
1

Inferring Higher-Order Structure Statistics of
Large Networks From Sampled Edges

Pinghui Wang, Yiyan Qi, John C.S. Lui, Don Towsley, Junzhou Zhao, Jing Tao

Abstract—Recently exploring higher-order organizational patterns (e.g., locally connected subgraphs, also known as motifs or
graphlets) of complex networks such as online social networks and communication networks attracts a lot of attention. Previous
work made the strong assumption that the graph topology of interest is known in advance. In practice, sometimes researchers
have to deal with the situation where the graph topology is unknown because it is expensive to collect and store all topological and
meta information. Hence, typically what is available to researchers is only a snapshot of the graph, i.e., a subgraph of the graph.
Crawling methods such as breadth first sampling can be used to generate the snapshot. However, these methods fail to sample
a streaming graph represented as a high speed stream of edges. Therefore, graph mining applications such as network traffic
monitoring usually use random edge sampling (i.e., sample each edge with a fixed probability) to collect edges and generate a
sampled graph, which we called a “RESampled graph”. Clearly, a RESampled graph’s motif statistics may be quite different from
those of the underlying original graph. To resolve this, we propose a framework and implement a system called Minfer, which
takes the given RESampled graph and accurately infers the underlying graph’s motif statistics. We observe that the estimation
errors of motif statistics can be tightly bounded by Fisher information. Moreover, we develop fast algorithms for enumerating and
classifying 3-, 4-, and 5-node subgraphs under both centralized and distributed settings. Experiments using large scale datasets
show the accuracy and efficiency of our methods.

Index Terms—graphlet, motif, subgraph sampling, graph mining.

✦

1 INTRODUCTION

Complex networks are widely studied across many fields
of science and technology, from physics to biology, and
from nature to society. Networks which have similar lower-
order topological features such as degree distribution at the
level of individual nodes and edges can exhibit significant
differences in their local structures. There is a growing
interest to explore these local structures (also known as
“motifs”), which are small connected and induced subgraph
(or CIS) patterns that form during the growth of a network.
For a set of nodes in the graph G of interest, its induced
subgraph is defined as a graph that consists of all of
the edges that connect them in G. Motifs have many
applications, for example, they are used to characterize
communication and evolution patterns in online social net-
works (OSNs) [1]–[4], pattern recognition in gene expres-
sion profiling [5], protein-protein interaction prediction [6],
and coarse-grained topology generation of networks [7].
For instance, 3-node motifs can reveal relationships like
“the friend of my friend is my friend” and “the enemy of

• Pinghui Wang, Yiyan Qi, and Jing Tao are with MOE Key Labo-
ratory for Intelligent Networks and Network Security, Xi’an Jiao-
tong University. P.O. Box 1088, No. 28, Xianning West Road, Xi’an
Jiaotong University, Xi’an, Shaanxi, 710049, China; Tel.: +086-
29-82664603; Fax: +086-29-82664603; E-mail: {phwang, qyy0180,
jtao}@mail.xjtu.edu.cn. John C.S. Lui and Junzhou Zhao are with De-
partment of Computer Science and Engineering, The Chinese Univer-
sity of Hong Kong, Shatin, Hong Kong; Email: cslui@cse.cuhk.edu.hk,
jzzhao@sei.xjtu.edu.cn. Don Towsley is with Department of Computer
Science, University of Massachusetts Amherst, MA, USA; Email:
towsley@cs.umass.edu.

my enemy is my friend”, which are well known evolution
patterns in signed (i.e., friend/foe) social networks. Kunegis
et al. [2] considered the significance of motifs in Slashdot
Zoo1 and how they impact the stability of signed networks.
Other more complex examples include 4-node motifs such
as bi-fans and bi-parallels defined in [8]. Recently, Benson
et al. [9] developed a motif-based graph mining framework,
and they revealed that a variety of real-world networks
exhibit rich higher-order organizational patterns, e.g., they
observe that the bi-fan motif acts as the main information
propagation unit in neuronal networks.

Although motifs are important in helping researchers
understand the underlying network, one major technical
hurdle is that it is computationally expensive to enumerate
and count all CISes in a large network. Note that there
exist a large number of CISes even for a medium size
network with less than one million edges. For exam-
ple, the graphs Slashdot [10] and Epinions [11], which
contain approximately 1.0 × 105 nodes and 1.0 × 106

edges, contain more than 2.0 × 1010 4-node connected
and induced subgraphs [12]. To address this problem,
several sampling methods have been proposed to estimate
the frequency distribution of motifs [12]–[15]. However,
all previous methods focus on designing computationally
efficient methods to characterize motifs when the entire
graph of interest either fits into memory, or an I/O efficient
neighbor query API exists to allow one to explore the graph
topology, when it is stored on disk. In summary, these
methods assume that the entire graph topology is known.

1. www.slashdot.org

2

?

G
*

G

Figure 1. An example of the available G∗ and the
underlying graph G.

In practice the graph of interest may not be known, and
the available dataset is just a subgraph sampled from the
original graph, because it is expensive to collect and store
all topological and meta information. A simple example is
given in Fig. 1, where the sampled graph G∗ is derived
from the dataset representing G. G∗ can be generated by
crawling methods such as breadth first sampling. However,
these methods fail to sample a streaming graph represented
as a high speed stream of edges. In this work, we assume
the available graph G∗ is an RESampled graph that is
obtained through random edge sampling, i.e, each edge
in G is independently sampled with the same probability
0 ≤ p ≤ 1. In practice, this sampling method is popular
and easy to implement for streaming graphs. Obtaining a
RESampled graph is easy and cheap (the computational and
space complexities are both O(1)). A RESampled graph can
also be used to estimate many other graph statistics such as
average node degree, node label distribution, and edge label
distribution, which have been studied in previous work [16].
These properties make the random edge sampling technique
suitable for the following applications.

• Network Traffic Analysis. Network traffic on net-
work devices such as routers can be represented as
a sequence of network packets/flows. Sampling is
inevitable for collecting network traffic on backbone
routers in order to study the network graph, where
a node in the graph represents a host and an edge
(u, v) represents a connection from host u to host v,
because packets go through routers at too high a rate to
gather information from all packets. Therefore, current
network devices support simple sampling techniques
such as random packets/flows sampling, where random
flow sampling can be viewed as random edge sampling
over the network graph.

• Network Data Publishing. It is common for service
providers to release a small sampled dataset (e.g., a
RESampled graph) for a third-party research.

Formally, we denote the graph G∗ as a RESampled graph
of G. One easily observes that a RESampled graph’s
motif statistics differ from those of the original graph
due to uncertainties introduced by sampling. For example,
Fig. 2 shows that s∗ is a 4-node induced subgraph in the
RESampled graph G∗, but we do not know which original
induced subgraph s in G it derives from. In fact, s could
be any one of the five subgraphs depicted in Fig. 2.

Unlike previous methods [12]–[15], in this paper we

s*

s

?

Figure 2. s∗ is a 4-node induced subgraph in the
RESampled graph G∗, and s is the original induced
subgraph of s∗ in the original graph G.

assume that it is impossible or computationally expensive
to apply graph traversal algorithms over G and we aim
to design an accurate method to infer the motif statistics
of the original graph G from an available RESampled
graph G∗. Note that previous methods focus on designing
computationally efficient sampling/crawling methods based
on sampling induced subgraphs in G to avoid the problem
shown in Fig. 2. Hence they fail to infer the underlying
graph’s motif statistics from the given RESampled graph.
The gSH method in [17] can be used to estimate the number
of connected subgraphs (not necessary induced) from sam-
pled edges. However it cannot be applied to characterize
motifs, because motif statistics can differ significantly from
connected subgraph statistics.

Contribution: To the best of our knowledge, we are
the “first” to study and provide an accurate and efficient
solution to estimate motif statistics from a given RE-
Sampled graph. Hence, we do away with the previous
assumption requiring the entire topology of the graph to be
available. We introduce a probabilistic model to study the
relationship between motifs in the RESampled graph and
in the underlying graph. Based on this model, we propose
an accurate method, Minfer, to infer the underlying graph’s
motif statistics from the RESampled graph. We also provide
a Fisher information based method to bound the error
of our estimates. We further develop new algorithms for
exactly counting 3-, 4-, and 5-node motifs that go beyond
undirected graphs under both centralized and distributed
settings. We conduct experiments on both synthetic and
real-world graphs, and the empirical results demonstrate
the efficiency and efficacy of our methods.

This paper is organized as follows: The problem formula-
tion is presented in Section 2. Section 3 presents our method
(i.e. Minfer) for inferring subgraph class concentrations of
the graph under study from a given RESampled graph. Sec-
tion 4 presents methods for computing the given RESam-
pled graph’s motif statistics. The performance evaluation
and testing results are presented in Section 5. Section 6
summarizes related work. Concluding remarks then follow.

2 PROBLEM FORMULATION
In this section, we first introduce the concept of motif
concentration and then discuss the challenges of computing
motif concentrations in practice.

Denote the underlying graph of interest as a labeled
undirected graph G = (V,E, L), where V is a set of

3

nodes, E is a set of undirected edges, E ∈ V × V , and
L is a set of labels lu,v associated with edges (u, v) ∈ E.
For example, we attach a label lu,v ∈ {→,←,↔} to
indicate the direction of the edge (u, v) ∈ E for a directed
network. Edges may have other labels too, for instance, in
a signed network, edges have positive or negative labels to
represent friend or foe relationship. If L is empty, then G
is an unlabeled undirected graph, which is equivalent to an
undirected graph.

