart along
« We propose a methodok)gy to obtain thgerage en- a CirCle, the COding nod€ is at the center of the circle. Each
coding numbemnder a general class of random acced¥de along the circle, say nodehas its corresponding node
mechanisms. j, and the segmennt;| traverses nod€ (i.e.,|ij| is a diameter
« We compare the performance of different random acce@kthe circle). We assume that the transmission of nodan
mechanisms, and find the importance lnfffer sizeon be successfully received by all nodes along the circle excep
the coding performance. for nodej. Each source node chooses its corresponding node
« We formally prove the upper bound of throughput gai@s its destination, and all coding flows are relayed by node
by the practical XOR coding scheme fgeneral wireless C at the center. Therefore, in this symmetric structure, if we
networks let each source node along the circle transmit one packet to
The paper is organized as follows. In Section II, we charag®deC first, then node’” can encode all these packets and
terize the general coding structure, and provide an uppemdo broa(_jcast the encoc_jed_packet to all destination nodes alqng
on the encoding number in any possible coding structurd@® C|rcle._ Each destination r_10de can perform proper d_egod|
In Section Ill, we use a stochastic model to examine tHFCause it has already obtained the otherl packets, either

coding performance under various random access mechanigiy2PPortunistic listening or due to the fact that it is therse

In Section IV, we analytically derive the upper bound of' that packet. ,

throughput gain for general wireless networks. In Sectign V We assume th","t wireless r]odes operate at half-duplex mode,

we verify our analytical results by simulation. In Sectioh V and nodes that_ mterfere Wlth each other share the common
ared tchannel bandwidth which is denoted 1#y. Clearly, all the

Hansmitters in a coding structure are within a single nter

ference range. The maximum total througHpiar the non-

coding schemandcoding-schemean be achieved, when the

Il. Coding Structure: Characterization and Properties  conditions described in the following lemmas are met.

We first define the terminology that will be used throughout

this paper. For the XOR coding, @ding nodeis the node i‘et”:Tr? 1 Ur?detr_the ;T‘O”'g"d;]r‘g s“;:lheme';, the maxn”tr_mrr,]’
which encodes packets for several flows, e.g., natden otal througnhput Is achieved when Tiow rate conservation

Fig.1(a) to 1(c) is a coding nodeoding flowsare flows is ensured at the relay node (i.e. no@g. In other words, the

that transmit via a coding node and their packets have tH)éal bandwidth allocated to node, ..., 5, should be equal

opportunity to be encoded (e.g., flof — Dy and S,— D5 in to the bandwi_dth allocated to nodg. When this co_ndition is
Fig. 1(a) and 1(b)). Acoding structureincludesone coding met, the maximum total throughput, denotedgs, is B/2.
node as well as thene-hop predecessor nodasd theone-
hop successor node$ the associated coding flows. In genera
there can bex > 2 coding flows within a coding structure.
Clearly the encoding numbeis at mostn in one coding
structure. When a coding node decides to use the XOR codi
then we say that aoding schemés applied, otherwise, aon-
coding schemés used.

we introduce the potential applications of our results
future work. In Section VII, we present the related work an
Section VIII concludes.

emma 2 Under the “coding scheme”, the maximum total

roughput is achieved when: 1) the transmission schedule
follows some cyclic pattern lik&y, Ss,--- ,S,,,C, such that
F\he encoding number is maximized in each transmission; 2)
e%UaI bandwidth allocation to alb,,...,S, and C. When
these conditions are met, the maximum total throughput,
denoted as’¥, isnB/(n + 1).

The proofs of the above lemmas are straightforward. We omit
them due to lack of space. For detail, please refer to our
technical report [10]. One should note that while the optima
throughput fornon-coding schemis a constant, the optimal
throughput forcoding schemeés crucially dependent on, the
number of coding flows in the coding structure, which is also

S1 D

Sic 0, the maximum encoding numbar this coding structure.
A. The Upper Bound of Maximum Encoding Number
As discussed before,, the number of coding flows within
(a) Logical view. (b) Physical topology. a coding structure, is the maximum encoding number and
Fig. 2. (a) Logical and (b) physical representation of a sgdstructure. 1please note that there can be other possible topologieshaeese this one

here only because it can cover the generat 2 cases.

) ) ) 2\We refer to “total throughput” as the sum of end-to-end tiyiqaut for all
For the ease of presentation and analysis, we first show toeing flows.



directly affects the optimal throughput of the coding sckem
In [1], [5], the authors assume thatcan bearbitrarily large.
However, we will show that under a realistic wireless settin

n is indeed bounded. The main reason for this upper bound
is the geometrical constraintassociated with opportunistic
listening and two-hop relaying.

