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Abstract

Public-access networks need to handle persistent congestion and overload caused by high bandwidth aggregates
that may occur during times of flooding- based DDoS attacks or flash crowds. The often unpredictable nature of these
two activities can severely degrade server performance. Legitimate user requests also suffer considerably when traffic
from many different sources aggregates inside the network and causes congestion. This paper studies a “family” of
algorithms that “proactively” protect a server from overload by installing rate throttles in a set of upstream routers. A
control-theoretic approach is used to obtain an “optimal” control setting that achieves throttling in a distributed and
fair manner by taking important performance metrics into consideration, such as minimizing overall load variations.
Using ns-2 simulations, we show that our proposed algorithms (1) are highly adaptive by avoiding unnecessary control
parameter configuration, (2) provide max-min fairness for any number of throttling routers, (3) respond very quickly to
network changes, (4) are extremely robust against extrinsic factors beyond the system control, and (5) are stable under
given delay bounds. Most importantly, our approach provides a systematic way to handle high bandwidth aggregates
by viewing them as a generic congestion control problem with relevance to many network applications.

I. Introduction

This paper proposes a control-theoretic approach to design a class of distributed throttling al-

gorithms for handling high bandwidth aggregates in the Internet. High bandwidth aggregates, as

well as persistent congestion, can occur in the current Internet even when links are appropriately

provisioned, and whether flows use conformant end-to-end congestion control or not. Two prime

examples of high bandwidth aggregates that have received a lot of recent attention are distributed

denial-of-service (DDoS) attacks and flash crowds[12].

In a DDoS attack, attackers send a large volume of traffic from different end hosts and direct the

traffic to overwhelm the resources at a particular link or server. This high volume of traffic will

significantly degrade the performance of legitimate users who wish to gain access to the congested

resource. Flash crowds, on the other hand, occur when a large number of users concurrently try to

obtain information from the same server. In this case, the heavy traffic may overwhelm the server

and overload nearby network links. An example of flash crowds occurred after the 9/11 incident

[12], when many users tried to obtain the latest news from the CNN web site.

Notice that network congestion caused by high bandwidth aggregates cannot be controlled by

conventional flow-based protection mechanisms. It is because these aggregates may originate from
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many different end hosts, each traffic source possibly of low bandwidth. One approach to handle

high bandwidth aggregates is to treat it as a resource management problem and protect the resource

proactively (i.e., ahead of the congestion points) from overload.

Consider a network server, say
�

, experiencing a DDoS attack. To protect itself from over-

load,
�

can install a router throttle at a set of upstream routers that are several hops away. The

throttle specifies the maximum rate (in bits/s) at which packets destined for
�

can be forwarded

by each router. An installed throttle will generally change the load experienced at
�

.
�

can then

adjust the throttle rate in multiple rounds of feedback control until it achieves its load target. In

[28], the authors propose a particular throttle algorithm, which we called the additive-increase-

multiplicative-decrease (AIMD) control algorithm, and show how such server-based adaptation

can effectively handle DDoS attacks, while guaranteeing fairness between the deployment routers.

Although the AIMD throttle algorithm in [28] is shown to work under various attack scenarios,

it also raises several important issues that need to be addressed, for example, what are the proper

parameters so as to guarantee the system is stable and to converge quickly to the steady state. Ad-

dressing these issues, this paper leverages control-theoretic analysis to design a class of distributed

feedback control throttle algorithms. Our goal is to derive a throttle algorithm that is (i) highly

adaptive (by avoiding unnecessary control parameters that would require configuration), (ii) able

to converge quickly to the fair allocation, (iii) highly robust against extrinsic factors beyond the

system’s control (e.g., dynamic input traffic, and number/locations of current attackers), and (iv)

stable under given delay bounds. Specifically, whereas the AIMD algorithm is proposed and exten-

sively evaluated in [28], in this paper we more fundamentally look at the feedback control problem

and show how it is possible to achieve system stability and fast convergence while minimizing

the number of control parameters. While our discussion uses flooding DDoS attacks for context,

our results are generally applicable for network congestion control involving a large number of

distributed contributing sources. DDoS attacks complicate the network congestion control issue

because additional detection mechanism such as statistical filtering [8], [13], [16], [21], [27] has

to work jointly with overload control. In general, a robust defense mechanism has to minimize the

disruption in terms of the amount of attackers’ traffic getting through to the server, and the time to

bring down the congestion level without any knowledge of the number of zombies and the adopted

attack distribution.
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The balance of the paper is organized as follows. In Section II, following the discussion in