Motif concentration is a metric that represents the dis-
tribution of various subgraph patterns that appear in G. To
illustrate, we show the 3-, 4- and 5-node motifs in Figs. 3
and 4. In Fig. 4, we only show 3-node directed/signed
motifs due to the large number of directed/signed motifs
with 4 and 5 nodes (there exist 199 and 9,364 4- and 5-node
directed motifs respectively). To define motif concentration
formally, we first introduce some notation. An induced
subgraph of G, G′ = (V ′, E′, L′), V ′ ⊂ V , E′ ⊂ E and
L′ ⊂ L, is a subgraph whose edges and associated labels
are all in G, i.e. E′ = {(u, v) : u, v ∈ V ′, (u, v) ∈ E},
L′ = {lu,v : u, v ∈ V ′, (u, v) ∈ E}. We define C(k)

as the set of all CISes with k nodes in G, and denote
n(k) = |C(k)|. Let Tk denote the number of k-node
motifs and M (k)

i denote the ith k-node motif. For example,
T4 = 6 and M (4)

1 , . . . ,M (4)
6 are the six 4-node undirected

motifs depicted in Fig. 3(b). Then we partition C(k) into
Tk equivalence classes, or C(k)

1 , . . . , C(k)
Tk

, where CISes
within C(k)

i are isomorphic to M (k)
i . Note that in this

paper node labels are not taken into account when checking
the isomorphism. When there exist multiple isomorphisms
between a CIS and a motif, we only count one of them.

1 2

(a) 3-node

 1 2 3 4 5 6

(b) 4-node

1 2 3 4 5 6 7

 15 16 17 18 19 20 21

 8 9 10 11 12 13 14

(c) 5-node

Figure 3. All classes of 3-, 4-, and 5-node undirected
and connected motifs (The numbers are the motif IDs).

Let n(k)
i denote the frequency of motif M (k)

i , i.e., the
number of CISes in G isomorphic to M (k)

i . Formally, we
have n(k)

i = |C(k)
i |, which is the number of CISes in C(k)

i .
Then the concentration of M (k)

i is defined as ω(k)
i =

n(k)
i

n(k) ,
1 ≤ i ≤ Tk. Thus, ω(k)

i is the fraction of k-node CISes

 1 2 3 4 5 6 7

8 9 10 11 12 13

(a) 3-node directed motifs

1

+ +

2

+
_

3

_ _

4

+ +

+

5

+ +

_

6

_ _

+

7

_ _

_

(b) 3-node signed motifs

Figure 4. All classes of three-node directed and signed
motifs (The numbers are the motif IDs).

isomorphic to motif M (k)
i among all k-node CISes. In this

paper, we make the follow assumptions:
• Assumption 1: The complete G is not available to us,

but a RESampled graph G∗ = (V ∗, E∗, L∗) of G is
given, where V ∗ ∈ V , E∗ ∈ E, and L∗ are node,
edge, and edge label sets of G∗ respectively. G∗ is
obtained by random edge sampling, i.e., each edge in
E is independently sampled with the same probability
0 < p < 1, where p is known in advance.

• Assumption 2: The label of a sampled edge (u, v) ∈
G∗ is the same as that of (u, v) in G, i.e., l∗u,v = lu,v .

These two assumptions are satisfied by many applications’
data collection procedures. For instance, the data generated
by an application such as network traffic monitoring is
given as a stream of directed edges. The following sim-
ple method is computationally and memory efficient for
collecting edges and generating a small RESampled graph
that can be sent to remote network traffic analysis center:
Each incoming directed edge u → v is sampled when
τu,v ≤ ρp, where ρ is an integer (e.g., 10,000) and τ
is a hash function satisfying τu,v = τv,u and mapping
edges into integers 0, 1, . . . , ρ− 1 uniformly. The property
τu,v = τv,u guarantees that edges u → v and u ← v
are either both sampled or discarded. Hence the label of a
sampled edge (u, v) ∈ E∗ is the same as that of (u, v) in
G. Using universal hashing [18], a simple instance of τu,v
is given as the following function when each v ∈ V is an
integer smaller than ∆

τu,v = a(min{u, v}∆+max{u, v})+b mod γ mod ρ,

where γ is a prime larger than ∆2, a and b are any
integers with a ∈ {1, . . . , ρ − 1} and b ∈ {0, . . . , ρ − 1}.
We can easily find that τu,v = τv,u and τ maps edges
into integers 0, . . . , ρ − 1 uniformly. The computational
and space complexities of the above sampling method are
both O(1), which make it practical for data collection. As
alluded before, in this paper, we aim to accurately infer the
motif concentrations of G based on the given RESampled
graph G∗.

4

3 MOTIF STATISTICAL INFERENCE

The motif statistics of RESampled graph G∗ and original
graph G can be quite different. In this section, we introduce
a probabilistic model to bridge the gap between the motif
statistics of G∗ and G. Using this model, we will establish a
simple and concise relationship between the motif statistics
of G and G∗. We then propose an efficient method to infer
the motif concentration of G from G∗. Finally, we also give
a method to construct confidence intervals of our estimates
of motif concentrations.

3.1 Probabilistic Model of Motifs in G∗ and G

To estimate the motif statistics of G based on G∗, we
develop a probabilistic method to model the relationship be-
tween the motifs in G∗ and G. Define P = [Pi,j] where Pi,j

is the probability that a CIS s∗ in G∗ is isomorphic to motif
M (k)

i given that its original CIS s in G is isomorphic to
motif M (k)

j , i.e., Pi,j = P (M(s∗) = M (k)
i |M(s) = M (k)

j).
To obtain Pi,j , we first compute φi,j , which is the

number of subgraphs of M (k)
j isomorphic to M (k)

i . For
example, M (3)

2 (i.e., the triangle) includes three subgraphs
isomorphic to M (3)

1 (i.e., the wedge) for the undirected
graph shown in Fig. 3(a). Thus, we have φ1,2 = 3 for 3-
node undirected motifs. When i = j, φi,j = 1. Note that
it is not easy to compute φi,j manually for 4- and 5-node
motifs. Hence we provide a simple method to compute φi,j

in Algorithm 1, where we enumerate each bijection that
maps nodes in M (k)

i to nodes in M (k)
j to check whether the

bijection also maps edges of M (k)
i to edges in M (k)

j with
the same labels. In Algorithm 1, yi,j counts the number
of bijections that meet this condition, and zi counts the
number of automorphisms of M (k)

i . The computational
complexity is O(k2k!). We want to emphasize that the cost
of computing φi,j is not a big concern, because these values
are static and independent of the input graph, and they can
be computed once and for all and stored in a static table.
Denote by V (s) and E(s) the sets of nodes and edges in
subgraph s respectively. We have the following equation

Pi,j = φi,jp
|E(M(k)

i)|q(|E(M(k)
j)|−|E(M(k)

i)|),

where q = 1 − p. The above model implies that in
expectation, the fraction of these CISes that appear as CISes
isomorphic to M (k)

i in G∗ is Pi,j .

3.2 Motif Concentration Estimation

Using the above probabilistic model, we propose a method
Minfer to estimate motif statistics of G from G∗. Denote
by m(k)

i , 1 ≤ i ≤ Tk, k = 3, 4, . . ., the number of CISes
in G∗ isomorphic to motif M (k)

i . The method to compute
m(k)

i is presented in the next section. Then, the expectation
of m(k)

i is computed as

E[m(k)
i] =

∑

1≤j≤Tk

n(k)
j Pi,j . (1)

Algorithm 1: Computing φi,j , i.e., the number of
subgraphs of M (k)

j that are isomorphic to M (k)
i .

Step 1: Generate two graphs Ĝ = ({v1, . . . , vk}, Ê, L̂)
and G̃ = ({u1, . . . , uk}, Ẽ, L̃), isomorphic to motifs
M (k)

i and M (k)
j respectively, where Ê and L̂ are the

edges and edge labels of Ĝ with nodes v1, . . . , vk, and
Ẽ and L̃ are the edges and edge labels of G̃ with
nodes u1, . . . , uk.
Step 2: Initialize a counter yi,j = 0. For each
permutation (x1, . . . , xk) of integers 1, . . . , k, yi,j
stays unchanged when there exists an edge
(va, vb) ∈ Ê satisfying (uxa , uxb) /∈ Ẽ or
l̂va,vb ̸= l̃uxa ,uxb

, and yi,j = yi,j + 1 otherwise.
Step 3: Initialize a counter zi = 0. For each
permutation (x1, . . . , xk) of integers 1, . . . , k, zi stays
unchanged when there exists an edge (va, vb) ∈ Ê
satisfying (vxa , vxb) /∈ Ê or l̂va,vb ̸= l̂vxa ,vxb

, and
zi = zi + 1 otherwise.
Step 4: Finally, φi,j = yi,j/zi.

In matrix notation, Equation (1) can be expressed as

E[m(k)] = Pn(k),

where P = [Pij]1≤i,j≤Tk , n(k) = (n(k)
1 , . . . , n(k)

Tk
)T, and

m(k) = (m(k)
1 , . . . ,m(k)

Tk
)T. Then, we have

n(k) = P−1E[m(k)].