Consider a coding structure with > 2 coding flows. S s s S | A
There aren receivers located within the transmission range P Peveen ransmierandrecener ‘ o
of the coding node. For each receiver, say recelerit has (8 1(x) =8 <oinuous deceesno) e eigonen o
to decode its own packet from the XOR combinationrof  ansmitter and a receiver. J
packets. In other words, it must have already obtained tmer ot
n — 1 packets either by (a) it has transmitted that packet or (B
it has overheard that packet by opportunistic listeningteNo
that forn > 2 coding flows, there must be some opportunistic
listening involved. Proof: We first consider the 2D case. Based on the above

Suppose receiveb; gets packetP; (which is destined to discussion, for each group df’, D; and D;, we have the
receiver D;) by opportunistic listening. Let// denote the distance relationship as shown in Fig. 3(b) (the relatignsh
transmitter for this opportunistic listening, thed; must be is a result of the triangular inequality). Obviously, evéno
within the transmission range dfjl whereasD; must be receiversD; and D; must be at least apart from each other.
outside the transmission range Ujl Having this in mind, Equivalently, each circle with radiug' 2 centered at a receiver
let |AB| denote the distance between nodeand B, then must bedisjoint with each other. Meanwhile, each receiver
we must have|VjiDZ—| < r and |V;'Dj| > r+ 4, where D; must be located within the successful transmission range
r is the reliable transmission rang@f node V?, and § is (denoted byr) of the coding node&’. We show such scenario
a positive constant characterizing tdestance gapbetween in Fig. 4(a). The question is how many small circles with
“reliable transmission” and “unreliable transmissioni.dther radiusdé/2 can we pack in a big circle with radius This
words, we say that ifAB| < r then nodeB can successfully humber is upper bounded by ((r/4)*), which is also the
receive noded’s transmissionwith high probability while upper bound forn, the maximum encoding number in a
if |[AB| > r + 6 then nodeB can only receive nodel’s coding structure. For 3D case, the circles become spheres
transmissiorwith a very low probability and we can carry similar analysis to show the upper bound is

Let us illustrate the concept ofandé in wireless networks. O((r/9)?). n
In [8], the authors derived the successful reception priibab
(P) as a function of distancer] between a transmitter and
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'}]. 3. Characteristics of transmission range under a &gading model.

a receiver under the log normal shadow fading model. In .- o e,
particular, P(x) can be approximated as: o
Py { 1o (@) w<R 5| x
Tl ((E2)P)2 z>R T N A
\ <r 1

where R is the distance such tha(R) = 1/2, and g is

the power attenuation factor ranging between 2 and 6. We
illustrate P(x) in Fig.3(a) by settingk = 40 and 8 = 4.
One may ChOOS.@ = 30 andd = 20 in this example since (a) Packing circles in a circle.  (b) Distance relationship in
P(30) ~ 1.0 while P(30+20) = 0.0. Although the actual Fig.2(b).

value ofr andé may vary for different physical layer models,

the key point is that the “gapS is not neglectable:ompared Fig. 4. Geometrical constraints that bound the number oingptlows 7.
to the transmission range which we need to consider in our

analysis. o ~ Remark: The bound in Theorem 1 applies @il possible

Now we can focus on the determination of the maximut,ging structures. It does not require every transmittdrage
value ofn as a function of the successful transmission rangge same transmission range, and also does not assume the
rand the channel parametgrThe results are summarized ingansmitter for opportunistic listening to be within onlye
the following theorem. hop from the coding node. Therefore, the upper bound is