[28], we introduce the background and basic terminology of adaptive router throttling. We will

also comment on the limitations of the previous approach, and motivate the need for a formal

control-theoretic approach in the design of a stable and adaptive control system. In Section III,

we present a class of distributed throttle algorithms, and discuss their feedback control properties.

In Section IV, we provide formal analysis of the essential properties of our algorithms. Section V

reports experimental results that illustrate various desirable properties of the algorithms in practice.

Related work are discussed in Section VI. Section VII concludes the paper.

II. Background of Router Throttling

In [28], the authors present a distributed approach to defend against flooding-based DDoS at-

tacks (i.e., one form of high bandwidth aggregates). They view the problem as a general resource

management problem of protecting a server system from having to deal with excessive requests

arriving over a global network. The approach is proactive: Before aggressive packets can converge

to overwhelm a server, one can activate a subset of routers along the forwarding paths to regulate

the contributing packet rates1 to more moderate levels. The basic mechanism is for a server under

attack, say
�

, to install a router throttle at a set of upstream routers several hops away. The throttle

limits the rate at which packets destined for
�

can be forwarded by a router. Traffic that exceeds

the rate limit will then be dropped at the router.

An important element in the proposed defense system[28] is to determine appropriate throttling

rates at the defense routers such that, globally,
�

exports its full service capacity ��� (in kb/s) to

the network, but no more. These appropriate throttle rates should depend on the current demand

distributions and therefore must be negotiated dynamically between server and the defense routers.

The negotiation approach is server-initiated. A server operating below the designed load limit

needs no protection, and need not install any router throttles. As server load increases and crosses

the designed load limit ��� , however, the server may start to protect itself by installing a rate throttle

at the defense routers. If a current throttle rate fails to bring down the load at
�

to below ��� , then

the throttle rate can be further reduced. On the other hand, if the server load falls below a low-water

mark ��� (where �����	�
� ), then the throttle rate is increased to allow more packets to be forwarded

to
�

. If an increase does not cause the load to significantly increase over some observation period,
�
All traffic rate and server load quantities are in unit of Mbps, unless stated otherwise.
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Fig. 1. Network topology illustrating ������� deployment points of router throttle. A square node represents a host and

a round node represents a router. The host on the far left is the target server � . The deployment routers in ������� are

shaded. The number above each host (or router) denotes the traffic rate at which the host (or router) sends to � .

then the throttle is removed. The goal of our throttle algorithms is to keep the server load within
�
���
	 �
��� whenever a throttle is in effect.

As mentioned, router throttling does not have to be deployed at every router in the network.

Rather, the deployment points are parameterized by a positive integer 
 , and are within the admin-

istrative domain of
�

. We denote this set of deployment points by ����
�� . ����
�� contains all the

routers that are 
 hops away from
�

and also routers that are less than 
 hops away from
�

but

are directly connected to an end host. To illustrate this concept, Fig. 1 shows an example network

topology in which a square node represents a host and a round node represents a router. The host

on the far left is the target server
�

. The deployment routers in ������� are shaded. Notice that the

bottom-most router in ������� is only two hops away from
�

, but is included because it is directly

connected to a host. The number above each host (or router) denotes the traffic rate at which the

host (or router) sends to
�

. For this example, we use ��������� and ��������� . Since the total offered

rate of traffic to
�

is ���! #"%$&" , �
will be overloaded without protection.

In fairly allocating the server capacity among the routers in ���'
(� , a notion of level- 
 max-min

fairness is introduced in [28]:

Definition 1 (level- 
 max-min fairness) A resource control algorithm achieves level- 
 max-min

fairness among the routers ���'
(� , if the allowed forwarding rate of traffic for
�

at each router is

the router’s max-min fair share of some rate ) satisfying � �+*,)�* �
� .