Thus, we estimate n(k) as

n̂(k) = P−1m(k),

where n̂(k) = (n̂(k)
1 , . . . , n̂(k)

Tk
)T. We easily have

E[n̂(k)] = E[P−1m(k)] = P−1E[m(k)] = n(k),

therefore n(k) is an unbiased estimator of n(k). Finally, we
estimate ω(k)

i as

ω̂(k)
i =

n̂(k)
i∑Tk

j=1 n̂
(k)
j

, 1 ≤ i ≤ Tk. (2)

Denote by ρ(k)i the concentration of motif M (k)
i in G∗, i.e.,

ρ(k)i =
m(k)

i

m(k) . We observe that Equation (2) is equivalent
to the following equation, which directly describes the
relationship between motif concentrations of G and G∗.
Let ω̂ = [ω̂(k)

1 , . . . , ω̂(k)
Tk

]T and ρ = [ρ(k)1 , . . . , ρ(k)Tk
]T, then

we have
ω̂ =

P−1ρ

W
, (3)

where W = [1, . . . , 1]P−1ρ is a normalizer. For 3-node

undirected motifs, P =

(
p2 3qp2

0 p3

)
, and the inverse

of P is P−1 =

(
p−2 −3qp−3

0 p−3

)
. Due to limited

space, we omit the expressions for P and P−1 for other
motifs such as 3-node signed/directed motifs, 4-, and 5-
node undirected/directed/signed motifs.

5

3.3 Lower Bound on Estimation Errors
It is difficult to directly analyze the errors of our estimate ω̂,
because it is complex to model the dependence of sampled
CISes due to their shared edges and nodes. Instead, we
derive a lower bound on the mean squared error (MSE)
of ω̂ using the Cramér-Rao lower bound (CRLB) of ω̂,
which gives the smallest MSE that any unbiased estimator
of ω can achieve. For a k-node CIS s selected from k-node
CISes of G at random, the probability that s is isomorphic
to the jth k-node motif is P (M(s) = M (k)

j) = ω(k)
j .

Let s∗ be the induced subgraph of the node set V (s) in
RESampled graph G∗. Clearly, s∗ may not be connected.
Furthermore, there may exist nodes in V (s) that are not
present in G∗. We say s∗ is evaporated in G∗ for these
two scenarios. Let P0,j denote the probability that s∗ is
evaporated given that its original CIS s is isomorphic to
the jth k-node motif. Then, we have P0,j = 1−

∑Tk

l=1 Pl,j .
For a random k-node CIS s of G, the probability that its
original k-node CIS s∗ in G∗ is isomorphic to the ith k-
node motif is

ξi = P (M(s∗) = M (k)
i) =

Tk∑

j=1

Pi,jω
(k)
j , 1 ≤ i ≤ Tk,

and the probability that s∗ is evaporated is ξ0 =∑Tk

j=1 P0,jω
(k)
j . When s∗ is evaporated, we denote

M(s∗) = 0. Then, the likelihood function of M(s∗) with
respect to ω(k) is

f(i|ω(k)) = ξi, 0 ≤ i ≤ Tk.

The Fisher information of M(s∗) with respect to ω(k) is
defined as a matrix J = [Ji,j]1≤i,j≤Tk , where

Ji,j = E
[
∂ ln f(l|ω(k))

∂ω(k)
i

∂ ln f(l|ω(k))

∂ω(k)
j

]
=

Tk∑

l=0

Pl,iPl,j

ξl
.

For simplicity, we assume that the CISes of G∗ are in-
dependent (i.e., no overlapping edges). Then the Fisher
information matrix of all k-node CISes is n(k)J . The
Cramér-Rao Theorem states that the MSE of any unbiased
estimator is lower bounded by the inverse of the Fisher
information matrix, i.e.,

MSE(ω̂(k)
i) = E[(ω̂(k)

i −ω
(k)
i)2] ≥ (J−1)i,i − ω(k)(ω(k))T

n(k)

provided some weak regularity conditions hold [19]. Here
the term ω(k)(ω(k))T corresponds to the accuracy gain
obtained by accounting for the constraint

∑Tk

i=1 ω
(k)
i = 1.

The CRLB method provides us a way to set p properly,
i.e., we can perform a pilot study to estimate/guess the
original graph’s statistics, and then use the CRLB method
to evaluate the estimation errors for different p.

4 ENUMERATE AND CLASSIFY 3-, 4-, AND
5-NODE CISES
Function M(s) used in previous sections, which determines
the motif ID of a k-node CIS s, can be achieved by graph
isomorphism testing tools such as NAUTY [20]. In this

section, we introduce a simple yet quick method for small
values of k = 3, 4, 5, which only requires only one hash
table lookup for classifying CISes with up to 5 nodes.
Similarly, existing generalized graph enumeration methods
such as [14] can be used for enumerating all k-node CISes
in RESampled graph G∗, while it is not easy to apply and is
(computationally and memory) inefficient for small values
of k = 3, 4, 5. In this section, we also present a method
(an extension of the NodeIterator++ method in [21]) to
enumerate and count 3-node CISes in G∗. and new two
methods to enumerate and count 4 and 5-node CISes in
G∗ respectively. In what follows, we denote N∗(u) as the
neighbors of u in G∗. Note that in this section G∗ is the
default graph when we define a function. For example, the
CIS with nodes u, v, and w refers to the CIS with nodes
u, v, and w in G∗.

4.1 Classify 3-, 4-, and 5-node CISes
Let d be the number of different edge labels for the graph of
interest. For example, edges in directed graphs have d = 3
labels →, ←, and ↔, and edges in signed graphs have
d = 2 labels + and −. We order the edge labels. For the
jth edge label, we define its label string as a bit string
consisting of d bits, where the jth bit is 1 and the other bits
are 0. For example, we let “100”, “010”, and “001” be label
string for directed edge labels →, ←, and ↔ respectively.

For a k-node CIS s, we quickly compute a bit string, and
then retrieve its motif ID M(s) by looking up the string
from a hash table HT . More specifically,
Step 1: compute a string matrix A where Ai,j records the
edge label string of edge (Vi(s), Vj(s)) ∈ E(s), where
Vi(s) and Vj(s) is the ith and jth nodes in s. Ai,j is a bit
string consisting of d zeros when (Vi(s), Vj(s)) /∈ E(s).
Step 2: concatenate bit strings of all elements in A, that is,

str = A1,1|| . . . ||A1,k||A2,1 . . . ||A2,k||Ak,1 . . . ||Ak,k.

Step 3: get M(s) by looking up key str in hash table HT .
Now, we discuss how to generate HT in advance. For

each motif M (k)
j with k nodes, we use the above step

1 and step 2 to compute a str for each permutation of
nodes in M (k)

j , and then update hash table HT (str) = j.
There exist k! different permutations for k nodes. Thus,
the computational and memory complexities of generating
HT are O(k!Tk) and O(k!dTk) respectively. The compu-
tational complexity of classifying a single k-node CIS is
O(log(k!Tk)).

4.2 Enumerate 3-node CISes
Similar to the NodeIterator++ method in [21], we “pivot”
(the associated operation is discussed later) each node u ∈
V ∗ to enumerate CISes including u. For any two neighbors
v and w of u, we can easily find that the induced graph s
with nodes u, v and w is a 3-node CIS. Thus, we enumerate
each pair of two nodes in N∗(u), and update the 3-node
CIS consisting of u and the pair of nodes. We call this
process “pivoting” u for 3-node CISes. Its pseudo-code is
shown in Algorithm 2.

6

Algorithm 2: Pivot3CIS(G∗, u). Function IND(Γ) re-
turns the CIS with the node set Γ, and M(s) returns
the motif class ID of s.
input : G∗ = (V ∗, E∗, L∗) and u ∈ V ∗

output: m(3)
u = (m(3)

u,1, . . . ,m
(3)
u,T3

)T

for v ∈ N∗(u) do
for w ∈ N∗(u) and w ≻ v do

s← IND({u, v, w});
if (w, v) ∈ E∗ and u ≻ v then

continue();
end
i←M(s);
m(3)

u,i ← m(3)
u,i + 1;

end
end

Clearly, a 3-node CIS s is counted three times when the
associated undirected graph of s by discarding edge labels
is isomorphic to a triangle, once by pivoting each node
u, v, and w. Let ≻ be an arbitrary total order on all of
the nodes, which can be easily defined and obtained, e.g.
from array position or pointer addresses. To ensure each
CIS is enumerated once and only once, we let one and
only one node in a CIS be the leader of the CIS, which is
“responsible” for making sure the CIS gets counted. When
we “pivot” u and enumerate a CIS s, s is counted if u is the
leader of s. Otherwise, s is discarded and not counted. We
use the same method in [21], [22], i.e., let the node with
lowest order in a CIS whose associated undirected graph is
isomorphic to a triangle be the leader. For the other classes
of CISes, their associated undirected graphs are isomorphic
to an unclosed wedge, i.e., the 1st motif in Fig. 3(a). For
each of these CISes, we let the node in the center of its
associated undirected graph (e.g., the node with degree 2
in the unclosed wedge) be the leader.

4.3 Enumerate 4-node CISes
To enumerate 4-node CISes, we “pivot” each node u as
follows: For each pair of u’s neighbors v and w where w ≻
v, we compute the neighborhood of u, v, and w , defined
as Γ = N∗(u)∪N∗(v)∪N∗(w)−{u, v, w}. For any node
x ∈ Γ, we observe that the induced graph s consisting of
nodes u, v, w, and x is a 4-node CIS. Thus, we enumerate
each node x in Γ, and update the 4-node CIS consisting
of u, v, w, and x. We repeat this process until all pairs
of u’s neighbors v and w are enumerated and processed.
Algorithm 3 shows the pseudo-code of “pivoting” u for
4-node CISes.