very general. For the representative coding structure show

Theorem 1 The number of coding flows (or the maximunmn Fig.2(b), one can further provide a tighter bound.
encoding numben) in any possible coding structure is upper
bounded byO((r/6)?) in 2D space, andD((r/§)*) in 3D Theorem 2 For the coding structure in Fig.2(b), the number
space. of coding flows (or maximum encoding number) is upper
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bounded byr/arccos (r/(r+9)). saturated, packets in the coding node’s buffer will accuateul
) o and have moreon-empty groupsn short, the effect of coding
Proof: For the coding structure in Fig. 2(b), we show th§ecomes more prominent as the traffic volume increases. We
distance relationship in Fig. 4(b). Clearly there is a miaim  shoyid also emphasize here that the encoding number tends
sized arc separating every; and D;, which holds for any {5 pe Jarger when the traffic rates of the coding flows are
two receivers along the circle. Accordingly, the size of th@omparabldo each other.
minimum central angleé(in Fig. 4(b)) separating any tWo  The |ink-level random access mechanism also crucially
receivers Is2 arccos (T”/(T +9)), and the maximum NUMBET 4ffects the number of buffered packets. For instance, densi
of coding flows in this structure is/ arccos (r/(r +4)). B using the basic DCF of 802.11 under heavy traffic. Because
) _ the coding node has equal channel access opportunity as all i
Remark: The following table shows the bound in Theorem 2,ntenders (i.e., other source nodes), packets may acatenul
for different values ofr/(r + ). Surprisingly, the maximum qyickly in its buffer, resulting in a high encoding number.
number of coding flows (or encoding number) is quite smalb, the other hand, if we try to assign a higher channel
This explains why the encoding number observed by th@cess priority to the coding node (since it is most likely
authors of [1] is at mos¥, and in most cases, only 210 4. the pottieneck node), as suggested bylbekward pressufe
| r/(r +9) || 0.6 | 0.7 | 0.8 | 0.9 | scheme proposed in [9], then the coding node can clear ogt the
| max encoding no|| 33879 | 30197 | 1.8820 | 6.9654 | buffered packets faster such that the encoding n.umber will b
smaller. We should note that theckward pressurés clearly
I1l. Coding Performance under Random Access a good choice formon-coding schemebecause it reduces
Link-Scheduling the self-interference between upstream and downstreagsnod

In previous section, we derived the upper bound of ma?—Iong the flow. However, when@ding schemés employed,

imum encoding number for any possible coding structure¥'® may.prefer digher buffer occupathat the coding node
Note that the maximum encoding number is achieved by {R@ as to increase the coding opportunity.

optimal conditions stated in Lemma 2. Now for a given codin
structure withn coding flows, we examine thaverage en-
coding numbewnhen the link-scheduling uses generic random Based on the above discussion, we use the following
access mechanism. We will first assume that the coding ndiechastic model to capture the dynamics of the coding sode’
never delays transmissipne., it competes for channel acces¥uffer by taking the traffic volume and random access mech-
whenever it has packets to send and encodes as many pack@igms into consideration. For simplicity of derivationg w
as possible. At the later part of this section, we will relaist assume aseparate buffer structurat the coding node: the
assumption and analyze the performance when a coding n6@€ing node maintains a separate buffer for each coding flow.

g Calculating the Average Encoding Number

uses delaying strategies. We will show later (in Section V) that the analytical results
- from separate buffer structure matches well even when one
A. Key Intuition uses a single buffer structure.

Before delving into the analysis, let us first present the Let M denote the buffer size for each coding flow at the

high-level intuition that underlies the results in the re$t coding node. Consider the buffer for one specific coding flow,
this section. Consider a coding structure witttoding flows say flow.S;—C—D; (following the notations in Fig. 2(a)). We
operating under the coding scheme. The number of packegs an embedded Markov chain to represent the dynamic of
encoded by the coding node is closely related to number tfs tagged buffer at the coding node and it is illustrated in
its bufferedpackets at the instant right before the transmissiohig. 5. The embedded points are right before each successful
If we classify packets in coding node’s buffer intogroups, Packet transmission by a source node or the coding node,
each containing only the packets of one coding flow, then ta&d we call the interval between two consecutive obsemvatio
encoding number is exactly the numberrafn-empty groups Points aslot Given certain traffic loading at the source nodes,
at the instant right before coding node transmits. In oth#ie slot time is a random variable relating to the back-off
words, higher packet diversity in the buffer will result iijher mechanism and collision probability. For the rest of thipgra
encoding number. the throughputis expressed in the unit of “packet/slotd tre

Two main factors that affect the number of buffered packel@tal bandwidth for any random access mechanism is clearly
at the coding node ar¢raffic volumeand random access 1 packet/slot.
mechanismWe discuss the effect of traffic volume first. If Now we consider the state transitions of this embedded
there is only light traffic across the coding structure, tbéing Markov chain. LetP; (i = 1,...,n) denote the probability
node will have lots of opportunities to transmit its packetiat the source nod; transmits in the corresponding slot, and
before accumulating a large number mdn-empty groupén let . denote the probability that the coding node transmits
its buffer. On the other hand, if the coding structure is hyearin the corresponding slot. Le¥;(t) be the random variable

3Similarly, this bound can be extended to a 3D case, by chgntie 4Whenever the downstream node has packets to send, it withieghe
“minimum arc” into the “minimum area” on the sphere. transmission of upstream node.