Level- 
 max-min fairness is achieved by a fair throttle algorithm based on AIMD feedback con-
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AIMD Fair Throttle Algorithm

/* initialize the aggregated traffic rate */�
last := ��� ;��� := ��� �
	��
� ��������� � ;/*initialize throuttle rate*/

While (1)
sends current rate- ��� throttle to ����� � ;
monitor traffic arrival rate � for time window � ;
If ( �����
� ) /* throttle not strong enough */

/* further restrict throttle rate */� � := � � ��� ;
elif ( ��� � � ) /* throttle too strong */

If ( � � � last
��� )

remove rate throttle from ����� � ;
break;

else
/* Relax throttle by additive step */�

last := � ;��� := ����	 � ;
fi;

else
break;

fi;
end while;

Fig. 2. AIMD fair throttle algorithm specification.

trol. The AIMD algorithm (specified in Fig. 2) is run by the server. It installs at each deployment

router a throttle rate )"! , which is the “leaky bucket” rate at which each router can forward traffic

to
�

. Traffic that exceeds the allowed rate will be dropped by the routers. Note that an installed

throttle has low runtime overhead since the cost is to maintain a leaky-bucket throttle for each

victimized server.

In Fig. 2, )"! is the current throttle rate to be used by
�

. It is initialized to � � �$# � � �&%(' �'
(� , where

' ��
�� is either some small constant, say 2, or an estimate of the number of throttle points needed

in ���'
�� . The monitoring window ) is used to measure the incoming aggregate rate. It is set to

be somewhat larger than the maximum round trip time between
�

and a router in ����
�� so as to

smooth out the variation of incoming aggregate rate. In section III-D, we examine the impact of

the window size ) in mitigating DDoS attack traffic. A constant additive step, * , is used to ramp

up )+! if a throttle is in effect and the current server load is below � � . Each time
�

computes a new

throttle rate using the algorithm, the throttle will be installed in ����
�� , causing the loading at
�

to

change. The algorithm may then continue in the while loop that iteratively adjusts )(! so that the

server load converges to and stays within
�
� �
	 �
��� whenever a throttle is in effect.



6

To illustrate the AIMD throttle algorithm, consider the example shown in Fig. 1, with ��� �
���%	 ��� � ��� , and a step size * � � . We initialize )"! to � ��� # �
� ��% � � ��� . Table I(a), reproduced

from [28], shows the AIMD algorithm in action. When the algorithm is first invoked with throttle

rate 10, the aggregate load at
�

drops to 31.78. Since the server load still exceeds ��� , the throttle

rate is halved to 5, and the server load drops below � � , to 16.78. As a result, the throttle rate is

increased to 6, and the server load becomes 19.78. Since 19.78 is within the target range
� ���(	 ��� � ,

the throttle algorithm terminates. When that happens, the forwarding rates of traffic for
�

at the

deployment routers (from top to bottom in the Fig. 1) are 6, 0.22, 6, 6, 0.61, and 0.95, respectively.

This is the max-min fair allocation of a rate of 19.78 among the deployment routers, showing that

level- 
 max-min fairness is achieved (in the sense of Definition 1).

Round )+! �
1 10 31.78
2 5 16.78
3 6 19.78

(a)

Round )"! �
1 10 31.78
2 5 16.78
3 5.15 17.23
4 5.30 17.68
5 5.45 18.13

(b)

TABLE I

Example of using the AIMD algorithm. (a) ����� (b) ���
	��
���

Although the AIMD algorithm is shown to be effective under various attack scenarios, there

remain some “unresolved problems”. In particular, the algorithm requires the careful choice of

several control parameters, including the monitoring window ) , step size * , an initial estimate

of the number of throttles ' ��
�� , and the load limits ��� and ��� . The choice of these parameters

will affect system stability and the speed of convergence to the stable load. For example, had we

picked a smaller * in the above example, it would have taken longer for the system to converge.