Similar to 3-node CISes, some 4-node CISes may be
enumerated and counted more than once when we “pivot”
each node u as above. To solve this problem, we propose
the following methods for making sure each 4-node CIS s
is enumerated and gets counted once and only once: When
(u, x) ∈ E∗ and w ≻ x, we discard x. Otherwise, denote by
ŝ the associated undirected graph of s by discarding edge

Algorithm 3: Pivot4CIS(G∗, u). Functions IND(Γ) and
M(s) are the same as those in Algorithm 2, UND(s) re-
turns the associated undirected graph of s by discarding
edge labels, minN(Λ) returns the node with the lowest
order in V (ŝ), FN(ŝ, t) returns the set of nodes in V (ŝ)
having at least t neighbors in V (ŝ), and N∗(S) returns
a set consisting of the neighbors of nodes in set S, i.e.,
N∗(S) = ∪v∈SN(v)− S.
input : G∗ = (V ∗, E∗, L∗) and u ∈ V ∗

output: m(4)
u = (m(4)

u,1, . . . ,m
(4)
u,T4

)T

for v ∈ N∗(u) do
for w ∈ N∗(u) and w ≻ v do

Γ = N∗({u, v, w});
for x ∈ Γ do

if (u, x) ∈ E∗ and w ≻ x then
continue();

end
s← IND({u, v, w, x});
ŝ← UND(s), Λ← FN(ŝ, 2);
if |Λ| ≥ 2 then

if u ≻ minN(Λ) then
continue();

end
end
i←M(s), m(4)

u,i ← m(4)
u,i + 1;

end
end

end

labels. When ŝ includes one and only one node u having
at least 2 neighbors in V (ŝ), we let u be the leader of s.
For example, the node 4 is the leader of the 1st subgraph
in Fig. 5. When ŝ includes more than one node having at
least 2 neighbors in V (ŝ), we let the node with lowest order
among the nodes having at least 2 neighbors in V (ŝ) be the
leader of s. For example, the nodes 6 and 3 are the leaders
of the 2nd and 3rd subgraphs in Fig. 5.

4

3 7

6 4

3 7

6 4

7

6

3

Figure 5. Examples of the leaders of 4-node CISs.
Graphs shown are CISes’ associated undirected
graphs, and the number near to a node represents the
node order. Red nodes are the leaders.

4.4 Enumerate 5-node CISes
Algorithm 4 shows the pseudo-code of “pivoting” u for 5-
node CISes. For a 5-node CIS s, we classify it into two
types according to its associated undirected graph ŝ:

• Type-1 5-node CIS s: ŝ includes at least one node
with more than two neighbors in V (ŝ);

7

• Type-2 5-node CIS s: All nodes in ŝ have no more
than two neighbors in V (ŝ), i.e., ŝ is isomorphic to
a 5-node line or a circle, i.e., the 1st or 6th motifs in
Fig. 3(c).

We propose two different methods to enumerate these two
types of 5-node CISes respectively.

Algorithm 4: Pivot5CIS(G∗, u). For a node set S,
we define function N∗

+(S) = N∗(S) ∪ S, and other
functions are the same as those in Algorithms 2 and 3.

input : G∗ = (V ∗, E∗, L∗) and u ∈ V ∗

output: m(5)
u = (m(5)

u,1, . . . ,m
(5)
u,T5

)T

for v ∈ N∗(u) do
for w ∈ N∗(u) and w ≻ v do

for x ∈ N∗(u) and x ≻ w do
Γ← N∗({u, v, w, x});
for y ∈ Γ do

if (y, u) ∈ E∗ and x ≻ y then
continue();

end
s← IND({u, v, w, x, y});
ŝ← UND(s), Λ← FN(ŝ, 3);
if |Λ| ≥ 2 and u ≻ minN(Λ) then

continue();
end
i←M(s), m(5)

u,i ← m(5)
u,i + 1;

end
end
if (v, w) /∈ E∗ then

Γv ← N∗(v)−N∗
+({u,w});

for x ∈ Γv do
Γw ← N∗(w)−N∗

+({u, v});
for y ∈ Γw do

if (x, y) ∈ E∗ and
u ≻ minN({u, v, w, x, y}) then

continue();
end
s← IND({u, v, w, x, y}),
i←M(s), m(5)

u,i ← m(5)
u,i + 1;

end
end

end
end

end

To enumerate Type-1 5-node CISes, we “pivot” each
node u as follows: When u has at least three neighbors,
we enumerate each combination of three nodes v, w, x ∈
N∗(u) where x ≻ w ≻ v, and then compute the neighbor-
hood of u, v, w, and x, defined as Γ← N∗(u)∪N∗(v)∪
N∗(w) ∪ N∗(x) − {u, v, w, x}. For any node y ∈ Γ, we
observe that the induced graph s consisting of nodes u, v,
w, x, and y is a 5-node CIS. Thus, we enumerate each node
y in Γ, and update the 5-node CIS consisting of u, v, w,
x, and y. We repeat this process until all combinations of

three nodes v, w, x ∈ N∗(u) are enumerated and processed.
Similar to 4-node CISes, we propose the following method
to make sure each 5-node s is enumerated and gets counted
once and only once: When (y, u) ∈ E∗ and y ≻ x, we
discard y. Otherwise, let ŝ be the associated undirected
graph of s, and we then pick the node with lowest order
among the nodes having more than two neighbors in V (ŝ)
be the leader. The 3rd and 4th subgraphs in Fig. 6 are two
corresponding examples.

To enumerate Type-2 5-node CISes, we “pivot” each
node u as follows: When u has at least two neighbors, we
first enumerate each pair of u’s neighbors v and w where
(v, w) /∈ E∗. Then, we compute Γv defined as the set of
v’s neighbors not including u and w and not connected to
u and w, that is, Γv ← N∗(v)−{u,w}−N∗(u)−N∗(w).
Similarly, we compute Γw defined as the set of w’s neigh-
bors not including u and v and not connected to u and v,
i.e., Γw ← N∗(w) − {u, v} − N∗(u) − N∗(v). Clearly,
Γv ∩ Γw = ∅. For any x ∈ Γv and y ∈ Γw, we observe
that the induced graph s consisting of nodes u, v, w, x, and
y is a Type-2 5-node CIS. Thus, we enumerate each pair
(x, y) ∈ Γv×Γw, and update the 5-node CIS consisting of
u, v, w, x, and y. We repeat this process until all pairs of u’s
neighbors v and w are enumerated and processed. To make
sure each CIS s is enumerated and gets counted once and
only once, we let the node with lowest order be the leader
when the associated undirected graph ŝ of s isomorphic to
a 5-node circle. When ŝ is isomorphic to a 5-node line, we
let the node in the center of the line be the leader. The 1st

and 2nd subgraphs in Fig. 6 are two examples.

4

3

7

9

1

4 3

7 9

1

4

3

79

1
43

7 9

1

Figure 6. Examples of the leaders of 5-node CISs.
Graphs shown are CISes’ associated undirected
graphs, and the number near to a node represents the
node order. Red nodes are the leaders.

4.5 Distributed Implementation on GraphLab
Algorithms in Sections 4.2, 4.3, and 4.4 can be easily
parallelized on a single machine. In this section, we further
implement these algorithms for enumerating 3-, 4- and
5-node CISes on a popular distributed graph computing
platform GraphLab [23]. To the best of our knowledge, this
is the first to count 3-, 4- and 5-node motifs that go beyond
undirected graphs under a distributed setting. We adopt the
Gather-Apply-Scatter (GAS) framework of GraphLab [23].
GAS follows the vertex-centric programming paradigm,
which stores data acted upon on every node and edge, and
is executed in parallel on each node. More specifically,
GAS mainly consists of three phases: Gather, Apply and
Scatter. In the “Gather” phase, each node u ∈ V ∗ collects
information (e.g., neighbor list N∗(u) and labels of edges

8

between u and nodes in N∗(u)) about its adjacent nodes
and edges. In the Apply phase, each node takes computation
from the information returned by the “Gather” phase, and
updates its own data. In the “Scatter” phase, each node
updates data on its adjacent edges.

The key idea behind our distributed algorithms is to
“gather” the least but necessary information for pivot-
ing each node u ∈ V , which is discussed in previous
Sections 4.2, 4.3, and 4.4, and then pivot u by “apply-
ing” functions Pivot3CIS(G∗, u), Pivot4CIS(G∗, u), and
Pivot5CIS(G∗, u) in Algorithms 2, 3, and 4. We start
by introducing the whole framework for our distributed
system. Let k-hop neighbors of u ∈ V ∗ be the nodes that
can reach u with no more than k steps on the undirected
graph of G∗. For example, N∗(u) is the set of 1-hop
neighbors of u. Let G∗

u,k denote the k-hop ego-network
of u, which is defined as the inducted subgraph consisting
of nodes u and its k-hop neighbors. We can easily find
that G∗

u,2 is necessary and enough for pivoting 3- and
4-node CISes including u, and the G∗

u,3 is required for
pivoting 5-node CISes including u. By iteratively collecting
information from neighbors, each node’s 2- and 3-hop ego-
networks can be efficiently obtained by “gathering” twice
and three times respectively. Our algorithms are shown in
Algorithms 5 and 6. Note that we do not change data (i.e.,
edge labels in this work) stored on edges, so the “Scatter”
stage is not required in our algorithms.

Algorithm 5: Counting 3-/4-node motifs on GraphLab.
Input : G∗ = (V ∗, E∗, L∗).
Output: 3-/4-node motif frequency m(3)/m(4).
Gather : Gather adjacent nodes and edges of each

node u ∈ V ∗.
Apply : Compute 1-hop ego-network G∗

u,1 and store
it on u.

Gather : Gather data stored on the neighbors of each
node u ∈ V ∗.

Apply : Compute 2-hop ego-network G∗
u,2, and then

call function m(3)
u = Pivot3CIS(G∗

u,2, u),
or m(4)

u = Pivot4CIS(G∗
u,2, u).