1-Pi-P. 1-PF-Pc in a slot, conditioned that it is the contender for this slst,
1/(pe+>_,4: pj+1), and the probability that the coding node
transmits conditioned that it contendslig(1 + >, p;). We
can expres®’; and P, as:

1 1
pi y Pe=pe——=—">-
K-Priority: Assume the relay (coding) node has -priority”

representing the number of buffered packets at the codidg n&Ver its upstream nodes, namely, the coding node fatimes
for the i-th flow at slott, then we have the following events(/{ > 1) of the opportunity that another competing source
at each state transition: node transmits. The®; and P. can be expressed as:

o If S; transmits, thenV; (t+1) = N;(¢)+1if N;(t) < M, P = p, 1 P—p K )
and N;(t + 1) = N;(t) = M otherwise. U Kpe+ Yo+ 0 KA

« If the coding node transmits, the¥W;(t +1) = N;(t) — 1 .

if NV;(t) >0, andN;(t + 1) = N;(t) (: 0 o)therwi(se. C. Case Studies ) ) )

If S, (for j # i) transmits, thenV;(t + 1) = N;(¢). We conduct several case studies to gain the important

insights on the effect of traffic volume and random access.
ase 1—Saturation Throughput: We first examine theat-

uration throughputof both “equal accessand “K-priority”

mechanisms. By saturation, we mean tbath source node

W;‘_ = (g [1 1(_ ;lzful] . j=01,....M (1) always has backlogged packets to transrdihder such con-
—(ay

(6)

Fig. 5. Embedded Markov chain for the tagged buffer. P, =

Let w;'- denote the steady state probability that the tagg
buffer (for flow i) has j packets. Solving this embedde
Markov chain, we have

dition, we havep;, = 1 for all i+ = 1,...,n. Combining Eq.
wherea; = P,/P.. The probability that the tagged buffer is(2)(5)(6)(7), we have the following fixed-point equation:
not empty denoted as:;, is I—a \"
pe=1-— T M+l 8
oo — ()M 2 1—at¥
Fi=lom= g (o) MH+L T @ here
Define 2; as a random variable such th@t = 1 if the 5 (1: in) (for Equal Access)
tagged buffer isnot empty and2; = 0 otherwise. Then the a= K+tn (for K -priority) ©)
Kpc(Kpctn)

average encoding numbeer slot can be expressed as
n Given n, K and M, one can findp. using numerical

E[Q] = iE[Qi] _ Z K. 3) method, and then calculate the average encodin_g number and
P throughput using Eq. (3)(4). In particular, we find that for

he “equal accessmechanism,p. = 1 is a good enough

aEproximation for alln > 1 and M > 1 cases. Therefore, the

i=1
We can express the total effective throughput, denoted

T, as T = B[P, ) average encoding number of equal access under saturétion
M
and the effective throughput for th&" coding flow is simply E[Q] = Syeey (10)
Ti = IiiPC. . .
The remaining issues are to derive the transmission proga'?-d the corresponding total throughput is
bilities P, and P.,, which are determined by theaffic volume T = B[P, = ( n ) ( M ) (1)
andrandom access mechanisiive use the ¢ontending prob- ¢ n+1 M+1)°

ability”, p; or p., to denote the probability that nodg or N

deC for ch | h slot. We h onetheless, for theR -priority” mechanismyp. = 1 is no
nodec competes_ or channef access at each slot. We have Fg'ﬁger a good approximation especially whinis relatively
following expression fop,:

large. The main reason behind is that the coding node now

n clears its buffer faster such that it is less likely to havekegds
pe=1- H(l — k). (5)  for transmission.
i=1 For instance, we set = 4 (i.e., 4 coding flows), and find

Now we model the effect ofandom accessWe are par- p. (and hence average encoding number and throughput) for
ticularly interested in two generic classes of random axcedifferent values of buffer sizeM) and priority () using
mechanisms: 1) equal access (i.e., all transmitters hahieg numerical method. We illustrate the interplay of encoding
same priority for channel access), and 2) higher priority fmumber, throughput and buffer for different values 6fin
the relay (coding) node (e.g., backward pressure in [9]). Fig. 6, which shows that higher priorityi{) results in both
Equal Access:When all competing nodes have equal channklwer encoding number and lower throughput in most cases. In
access probability, then the probability that ndfjetransmits particular, when the coding node has a very high priority.(e.