This is shown in Table I(b). Furthermore, the parameters can be affected by a number of extrinsic

factors that are beyond the algorithm’s control – e.g., the number of routers in ���'
�� , the delay of

messages from
�

to the routers in ���'
�� , and changes in the offered traffic to
�

. As pointed out

in [28], if the control parameters are not set properly, the system’s behavior may oscillate. In the

following section, we will address these robustness and stability issues by developing a “family” of

distributed throttling algorithms that can effectively and automatically handle the feedback control

problem.
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III. A Family of Adaptive Fair Throttle Algorithms

In this section, we describe several algorithms with increasing sophistication. There are multiple

objectives for these throttle algorithms:

1. Fairness: achieve max-min fairness among the ����
�� routers

2. Adaptiveness: use as few configuration parameters as possible

3. Fast convergence: converge as fast as possible to the fair operating point for static or dynamic

load

4. Stability: algorithm is stable with respect to any rate input distribution from the ����
�� routers

and robust against inaccurate or unknown information of network parameters

The throttle algorithm terminates if the aggregate input rate is within a pre-defined region
�
��! 	 � ! � .

In general, the region contains � 	 where � 	 is a desired capacity. By default, we assume � 	 to

be the mid-point between � ! and � ! . Each throttle algorithm is basically a probing algorithm that

tries to determine a common throttle rate, ) ! , to be sent by the server to all the ���'
(� routers using

negative feedback [5], [19]. Negative feedback is the process of feeding back the input a part of

the system output. The principle of negative feedback thus implies that when the server asks the

routers to decrease, we should ensure that the total load at the server will not increase, and when

the server asks the routers to increase, the total load at the server will not decrease [5]. They are

all designed to converge to the desired fairness criterion. The difference between the algorithms is

in the way the server computes )"! , which will affect the speed of convergence and the stability of

the system. Particularly, we summarize our algorithms as follows.

1. Binary Search Fair Algorithm: A simple algorithm that satisfy the first three objectives of a fair

throttle algorithm for static load only.

2. Proportional aggregate control (PAC) with number of throttle estimate: An algorithm that satis-

fies all the objectives of a fair throttle algorithm.

3. Proportional-aggregate-fluctuation-reduction (PAFR) control fair algorithms: Improves the PAC

algorithm by considering stability issues and tracking ability.

A. Binary Search (BS) Fair Algorithm

The possible range for the throttle rate ) ! is
�
�(	 � ! � , the two extremes corresponding to an infinite

number of throttles and one throttle, respectively. A familiar binary search algorithm [6] can be
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applied: Reduce the search range by half at every iteration of the algorithm (please see Fig. 3).

Like the AIMD algorithm, this algorithm uses the aggregate rate � to determine the direction of

adjustment. When the aggregate rate is more than � ! , )+! is reduced by half (same as before).

However, when the aggregate rate is less than � ! , )+! is increased to the mid-point between the

current )+! and � ! . This change removes the need to configure * . The increase and decrease rules

are symmetrical, each time reducing the search range by half. The pseudo-code of binary search is

shown in Fig. 3. In the algorithm, notice that we initialize ) ! to � � ! # � ! ��%�� , where � ��� ���'
���� .
This corresponds to the guess that half of the ���'
�� routers will be dropping traffic because of

throttling.

Round )+! �
1 10 31.78
2 5 16.78
3 7.50 24.28
4 6.25 20.53

(a)

Round )+! �
1 5.63 24.11
...

...
...� 5.0 22.22

(b)

Round )+! �
1 5.63 24.11
...

...
...�

5.01 22.25
� 2.51 12.77
" 3.76 18.50

(c)

TABLE II

Trace of the throttle rate and server load using the Binary Search algorithm. (a) Binary Search for stationary load (b) Binary Search becomes

unstable without re-initialization (c) The algorithm corrects itself using � � 	�� 	 � .

The problem of optimal bandwidth probing assuming a known upper bound has been considered

earlier by [15]. In their slightly different problem formulation of searching for available bandwidth

by a single flow, they conclude that (a generalized version of) the binary search algorithm is near-

optimal for certain reasonable cost functions of overshooting and undershooting.