Reduce: Compute m(3) =
∑

u∈V ∗ m
(3)
u or

m(4) =
∑

u∈V ∗ m
(4)
u .

5 EVALUATION

In this section, we first introduce our experimental datasets
and then present results of experiments used to evaluate the
performance of our method, Minfer, for characterizing CIS
classes of size k = 3, 4, 5.

5.1 Datasets

We evaluate the performance of our methods on publicly
available datasets taken from the Stanford Network Anal-
ysis Platform (SNAP) (www.snap.stanford.edu), which are

Algorithm 6: Counting 5-node motifs on GraphLab
Input : G∗ = (V ∗, E∗, L∗).
Output: 5-node motif frequency m(5).
Gather : Gather adjacent nodes and edges of each

node u ∈ V ∗.
Apply : Compute 1-hop ego-network G∗

u,1 and store
it on u.

Gather : Gather data stored on the neighbors of each
node u ∈ V ∗.

Apply : Compute 2-hop ego-network G∗
u,2 and store

it on u.
Gather : Gather data stored on the neighbors of each

node u ∈ V ∗.
Apply : Compute 3-hop ego-network G∗

u,3, and then
call function m(5)

u = Pivot5CIS(G∗
u,3, u).

Reduce: Compute m(5) =
∑

u∈V ∗ m
(5)
u .

Table 1
Graph datasets used in our experiments.

Graph nodes edges max-degree
Flickr [24] 1,715,255 15,555,041 27,236
Pokec [25] 1,632,803 22,301,964 14,854

LiveJournal [24] 5,189,809 48,688,097 15,017
YouTube [24] 1,138,499 2,990,443 28,754
Wiki-Talk [26] 2,394,385 4,659,565 100,029

Web-Google [27] 875,713 4,322,051 6,332
soc-Epinions1 [11] 75,897 405,740 3,044
soc-Slashdot08 [10] 77,360 469,180 2,539
soc-Slashdot09 [10] 82,168 504,230 2,552
sign-Epinions [28] 119,130 704,267 3,558

sign-Slashdot08 [28] 77,350 416,695 2,537
sign-Slashdot09 [28] 82,144 504,230 2,552

com-DBLP [29] 317,080 1,049,866 343
com-Amazon [29] 334,863 925,872 549

p2p-Gnutella08 [30] 6,301 20,777 97
ca-GrQc [31] 5,241 14,484 81

ca-CondMat [31] 23,133 93,439 279
ca-HepTh [31] 9,875 25,937 65

summarized in Table 1. We start by evaluating the perfor-
mance of our methods in characterizing 3-node CISes over
million-node graphs: Flickr, Pokec, LiveJournal, YouTube,
Web-Google, and Wiki-talk, contrasting our results with the
ground truth computed through an exhaustive method. It is
computationally intensive to calculate the ground-truth of 4-
node and 5-node CIS classes in large graphs. For example,
we easily observe that a node with degree d > 4 is included
in at least 1

6d(d−1)(d−2) 4-node CISes and 1
24d(d−1)(d−

2)(d − 3) 5-node CISes, therefore it requires more than
O(1015) and O(1019) operations to enumerate the 4-node
and 5-node CISes within the Wiki-talk graph, which con-
tains one node with 100,029 neighbors. Even for a relatively
small graph such as soc-Slashdot08, it takes almost 20
hours to compute all of its 4-node CISes. To solve this prob-
lem, the experiments for 4-node CISes are performed on
four medium-sized graphs soc-Epinions1, soc-Slashdot08,
soc-Slashdot09, com-DBLP, and com-Amazon, and the ex-
periments for 5-node CISes are performed on four relatively
small graphs ca-GR-QC, ca-HEP-TH, ca-CondMat, and

9

Table 2
Values of ω(3)

i , the concentrations of 3-node
undirected and directed motifs. (i is the motif ID.)

i Flickr Pokec LiveLive- Wiki- Web-
Journal Talk Google

3-node undirected motifs
1 9.60e-01 9.84e-01 9.55e-01 9.99e-01 9.81e-01
2 4.04e-02 1.60e-02 4.50e-02 7.18e-04 1.91e-02

3-node directed motifs
1 2.17e-01 1.77e-01 7.62e-02 8.91e-01 1.27e-02
2 6.04e-02 1.11e-01 4.83e-02 4.04e-02 1.60e-02
3 1.28e-01 1.60e-01 3.28e-01 3.91e-03 9.28e-01
4 2.44e-01 1.74e-01 1.14e-01 5.43e-02 3.09e-03
5 1.31e-01 1.91e-01 1.73e-01 5.48e-03 1.92e-02
6 1.80e-01 1.71e-01 2.15e-01 3.88e-03 1.92e-03
7 5.69e-05 7.06e-05 2.74e-05 1.37e-05 4.91e-05
8 6.52e-03 2.49e-03 8.66e-03 1.81e-04 6.82e-03
9 1.58e-03 1.03e-03 1.06e-03 8.42e-05 2.84e-04
10 5.19e-03 1.91e-03 6.63e-03 1.28e-04 2.77e-03
11 6.46e-03 2.03e-03 6.27e-03 8.03e-05 5.98e-03
12 1.07e-02 5.13e-03 9.82e-03 1.78e-04 1.21e-03
13 9.86e-03 3.45e-03 1.26e-02 6.65e-05 2.00e-03

Table 3
NRMSEs of ω̂(3)

i , the concentration estimates of
3-node undirected motifs for p = 0.01, 0.05

i Flickr Pokec LiveLive- Wiki- Web-
Journal Talk Google

p = 0.01
1 1.92e-03 3.26e-03 2.69e-03 5.21e-03 2.93e-04
2 4.56e-02 6.92e-02 1.64e-01 2.67e-01 4.00e-01

p = 0.05
1 2.90e-04 4.10e-04 2.64e-04 6.06e-04 2.92e-05
2 6.90e-03 8.68e-03 1.61e-02 3.11e-02 3.99e-02

p2p-Gnutella08, where computing the ground-truth is fea-
sible. We also evaluate the performance of our methods for
characterizing signed CIS classes in graphs sign-Epinions,
sign-Slashdot08, and sign-Slashdot09.

5.2 Error Metric
In our experiments, we focus on the normalized root mean
square error (NRMSE) to measure the relative error of
the estimator ω̂i of the subgraph class concentration ωi,
i = 1, 2, NRMSE(ω̂i) is defined as: NRMSE(ω̂i) =√

MSE(ω̂i)

ωi
, i = 1, 2, . . . , where MSE(ω̂i) is defined as the

mean square error (MSE) of an estimate ω̂i with respect to
its true value ωi > 0, that is

MSE(ω̂i) = E[(ω̂i − ωi)
2] = Var(ω̂i) + (E[ω̂i]− ωi)

2 .

Table 4
Values of ω(3)

i , the concentrations of 3-node signed
motifs. (i is the motif ID.)

i sign-Epinions sign-Slashdot08 sign-Slashdot09
1 6.69e-01 6.58e-01 6.68e-01
2 2.12e-01 2.32e-01 2.25e-01
3 9.09e-02 1.02e-01 9.96e-02
4 2.29e-02 5.86e-03 5.75e-03
5 2.76e-03 9.74e-04 9.34e-04
6 2.49e-03 1.14e-03 1.13e-03
7 3.81e-04 1.80e-04 1.76e-04

Table 5
Values of ω(4)

i , the concentrations of 4-node
undirected motifs. (i is the motif ID.)

i
soc- soc- soc- com-

Epinions1 Slashdot08 Slashdot09 Amazon
1 3.24e-01 2.93e-01 2.90e-01 2.10e-01
2 6.15e-01 6.86e-01 6.89e-01 6.99e-01
3 2.78e-03 1.25e-03 1.30e-03 2.37e-03
4 5.45e-02 1.86e-02 1.84e-02 7.69e-02
5 3.01e-03 7.77e-04 8.48e-04 1.05e-02
6 2.25e-04 9.19e-05 9.36e-05 1.55e-03

Table 6
Values of ω(5)

i , concentrations of 5-node undirected
motifs. (i is the motif ID.)

i
com-A com- p2p-Gn ca- ca-Con ca-
mazon DBLP utella08 GrQc dMat HepTh

1 2.9e-2 1.4e-1 2.6e-1 9.8e-2 1.4e-1 2.6e-1
2 7.5e-1 1.8e-1 1.8e-1 5.2e-2 2.2e-1 8.2e-2
3 1.6e-1 4.4e-1 4.6e-1 2.1e-1 4.3e-1 4.4e-1
4 6.0e-3 4.8e-2 1.1e-2 1.0e-1 4.9e-2 6.0e-2
5 2.3e-3 1.1e-3 2.7e-2 1.4e-3 2.1e-3 5.4e-3
6 3.6e-5 5.0e-5 1.4e-3 9.2e-5 1.1e-4 4.1e-4
7 1.5e-2 5.6e-2 2.7e-2 1.1e-1 5.5e-2 6.4e-2
8 3.5e-2 7.9e-2 2.2e-2 1.2e-1 8.0e-2 5.2e-2
9 1.4e-3 4.2e-3 1.4e-3 1.5e-2 7.0e-3 8.4e-3