K = 10), nearly all the coding opportunities are diminishettigher buffer size /), the optimal bandwidth share of the
such that the throughput of coding scheme is only around 0cading node is lower while both the throughput and average
the optimal throughput of theon-coding scheme encoding number is higher. Thedual access(i.e., K = 1)
Remark: We have observed the advantage efjial access tends to becloser to the optimalith larger buffer size.

over "K -priority” especially with relatively large buffer size

(i.,e., M > 5). Recall from Lemma 2 that the optimal| M 2 [ 5 [ 7 [ 10 [ 20 |

throughput for the coding schemerns3/(n + 1) with B =1 ik 02961 02511 02391 0.229] 0.215
packet/slot here. Now we can see thatdlgeal random access TC* 0'576 0.696 0'723 0'745 0'772
adds a fraction ofM /(M + 1) onto the optimal encoding - : . . . .

; avg. encoding #| 1.95 | 2.77 | 3.03 | 3.26 | 3.58
number as well as the throughput! A large buffer size (sTy & 135 T 119 T 115 | 111 | 106
M > 10) can alleviate the performance degradation, but will - - - - -

induce longer queuing time at the coding node and henCase 3—Performance under Adequate Buffer SizeWe

longer delay. This illustrates an importamadeoff between have seen that a large buffer size dssentialin utilizing

throughput and delay at the coding node. the coding opportunities, and it is with large buffer sizatth
“equal accessoutperforms “K-priority”. To further explore

54 08 the reason behind, let us assuméequate buffer siz¢say
§ 07 oeeeeeoeeeod M > 10) and consider a general case where the coding flows
_§»3 E_OB A, may haveasymmetridraffic rates. From Eq. (1), one can show
3 g 30 that the packet loss ratiofor flow ¢ at the coding node is
54 //x*“*"‘"“‘“*“* | E 05 j (Equal Access) equal tor?,. With adequate buffer size, the prerequisite for
g feoemrmmmEEERETEEE 0.4 k=4 low packet loss is only?, > P; Vi. In other words, the coding
21 : PR E— : +;;10 0 node only needs to get tleame bandwidtls allocated to the
Buffer size Buffer size source node with théighest load. We let P. = max;{P;}
(a) Average encoding number. (b) Total throughput. and examine whether such bandwidth allocatiorfeiasible
Fig. 6. Interplay of buffer size Af), encoding numberk -priority and for "equal accessor K-prlo_rlty_. Fro”.' Eq. ((‘5) and (7,)’
throughput under saturation. we can see that such allocation is feasible fequial access

by simply letting p. = max;{p;}, while “K-priority” fails
Case 2—Feasible and Optimal Bandwidth Allocation:The to provide a feasible solution even with small values’of
transmission probabilitie®;, P, essentially reflect theand- (€.9.,K=2). This explains whyrandom accesss particularly
width shareamong the source node% (i = 1,...,n) and suitable for coding scheme with adequate buffer size.
the coding node. Based on Eq. (6) and (7), we can examife wi| Delaying Strategy at the Coding Node Help?
the feasible bandwidth allocationf both “equal accessand
“K — priority” as follows: given a desired set of bandwidtt}o
allocation { P;} | P., we can put the values aP, and P,
into Eq. (6) or (7) and gefp;} U p.. The desired bandwidth
allocation isfeasibleonly if 0 < p; <1 Vi and0 < p. < 1.
We formulate theoptimal bandwidth allocatiorproblem
as follows: given a desired proportional bandwidth all@oat
among the source nodes, .6, ...,7, such thatP; : P, : .
Py, =71 v - v, determine the value oP, so the following drawbacks.

. First of all, the effect of “Wait-forX” on increasing the
as to maximize the total end-to-end throughput. To solve the =~ : L .
encoding number is only significant whéex is large enough
problem, we can express as

(e.9.,X > M/(M + 1) with symmetric flow rates), and in
P =PR)/ 3 many cases, only wheX = n. However, a largeX means
‘P, P, the coding node may hold back its transmission for a longer

and combine with Eq. (2)(3)(4) to express the total throwghptime' which wiI_I significantly increase the_ pack_et_loss aati
as a function ofP,. In particular, given the number of coding!Mess the coding node also has a very highpriority”.
flowsn and the buffer sizaZ, one can show that the maximum_ S€condly, “Wait-forX™ increases encoding number signif-

total end-to-end throughput is achieved when all sourcegodc@nty (_)nly_ when _the network is far from §aturat|on and _the
get equalbandwidth share, i.eq, = --- = ~ buffer size is relatively small. However, trying to have gthi
ylhey ==,