10 1.7e-4 1.4e-4 1.0e-3 6.5e-4 3.0e-4 8.0e-4
11 7.3e-3 8.1e-3 4.3e-3 2.3e-2 9.9e-3 1.0e-2
12 5.3e-4 6.4e-3 2.8e-4 2.3e-2 4.5e-3 3.6e-3
13 8.2e-5 3.5e-6 7.4e-4 4.5e-6 6.4e-6 3.5e-5
14 3.9e-4 5.2e-4 1.7e-4 2.8e-3 6.6e-4 1.0e-3
15 6.7e-4 2.6e-2 7.6e-5 1.5e-1 5.9e-3 5.3e-3
16 7.1e-4 3.4e-4 1.4e-4 1.4e-3 9.2e-4 4.4e-4
17 3.9e-5 1.1e-5 8.0e-5 4.3e-5 2.9e-5 8.4e-5
18 2.3e-5 4.9e-6 6.0e-6 2.3e-5 8.5e-6 3.0e-5
19 2.4e-4 2.8e-3 1.5e-5 1.9e-2 9.8e-4 5.8e-4
20 5.8e-5 4.2e-4 7.0e-7 8.0e-3 1.4e-4 8.2e-5
21 7.2e-6 7.9e-3 1.5e-8 6.1e-2 1.5e-4 3.2e-3

We note that MSE(ω̂i) decomposes into a sum of the
variance and bias of the estimator ω̂i. Both quantities are
important and need to be as small as possible to achieve
good estimation performance. When ω̂i is an unbiased
estimator of ωi, then we have MSE(ω̂i) = Var(ω̂i) and
thus NRMSE(ω̂i) is equivalent to the normalized standard
error of ω̂i, i.e., NRMSE(ω̂i) =

√
Var(ω̂i)/ωi. Note that

our metric uses the relative error. Thus, when ωi is small,
we consider values as large as NRMSE(ω̂i) = 1 to be
acceptable. In all our experiments, we average the estimates
and calculate their NRMSEs over 1,000 runs.

5.3 Accuracy Results
Results of inferring 3-node motif concentrations: Ta-
ble 2 shows the real values of the 3-node undirected and
directed motifs’ concentrations for the undirected graphs
and directed graphs of Flickr, Pokec, LiveJournal, Wiki-
Talk, and Web-Google. Among all 3-node directed motifs,
the 7th motif exhibits the smallest concentration for all
these five directed graphs. Here the undirected graphs are
obtained by discarding the edge directions of directed
graphs. Flickr, Pokec, LiveJournal,Wiki-Talk, and Web-
Google have 1.35×1010, 2.02×109, 6.90×109, 1.2×1010,
and 7.00 × 108 3-node CISes respectively. Table 3 shows

10

1 2 3 4 5 6 7 8 9 10 11 12 13
10−3

10−2

10−1

100

101

motif ID

Er
ro

r:
N

R
M

SE

Flickr
LiveJournal
Pokec
Web−Google
Wiki−Talk

(a) p = 0.01

1 2 3 4 5 6 7 8 9 10 11 12 13
10−3

10−2

10−1

100

motif ID

Er
ro

r:
N

R
M

SE

Flickr
LiveJournal
Pokec
Web−Google
Wiki−Talk

(b) p = 0.05

Figure 7. NRMSEs of ω̂(3)
i , the concentration estimates

of 3-node directed motifs for p = 0.01, 0.05.

the NRMSEs of our estimates of 3-node undirected motifs’
concentrations for p = 0.01 and p = 0.05 respectively.
We observe that the NRMSEs associated with the sampling
probability p = 0.05 is about ten times smaller than the
NRMSEs when p = 0.01. The NRMSEs are smaller than
0.04 when p = 0.05 for all five graphs. Fig. 7 shows
the NRMSEs of our estimates of 3-node directed motifs’
concentrations for p = 0.01 and p = 0.05 respectively.
Similarly, we observe the NRMSEs when p = 0.05
are nearly ten times smaller than the NRMSEs when
p = 0.01. The NRMSE of our estimates of ω(3)

7 (i.e.,
the 7th 3-node directed motif concentration) exhibits the
largest error. Except for ω(3)

7 , the NRMSEs of the other
motif concentrations’ estimates are smaller than 0.2 when
p = 0.05. Web-Google exhibits larger errors than the other
graphs, because it has less 3-node CISes. Table 4 shows
the real values of 3-node signed motifs’ concentrations
for sign-Epinions, sign-Slashdot08, and sign-Slashdot09.
Sign-Epinions, sign-Slashdot08, and sign-Slashdot09 have
1.72 × 108, 6.72 × 107, and 7.25 × 107 3-node CISes
respectively. Fig. 8 shows the NRMSEs of our estimates
of 3-node signed and undirected motifs’ concentrations for
p = 0.05 and p = 0.1 respectively. For all these three
signed graphs, the NRMSEs are smaller than 0.9 and 0.2
when p = 0.05 and p = 0.1 respectively.

Results of inferring 4-node motif concentrations:
Table 5 shows the real values of ω(4)

i , i.e., the concen-
trations of 4-node undirected motifs for soc-Epinions1,
soc-Slashdot08, soc-Slashdot09, and com-Amazon. Soc-
Epinions1, soc-Slashdot08, soc-Slashdot09, and com-
Amazon have 2.58 × 1010, 2.17 × 1010, 2.42 × 1010, and
1.78 × 108 4-node CISes respectively. Fig. 9 shows the
NRMSEs of ω̂(4)

i , the concentration estimates of 4-node
undirected motifs for p = 0.05, p = 0.1, and p = 0.2
respectively. We observe that motifs with smaller ω(4)

i

1 2 3 4 5 6 7
10−2

10−1

100

motif ID

Er
ro

r:
N

R
M

SE

sign−Epinions
sign−Slashdot08
sign−Slashdot09

(a) p = 0.05

1 2 3 4 5 6 7
10−3

10−2

10−1

100

motif ID

Er
ro

r:
N

R
M

SE

sign−Epinions
sign−Slashdot08
sign−Slashdot09

(b) p = 0.1

Figure 8. NRMSEs of ω(3)
i , the concentration estimates

of 3-node signed motifs for p = 0.05, 0.1.

1 2 3 4 5 6

10−2

10−1

100

101

motif ID

Er
ro

r:
N

R
M

SE

soc−Epinions1
soc−Slashdot08
soc−Slashdot09
com−Amazon

(a) p = 0.1

1 2 3 4 5 6

10−2

10−1

100

101

motif ID

Er
ro

r:
N

R
M

SE

soc−Epinions1
soc−Slashdot08
soc−Slashdot09
com−Amazon

(b) p = 0.2

Figure 9. NRMSEs of ω̂(4)
i , the concentration estimates

of 4-node undirected motifs for p = 0.1, 0.2.

exhibit larger NRMSEs. Except for ω(4)
3 , the NRMSEs of

the motif concentration estimates are smaller than 0.2 for
p = 0.2.

Results of inferring 5-node motif concentrations:
Table 6 shows the real values of ω(5)

i , i.e., the concentra-
tions of 5-node undirected motifs for com-Amazon, com-
DBLP, p2p-Gnutella08, ca-GrQc, ca-CondMat, and ca-
HepTh, which have 8.50 × 109, 3.34 × 1010, 3.92 × 108,
3.64 × 107, 3.32 × 109, and 8.73 × 107 5-node CISes
respectively. Fig. 10 shows the NRMSEs of ω̂(5)

i , the
concentration estimates of 5-node undirected motifs for
p = 0.1, p = 0.2, and p = 0.3 respectively. We observe
that NRMSE decreases as p increases, and the 6th, 10th,
13th, 17th, 18th 5-node motifs with small ω(5)

i exhibit large
NRMSEs. We generate a large graph G consisting of R
soc-Amazon graphs, i.e., G has R components, and each
component is an instance of the soc-Amazon graph. Clearly
G has the same motif distributions as the soc-Amazon
graph. Fig. 11 shows that the NRMSEs decreases as R
increases, which indicates that our methods may exhibit
small errors for characterizing 5-node motif of large graphs.

5.4 Error Bounds
Figure 12 shows the root CRLBs (RCRLBs) and the
root MSEs (RMSEs) of our estimates of 3-node directed
motifs’ concentrations, 4-, and 5-node undirected motifs’
concentrations, where graphs LiveJournal, soc-Epinions,
and com-DBLP are used for studying 3-node directed

11

0 5 10 15

10−6

10−4

10−2

3−node directed motif ID

RMSE, p=0.01
RMSE, p=0.05
RCRLB, p=0.01
RCRLB, p=0.05

(a) (LiveJournal) 3-node directed motifs

1 2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

4−node undirected motif ID

RMSE, p=0.05
RMSE, p=0.1
RCRLB, p=0.05
RCRLB, p=0.1

(b) (soc-Epinions) 4-node undirected motifs

0 5 10 15 20 25

10−3

10−2

10−1

100

101

5−node undirected motif ID

RMSE, p=0.1
RMSE, p=0.2
RCRLB, p=0.1
RCRLB, p=0.2

(c) (com-DBLP) 5-node undirected motifs

Figure 12. RCRLBs and RMSEs of concentration estimates of 3, 4, and 5-node directed motifs.

1 3 6 9 12 15 18 21
10−2

100

102

104

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(a) com-Amazon

1 3 6 9 12 15 18 21
10−2

100

102

104

106

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(b) com-DBLP

1 3 6 9 12 15 18 21
10−2

10−1

100

101

102

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(c) p2p-Gnutella08

1 3 6 9 12 15 18 21
10−1

100

102

104

106

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(d) ca-GrQc

1 3 6 9 12 15 18 21
10−2

100

102

104

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(e) ca-CondMat

1 3 6 9 12 15 18 21
10−2

100

102

104

106

motif ID

Er
ro

r:
N

R
M

SE

 p=0.1
p=0.2
p=0.3

(f) ca-HepTh

Figure 10. NRMSEs of ω̂(5)
i , the concentration esti-

mates of 5-node undirected motifs for p = 0.1, 0.2, 0.3.

motifs, 4-, and 5-node undirected motifs respectively. We
observe that the RCRLBs are smaller than the RMSEs,
and fairly close to the RMSEs. The RMSEs and RCRLBs
are almost indistinguishable for 3-node directed motifs,
where p = 0.01 and LiveJournal is used. It indicates that
the RCRLBs can efficiently bound the errors of our motif

1 3 6 9 12 15 18 21
10−2

100

102

motif ID

Er
ro

r:
N

R
M

SE

R=1
R=10
R=100

Figure 11. NRMSEs of ω̂(5)
i , the concentration esti-

mates of 5-node undirected motifs for a graph consist-
ing of R soc-Amazon graphs, where p = 0.2.

concentration estimations.

5.5 Running Time
In this subsection, we describe the implementation and
experimental results of our 3-, 4-, and 5-node CIS enumer-
ation methods in Section 4. In order to evaluate the perfor-
mance of our methods, we present results on both synthetic
and real-world graphs. Our experiments are implemented
on an AWS EC2 cluster consisting of up to 12 r3.4xlarge
machines, where each machine has 122GB RAM and 16
virtual CPUs. To the best of our knowledge, we are the first
to enumerate directed/signed CISes in a distributed manner.
Therefore, we only compare our methods with the state-
of-the-art multicore method gtrieScanner [32] for counting
directed/signed motifs. The results demonstrate that our
methods outperform gtrieScanner on a single machine in
terms of computational time and memory usage.

Comparison to gtrieSanner on a single machine: We
implement our method and gtrieScanner both in a single
AWS EC2 machine. We generate graphs with different sizes
using the Erdös Rényi model G(n, p̂) [33] , where n is the
number of nodes. On average, a directed graph in G(n, p̂)
has n(n − 1)p edges. In our experiments, we set np̂ =
5. gtrieScanner fails to process graphs with n ≥ 400, 000

12

nodes because it stores graphs as regular matrices, which
is prohibited for large graphs. Therefore, we compare our
method and gtrieScanner on graphs with 50,000 to 400,000
nodes. Figs. 13(a)-(c) show the scalability of our method for
processing graphs with different sizes. We can see that its
time complexity almost increases linearly with the graph
size. Compared to gtrieScanner, our method is 16×, 9×,
4× faster for counting 3-, 4-, and 5-node directed motifs
reflectively. Fig. 13(d) shows that the memory usage of
our method increases linearly with the graph size, while
the memory usage of gtrieScanner grows quadratically with
the graph size and cannot load in a graph with more than
400,000 nodes in a single AWS EC2 machine. We omit the
similar results for enumerating signed motifs.

0.5 1 2 3 4
x 105

0

20

40

60

80

#nodes

ru
nn

in
g

tim
e(

se
c)

Minfer
gtrieScanner

(a) running time, k = 3

0.5 1 2 3 4
x 105

0

50

100

150

#nodes

ru
nn

in
g

tim
e(

se
c)

Minfer
gtrieScanner

(b) running time, k = 4

0.5 1 2 3 4
x 105

0

200

400

600

800

#nodes

ru
nn

in
g

tim
e(

se
c)

Minfer
gtrieScanner

(c) running time, k = 5

0.5 1 1.5 2 2.5 3 3.5 4
x 105

0
30
60
90

#nodes

m
em

or
y

us
ag

e
(%

)

gtrieScanner
Minfer k=3
Minfer k=4
Minfer k=5

(d) memory usage (%)

Figure 13. Compared results of our methods and gtri-
eScanner for enumerating the k-node directed CISes
of graphs with different sizes in a single machine with
122GB memory. gtrieScanner fails to process graphs
with 400, 000 nodes.

Running time on a cluster of machines: Next, we
evaluate the scalability of our method on a large graph
LiveJournal with millions of nodes and edges for different
number of machines and sampling rate p. Fig. 14 shows
the running time for counting 3-, 4- and 5-nodes CISes
as a function of sample rate and number of machines. We
can see the running time decreases when the number of
machines grows. Benefitting from the edge sampling, we
speed up by orders of magnitude for estimating 3-, 4-, and
5-node motifs without significantly sacrificing accuracy,
which has been discussed previously.

6 RELATED WORK
Motif Sampling Methods: There has been considerable
interest in designing efficient sampling methods for count-
ing specific subgraph patterns such as triangles [17], [34]–
[37], cliques [38], [39], and cycles [34], [40], because it

is computationally intensive to compute the number of the
subgraph pattern’s appearances in a large graph. Similar
to the problem studied in [12]–[15], [41], in this work
we focus on characterizing 3-, 4-, and 5-nodes CISes in
a single large graph, which differs from the problem of
estimating the number of subgraph patterns appearing in
a large set of graphs studied in [42]. OmidiGenes et
al. [41] proposed a subgraph enumeration and counting
method using sampling. However this method suffers from
an unknown sampling bias. To estimate subgraph class
concentrations, Kashtan et al. [13] proposed a subgraph
sampling method, but their method is computationally
expensive when calculating the weight of each sampled
subgraph, which is needed to correct for the bias introduced
by sampling. To address this drawback, Wernicke [14]
proposed an algorithm, FANMOD, based on enumerating
subgraph trees to detect network motifs. Bhuiyan et al. [15]
proposed a Metropolis-Hastings based sampling method
GUISE to estimate 3-node, 4-node, and 5-node subgraph
frequency distribution. Wang et al. [12] proposed an effi-
cient crawling method to estimate online social networks’
motif concentrations, when the graph’s topology is not
available in advance and it is costly to crawl the entire
topology. Work on graph sparsifiers such as [43] focuses
on designing methods to obtain a sparse graph similar to the
original graph with respect to a specific graph metric such
as triangle count. We are interested in a different problem,
to infer the original graph’s motif statistics from a given
RESampled graph and we assume the original graph is not
available or cannot be explored. Triangle sparsifiers is used
to estimate the original graph’s triangle count. It cannot
characterize 4- and 5-node motifs, and 3-node directed
motifs, because it does not consider how to remove the
uncertainty that a sampled 3-node CIS may differ from
its original CISes. In summary, previous methods focus on
designing efficient sampling methods and crawling methods
for estimating motif statistics when the graph is directly
available or indirectly available (i.e., it is not expensive to
query a node’s neighbors [12]). They cannot be applied to
solve the problem studied in this paper, i.e., we assume the
graph is not available but a RESampled graph is given and
we aim to infer the underlying graph’s motif statistics from
the RESampled graph. At last, we would like to point out
our method of estimating motif statistics and its error bound
computation method are inspired by methods of estimating
flow size distribution for network traffic measurement and
monitoring [44]–[47].

Exact Motif Counting Methods: The problem of enu-
merating and counting all triangles in large undirected
graphs has been well studied in both centralized and
distributed settings [48]–[51]. Recently, many efforts have
been devoted to designing efficient algorithms for exactly
counting higher order subgraph patterns such as 4- and
5-node graphlets. [51]–[53] developed efficient algorithms
for counting 3- and 4-node undirected motifs by utilizing
the relationships between 3- and 4-node motif frequencies,
which do not hold for labeled graphs such as directed and
signed graphs studied in this paper. [32] developed a multi-

13

4 machines 8 machines12 machines
0

50

100

150

200

R
un

ni
ng

 ti
m

e
(s

ec
)

p=1
p=0.7
p=0.4
p=0.1

(a) 3-node directed motifs

4 machines 8 machines12 machines
0

200

400

600

800

1000

1200

R
un

ni
ng

 ti
m

e
(s

ec
)

p=0.1
p=0.07
p=0.04
p=0.01

(b) 4-node directed motifs

4 machines 8 machines12 machines
0

20

40

60

80

100

120

R
un

ni
ng

 ti
m

e
(s

ec
)

p=0.1
p=0.07
p=0.04
p=0.01

(c) 5-node directed motifs

Figure 14. (LiveJournal) Running time of enumerating 3-, 4- and 5-node motifs in directed graph for different
number of machines and sample rate p.

core algorithm to enumerate both undirected and directed
graphlets. For the distributed setting, [54] developed a
framework PSgL for listing only undirected subgraphs in a
divide-and-conquer fashion. Compared to existing methods,
our experiments demonstrate that our methods are much
more effective for counting 3-, 4-, and 5-node labeled (e.g.,
directed or signed) motifs.

7 CONCLUSIONS
In this paper, we study the problem of inferring the underly-
ing graph’s motif statistics when the entire graph topology
is not available, and only a RESampled graph is given. We
propose a model to bridge the gap between the underlying
graph’s and its RESampled graph’s motif statistics. Based
on this probabilistic model, we develop a method Minfer
to infer the underlying graph’s motif statistics, and give a
Fisher information based method to bound the error of our
estimates. We further develop new methods for enumerating
and classifying 3-, 4-, and 5-node labeled (e.g., directed
or signed) CISes under both centralized and distributed
settings. Experimental results on a variety of real-world
datasets demonstrate the efficiency of our methods.

ACKNOWLEDGMENT
We thank the anonymous reviewers as well as Dr. Wei
Fan for helpful suggestions. This work was supported in
part by Ministry of Education & China Mobile Joint Re-
search Fund Program (MCM20150506) the National Nat-
ural Science Foundation of China (61103240, 61103241,
61221063, 91118005, 61221063, U1301254), 863 High
Tech Development Plan (2012AA011003), 111 Interna-
tional Collaboration Program of China, the Application
Foundation Research Program of SuZhou (SYG201311),
and the Prospective Research Project on Future Networks
of Jiangsu Future Networks Innovation Institute. This work
was also supported by ARO under MURI W911NF-08-1-
0233 and ARL under Cooperative Agreement W911NF-
09-2-0053. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied of the ARL, or the U.S. Government. The work
of John C.S. Lui was supported in part by the GRF 415013.