For instance, whem — 4, 71 — o = v3 = 74, We obtain encoding number when there is only light traffic load hatelitt
the optimal P* and throuéhpuﬂ“* for different values of Penefiton the throughput because the network can sustain the
c

buffer size M. Furthermore, we obtain theptimal values of traffic even without network coding at all. When the traffic
K such that the corresponding optimal bandwidth allocatidRtensity increases, the encoding number cantématically

is feasiblefor the random access mechanisms. The results aréynen such condition is met, the packet loss ratio will noted /(M +
summarized in the following table. One can observe that with for all flows.

In the above analysis, we assume the coding node competes
r channel access whenever it has packets in the buffer. Now
we discuss the delaying strategies of the coding node. We cal
such strategies asWait-for-X”, namely, letting the coding
nodehold transmission until it can encode at leastpackets

By such scheme, the average encoding number is at ;éast
Although it seems to be promising at the first glance, it has

i=1,...,n, (12)



increase due to higher buffer occupancy. We have shown thah-coding flows. In case that there exists non-coding flows
when the network is operating close to saturation, thgual sharing the bandwidth with coding flows, the following lemma
acces$ with a moderate buffer size at the coding node iprovides an upper bound on throughput gain by the coding
sufficient to utilize most of the coding opportunity. scheme within asingle coding structure.

Last but not least, when the coding flows hasymmetric
traffic rates, “Wait-forX” will easily lead to buffer overflow Lemma 4 For a single coding structure with possibly non-
because it takes more time to accumulate enough packetsdoding flows interfering with the coding node, the maximum

encoding compared to the symmetric case. throughput gain for both the coding flows and non-coding
o _ flows is upper bounded Bn/(n + 1) when the buffer sizé/
IV. Fundamental Limits of the Coding Scheme at the coding node approaches infinity, and this upper bound

In previous two sections, we have characterized the ba§Rn be approximated &/ (n + 5747 )
coding structure and examined its performance under vari
g i P X r80f: Due to the lack of space, please refer to [10]. W
random access mechanisms. Now we provide an upper boun

on the throughput gain for general wireless network.e., o
a network with any possible topology and traffic deman%AnOther key insight that enables us to get the upper bound

In such setting, there are two main differences from the' 2 general wireless network is that the coding scheme

. : ] ) . only bringslocal improvementin particular, coding scheme
single coding structure case: 1) there may exist severahgod : ; - !

. ] ; . only increases the bandwidth efficiency of the coding node.
structures in the network; 2) there may existoh-coding

flows), i.e., flows that are not relevant to any coding procesgonSider the two cases shown in Fig. 7, where there are

P ) ) . . non-coding flowsinterfering with either Sy, So (Fig. 7(a))
and these non-coding flows may evaterferewith the coding [ the coding node” (Fig. 7(b)). In such cases, there is
flows. Due to the lack of space, we omit the detailed proo?s 9 9: ' ’

here but choose to go through the main logical process. Ftnﬂort much room left for the coding flows to improve their

. . roughput, and the overall throughput gain is diminished.
more detail, please refer to our technical report [10]. ; . )
) ! oreover, if a coding flow traverses several coding struestur
Let us first define the throughput for a general network. .
. , - Its end-to-end throughput is upper bounded by the bottlenec
Given a set of traffic demand$D;}, each containing a . - ; :
- ) oding structure: its throughput improvement is bounded by
source node, a destination node, and a traffic value deno L .
. ... the throughput gain in one of the traversed coding strusture
as \;, the throughput scale-up of the network is a positive, . . : .
which gives it the least improvement. Therefore, we have the
real numberk such that the set of flow ratelsc)\;} can be

supported by the network. We ugg and k. to denote following result.
the maximum throughput scale-uachieved by the coding
and non-coding schemes respectively. Ttheoughput gain
denoted ag, is equal tok} /& ., and themaximum throughput
gain, denoted ag;*, is the maximum value ofj over all
possible network topologies, traffic demands, link-schiadu
and routing algorithms. one of itéwg(;ding structures.