REFERENCES
[1] H. Chun, Y. yeol Ahn, H. Kwak, S. Moon, Y. ho Eom, and H. Jeong,

“Comparison of online social relations in terms of volume vs.
interaction: A case study of cyworld,” in ACM SIGCOMM IMC,
2008, pp. 57–59.

[2] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “The slashdot zoo:
mining a social network with negative edges,” in WWW, 2009, pp.
741–750.

[3] J. Zhao, J. C. S. Lui, D. Towsley, X. Guan, and Y. Zhou, “Empirical
analysis of the evolution of follower network: A case study on
douban,” in IEEE INFOCOM NetSciCom, 2011, pp. 941–946.

[4] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies:
mapping the empirical and extremal geography of large graph
collections,” in WWW, 2013, pp. 1307–1318.

[5] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs
in the transcriptional regulation network of escherichia coli,” Nature
Genetics, vol. 31, no. 1, pp. 64–68, May 2002.

[6] I. Albert and R. Albert, “Conserved network motifs allow protein–
protein interaction prediction,” Bioinformatics, vol. 4863, no. 13, pp.
3346–3352, 2004.

[7] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and
U. Alon, “Coarse-graining and self-dissimilarity of complex net-
works,” Physica Rev.E, vol. 71, p. 016127, 2005.

[8] R. Milo, E. Al, and C. Biology, “Network motifs: Simple building
blocks of complex networks,” Science, vol. 298, no. 5549, pp. 824–
827, October 2002.

[9] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organiza-
tion of complex networks,” Science, vol. 353, no. 6295, pp. 163–166,
July 2016.

[10] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters,” Internet Mathematics, vol. 6,
no. 1, pp. 29–123, 2009.

[11] M. Richardson, R. Agrawal, and P. Domingos, “Trust management
for the semantic web,” in ISWC, 2003, pp. 351–368.

[12] P. Wang, J. C. Lui, J. Zhao, B. Ribeiro, D. Towsley, and X. Guan,
“Efficiently estimating motif statistics of large networks,” ACM
Transactions on Knowledge Discovery from Data, 2014.

[13] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient sampling
algorithm for estimating subgraph concentrations and detecting net-
work motifs,” Bioinformatics, vol. 20, no. 11, pp. 1746–1758, 2004.

[14] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 3,
no. 4, pp. 347–359, 2006.

[15] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. A. Hasan, “Guise:
Uniform sampling of graphlets for large graph analysis,” in IEEE
ICDM, 2012, pp. 91–100.

[16] B. Ribeiro and D. Towsley, “Estimating and sampling graphs with
multidimensional random walks,” in ACM SIGCOMM IMC, 2010,
pp. 390–403.

[17] N. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample
and hold: A framework for big-graph analytics,” in ACM SIGKDD,
2014, pp. 589–597.

14

[18] J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng, “Nemofinder: dissecting
genome-wide protein-protein interactions with meso-scale network
motifs,” in ACM SIGKDD 2006, 2006, pp. 106–115.

[19] H. L. van Trees, Estimation and Modulation Theory, Part 1. New
York: Wiley, 2001.

[20] B. D. McKay, “nauty user’s guide, version 2.4,” Department of
Computer Science, Australian National University, Tech. Rep., 2009.

[21] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the
last reducer,” in WWW, 2011, pp. 607–614.

[22] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Ph.D. dissertation, 2007.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,”
in Proceedings of USENIX OSDI, 2012, pp. 17–30.

[24] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,” in
Proceedings of ACM SIGCOMM IMC, 2007, pp. 29–42.

[25] L. Takac and M. Zabovsky, “Data analysis in public social networks.”
in International Scientific Conference and International Workshop
Present Day Trends of Innovations, 2012, pp. 1–6.

[26] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive
and negative links in online social networks,” in WWW, 2010, pp.
641–650.

[27] “Google programming contest,” http://www.google.com/
programming-contest/, 2002.

[28] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in ACM CHI, April 2010, pp. 1361–1370.

[29] J. Yang and J. Leskovec, “Defining and evaluating network commu-
nities based on ground-truth,” in IEEE ICDM, 2012, pp. 745–754.

[30] M. Ripeanu, I. T. Foster, and A. Iamnitchi, “Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implica-
tions for system design,” IEEE Internet Computing Journal, vol. 6,
no. 1, pp. 50–57, 2002.

[31] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, Mar. 2007.

[32] D. Oliveira Aparicio, P. M. Pinto Ribeiro, and F. M. A. D. Silva,
“Parallel subgraph counting for multicore architectures,” in IEEE
International Symposium on Parallel and Distributed Processing
with Applications, 2014, pp. 34–41.

[33] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Math-
ematicae, vol. 6, pp. 290–297, 1959.

[34] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” J. ACM, vol. 42,
no. 4, pp. 844–856, Jul. 1995.

[35] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos,
“Doulion: Counting triangles in massive graphs with a coin,” in ACM
SIGKDD 2009, 2009.

[36] A. Pavany, K. T. S. Tirthapuraz, and K.-L. Wu, “Counting and
sampling triangles from a graph stream,” in VLDB, 2013, pp. 1870–
1881.

[37] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming
algorithm for triangle counting using the birthday paradox,” in ACM
SIGKDD, 2013, pp. 589–597.

[38] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding max-
imal cliques in massive networks,” ACM Transactions on Database
Systems, vol. 36, no. 4, pp. 21:1–21:34, Dec. 2011.

[39] M. Gjoka, E. Smith, and C. T. Butts, “Estimating Clique Compo-
sition and Size Distributions from Sampled Network Data,” ArXiv
e-prints, Aug. 2013.

[40] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun, “Approx-
imate counting of cycles in streams,” in ESA, 2011, pp. 677–688.

[41] S. Omidi, F. Schreiber, and A. Masoudi-nejad, “Moda: An efficient
algorithm for network motif discovery in biological networks,”
Genes and Genet systems, vol. 84, no. 5, pp. 385–395, 2009.

[42] M. A. Hasan and M. J. Zaki, “Output space sampling for graph
patterns,” in the VLDB Endowment 2009, 2009, pp. 730–741.

[43] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller, “Triangle
sparsifiers,” J. Graph Algorithms Appl., vol. 15, no. 6, pp. 703–726,
2011.

[44] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in ACM SIGCOMM, 2003, pp. 325–
336.

[45] B. Ribeiro, D. Towsley, T. Ye, and J. Bolot, “Fisher information
of sampled packets: an application to flow size estimation,” in
Proceedings of ACM SIGCOMM IMC, 2006, pp. 15–26.

[46] P. Tune and D. Veitch, “Towards optimal sampling for flow size
estimation,” in ACM SIGCOMM IMC, 2008, pp. 243–256.

[47] P. Wang, X. Guan, J. Zhao, J. Tao, and T. Qin, “A new sketch
method for measuring host connection degree distribution,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 6,
pp. 948–960, 2014.

[48] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in ACM SIGKDD, 2011, pp. 672–680.

[49] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the
last reducer,” in WWW, 2011, pp. 607–614.

[50] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Phd in Computer Science, 2007.

[51] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Di-
makis, “Beyond triangles: A distributed framework for estimating
3-profiles of large graphs,” in ACM SIGKDD, 2015, pp. 229–238.

[52] D. Marcus and Y. Shavitt, “Rage–A rapid graphlet enumerator for
large networks,” Computer Networks, vol. 56, no. 2, pp. 810–819,
2012.

[53] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Di-
makis, “Distributed estimation of graph 4-profiles,” in WWW, 2015,
pp. 2–14.

[54] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, Parallel
subgraph listing in a large-scale graph, 2014.

Pinghui Wang received the B.S. degree in information
engineering and the Ph.D. degree in automatic control from
Xi’an Jiaotong University, Xi’an, China, in 2006 and 2012
respectively. He is currently an associate professor with
NSKEYLAB at Xi’an Jiaotong University. His research
interests include graph mining and abnormal detection.

Yiyan Qi received the B.S in automation engineering
from Xi’an Jiaotong University, Xi’an, China, in 2014. He
is currently a graduate student with NSKEYLAB at Xi’an
Jiaotong University. His research interests include graph
mining and abnormal detection.

John C.S. Lui received the PhD degree in computer
science from UCLA. He is currently a professor in the
Department of Computer Science and Engineering at The
Chinese University of Hong Kong. His current research
interests include networks and performance evaluation.

Don Towsley holds a B.A. in Physics (1971) and a Ph.D.
in Computer Science (1975) from University of Texas. He
is currently a Distinguished Professor at the University
of Massachusetts in the Department of Computer Science.
His research interests include networks and performance
evaluation.

Junzhou Zhao received the B.S. degree in information
engineering and the Ph.D. degree in automatic control
from Xi’an Jiaotong University, Xi’an, China, in 2006 and
2012 respectively. He is currently a Postdoc Fellow in the
Department of Computer Science and Engineering at The
Chinese University of Hong Kong. His research interests
include online social network measurement and modeling.

Jing Tao received the B.S and M.S degrees in automation
engineering from Xi’an Jiaotong University, Xi’an, China,
in 2001 and 2006 respectively. He is currently a teacher
in Xi’an Jiaotong University and on-the-job Ph.D. candi-
date with NSKEYLAB at Xi’an Jiaotong University. His
research interests include abnormal detection and botnet.