One should note that the coding scheme and non-coding
scheme may useifferent routes to achieve their respectiveProof: Due to the lack of space, please refer to [10]. B
maximum throughput. However, the following lemma states
that to obtain the upper bound Gf, we only need to consider Remark: 1) Compared to the bound provided in [3], our bound
a smaller feasible space. is tighter and holds for any possible topologies. 2) Our def-

inition of throughput gain provides an analytical justifioa

Lemma 3 For a general wireless network, the maximunfior the “coding gain” defined in [1]. Note that authors of [1]
throughput gain G* is upper bounded by the maximunalso define a “coding+MAC gain” that can even approach
throughput gain when both coding and non-coding schemdswever, the “coding+MAC gain” compares ttsaturation
operate under the same routes, over all feasible routirthroughputof both coding and non-coding schemes, which
policies. is not a “fair” comparison because the saturation throughpu

of non-coding scheme is much lower than the maximum
Proof: Due to the lack of space, please refer to [10]. B throughput it can achieve.

Theorem 3 For a general wireless network, the end-to-end
throughput gaing by using the XOR coding is upper bounded
by 2n/(n 4+ 1) when the buffer sizé/ at the coding node
approaches infinity, and this bound can be approximated as
2n/(n+ 524 ), wheren is the maximum encoding number in

Now we consider the impact to single coding structure V. Verification of the Analysis
when there is interference from otheon-codingflows. One  The goal of this section is to verify the analytical results
important observation is that non-coding flows that intexfein Section 1ll. We implement a discrete-event simulatort tha
with the coding node can also benefit from the coding schenamproximates the random access mechanisms including Equal
because the coding node can send out the same amadArtess, K -Priority” and “Wait-for-X" discussed in Section
of information by consuming less bandwidth, thus leavindl. Note that we do not simulate the general wireless neltwor
more bandwidth for other competing nodes, including theecause such scenario is already studied in [1], [6], [7],



size we set the per flow buffer sizél{) to 20 and vary traffic
load of the source nodes. In Fig. 9(a), we keep increasing the
symmetric offered load and observe the total throughput
Based on the analysis, the optimal bandwidth allocation for
achieving maximum throughput 8" ~ 0.22, P} ~ 0.19 and

D> _ D" _ the optimal throughput is abo0177. One can see that through-
(a) Excessive contention at  (b) Non-coding flow put of the coding scheme does approach maximum when the
node Sq, Ss. interferes withC'. . .
traffic load approaches 0.19, and the maximum throughput by
Fig. 7. Two scenarios that limit the throughput gain by cgdin equal access is very close to the optimal. Furthermore, the

throughput remains stable as the load increases. Nonsshele
for the non-codingscheme, the saturation throughput (about

and their results are consistent with the bound we give 2) is much lower than the maximum throughput (about 0.48)

Section IV. Instead, we conduct extensive simulatiosiirgle t ?t tE.e sgs;em car:l achleve.h | th h ith
coding structureto verify the correctness and precision of the ' Fig: 9(b), we illustrate the total throughput with asym-
methodology used in Section IIl. metric flow rates. We fix the traffic load of three existing flows

For the coding scheme, we use two types of buffer structufg: beQ.05,f|().1 a\?vd 0615'_3{18 l:ﬁetfl mtcrtefilstlr:wg thﬁ Io?d Oo]; ?ﬁ
separate structure (i.e., independently maintaining gebédr Incoming Tliow. YVe depict bo € total throughput an €

each coding flow) and single structure (i.e., maintaining Oiﬁﬂrougﬂpu: for thg |nc§>mb||ng ftlow. Né)ctﬁgurphrlsmg:y, the. ﬂolta
large buffer for all coding flows) at the coding nodé For roughput remains stable at arou when the arrva
the single buffer structure, the buffer size is equalntbl rate of the incoming flow exceeds33. One can check that
wheren is the number of’coding flows. andl/ is the pér the optimal bandwidth share for the incoming flow is indeed
flow buffer size. We present the simullation results in tw round0.33 while the optimal total throughput is aroufd5.

main perspectives: 1) performance with fixed traffic load ar]cp's justifies thaEqL_laI access with adequate buffer sies
varying buffer size; 2) performance with adequate buffee si ead to close-to-optimal throughput.

(M = 20) and varying traffic load. We normalize the channe!
bandwidthB = 1 and the main parameters are(number ’
of coding flows),M (buffer size per flow), values oK (K-
Priority) and X (Wait-for-X). Note that, although our results
hold for any givenn in general, we choose = 4 in the
following experiments for consistency of presentation. R
Experiment 1 (Performance of “Equal Access”): Fig. 8 Offered load per flow
shows the performance with = 4 coding flows under (@) Symmetric flow rate. (b) Asymmetric flow rate {.05 +
saturated condition. Each flow has a traffic load equal to 0-1+0.15+ ).

the total bandwidth to saturate the system, and we vary the Fig. 9. Throughput witho =4 and M = 20 under equal access.
per flow buffer size at the coding node between 1 and 20.

We depict the results by both the separate buffer structyre . “ . A
and thg single buffer str)lljcture, and C(F))mpare them with ,[Lri;:[experlment 2 (Performance of "K-priority” and "Wait

. ; for-X"): Let us first study the performance of th& “priority”
analytical resul'_[s. By the anaIySIS_, the saturaaefd thrpug&land mecha)nism. We se’t:4¥:odin% flows, each with tﬁe off)éred
packet !OSS ratio can be approxmated;g‘js[ 171 3N 57 load of 0.2, the theoretically optimal bandwidth share stated
respectively. Or]e can see that the analytical results m@x;h by Lemma 2. We compare the total throughput and packet
closely to the simulation results. Note that for then-coding loss ratio of different values ok (K — 1 is simply the equal

scheme, the throughput and packet loss are not sensitive_to . . .
gnp P access). One can see that the simulation results in Fig) 10(a
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buffer size. matches well with the analytical results shown in Fig. 6(b).
o _ o The throughput performance of random access outperfoims al
. oo T smeTT sl o other K -priority schemes when the buffer siZe¢ is greater
H : o simulation, separate queue than5. NonethelessK -priority indeed guarantees low packet
3o 2T Cnoncoang heme loss at the relay (coding) node.
oz Eoz Ta In Fig. 11(a), we compare the total throughput of several
o . . ) o L ERese combinations of K -priority” and “Wait-for-X" schemes. The
Buffer size per flow Buffer size per flow offered load of each flow is set to 0.2. As we have discussed, a
(a) Total throughput. (b) Packet loss ratio. large value ofX with K = 1 results in the lowest throughput

Fig. 8. Results withh = 4 coding flows under saturation and equal accesénd the higthSt |OS.S ratio. Even When. the “Wait-fotscheme
is accompanied with a propei™priority” (K = 10, X = 4),
there is no significant performance improvement compared to
To further observe the performance widtlequate buffer the simple X = 1, K = 1) pair.



’ ] 9::4 A shows that the throughput gain is upper boundedfbg%
g ® s 2 in 1D random networks, and upper bounded2ay/7 £ in
g = oa —K=10 2D random networks, wherA is a parameter characterizing
F EM\\\M‘ the intensity of interference, and= max{2, VA2 + 2A}. It
. . . ) oy - - 5 is conjectured in [3] that the throughput gain is also upper
Bufer size per flow Bufersize per flow bounded by 2 in 2D random networks. In [1], authors propose
(@) Throughput. (b) Packet loss ratio. the distributed XOR coding scheme and demonstrate the

throughput gain via implementation and measurement. Based
on the XOR coding scheme, [6], [7] introduce the coding-
aware routing and formulate the max-flow LP with coding
* * considerations, however, they do not incorporate the efiec
random access by assuming an optimal link-scheduling for
the coding scheme, further study is also necessary on how to
realize the coding-aware routing in practice.
- Comparing with former works, we analytically examine the

& coding performance undelandom accessand shows that
the maximum encoding number (which was assumed to be
unbounded before) is upper bounded bgomstant Focusing
Fig. 11. Performance of combinations aK*priority” and “Wait-for-X". on the coding scheme proposed in [1], we obtain a tighter
bound on throughput gain for general wireless networks.

Fig. 10. Performance ofK -priority” mechanism.
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(a) Throughput. (b) Packet loss ratio.

: L VIII. Conclusion
V1. Potential Applications _ . . . .
In this paper, we provide an analysis of the practical coding

We now briefly introduce the potential research directiongheme under realistic physical layer and random access. Th
where our analysis can be useful: . key performance measure is thacoding numbeiWe derive
1) Designing coding-efficient link-schedulers:A coding-  an upper bound on the encoding number in any possible coding
efficient link-scheduler should utilize most of the COdlr]g'O structures. By Ca|cu|a‘[ing thaverage encoding numhewe
portunities to improve throughput. In Section lll, we exama  examine the performance of a general class of random access
general class of random access mechanisms that can be usegdBhanisms. We also provide a tighter upper bound on the
a coding structure. In particular, we have found the adg®tathroughput gain by the practical coding scheme. Our armlysi
of equal accessnechanisms and characterized the importang@n be useful for future coding-related protocol design and
of buffer size These insights can be particularly valuable fognalysis.
designing coding-efficient link-schedulers.
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