The performance of binary search can be illustrated using the same example we considered in

Section II. The results are shown in Table II(a). Notice that binary search converges quickly for

stationary load.

The basic binary search algorithm assumes that the traffic loading is static. As noted by Karp et

al. [15], when the traffic conditions are dynamic, the situation is more complicated. They propose

and analyze alternative algorithms for bounded variations in the traffic conditions. In our case,

traffic can vary drastically since attackers may often vary their attack rates to reduce the chance of

being revealed. The binary search algorithm must therefore detect the situation that the shrunken
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Binary Search (BS) Fair Throttle Algorithm

������ � � �
	 � � ��� � ; /* Initialize ��� , �	��
 ��
�����
 */����� ����� � ��� ;
high � � � � ;
low � ��� ;
While(1)

sends current rate- � � throttle to ����� � ;
monitor traffic arrival rate � for time window � ;
If ( ����� � )

high � � � � ;
If ( � ��� ��� � � � � )

low � ��� ; /* re-initialize BS */
elif ( �� � � )

low � � ��� ;
If ( � � �!��� ��� � � )

high � � � � ; /* re-initialize BS */
fi;

fi;����� ����� � � ;���"� � � high 	 low � � � ;
end while;

Fig. 3. Binary Search fair throttle algorithm specification.

search range for )"! can no longer deal with the changed traffic conditions, and re-initialize the

search range accordingly. Such a modification is incorporated in the algorithm given in Fig. 3.

However, it takes time to discover the need for re-initializing the search, and it often takes more

time than necessary for the new search to converge. For example, Table II(b) shows that, if the last

two sources in Fig. 1 with offered rates of �($�#(� and �($&"� both change to �($& after round
�

in Table

II(a), both sources are still within the rate throttle limit of ) ! , but )+! cannot change to a value lower

than low �  $ � without re-initialization, and the system will be overloaded indefinitely. Table

II(c) shows that re-initialization corrects the algorithm by resetting the variable low. Although the

binary search algorithm is fair, fully adaptive and fast, it is not entirely satisfactory for dynamic

traffic and packet delay.

B. Proportional aggregate control (PAC) with estimate on the number of throttles

The previous algorithms directly adjust ) ! adaptively, without using the magnitude of the over-

shoot (or undershoot) of the aggregate rate � beyond the target range. We now explore algorithms

that do make use of this information, as well as an estimate of the number of routers in ���'
(� that

actually drop traffic. For clarity of exposition, we will call a deployment router whose offered

traffic rate exceeds the throttle rate (and hence will drop traffic because of throttling) an effective
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Estimator for the number of throttles � in ����� � : est � ��� � � �
� � ��� � ��� ; /* ���
	���
 . */
� max

� ������� ��� � � ��������� � ��� � � max � ;� � ������� ��� max
� � � � � � � �"!#� ��� ���	 � !�� � � ����� ��� ����� ��� � ����$ ��� ��� � � � � ;

� ��� � � � � � ;� ��� ��� � � � ;� �%$ ��� � � � � � � ;
return � ;

Fig. 4. Estimating the number of effective throttles � in ����� � . This algorithm assumes that an upper bound of the

total number of routers in ����� � , � ����� � � max is known.

throttling router. We also call the throttle at such a router an effective throttle. If the number of

effective throttles is & , then it is reasonable to set the change of ) ! to

' )+! � � ��( � �
& (1)

where � represents the target rate (a value within
�
� �
	 �
��� ) of aggregate traffic at

�
.

Since the traffic distribution at the routers is arbitrary and can be dynamically changing, it is not

possible to know the exact number of effective throttling routers. Furthermore, as ) ! is adjusted,

the number of these routers changes as well. By monitoring the past traffic and ) ! , however, we

can estimate & . The idea is to keep track of the last throttle rate )*)�+&! , and last aggregate rate �-).+&! , .
This allows us to estimate & as

& � � �/( �0)�+&! , �
� )+!1( )2).+�!3, � $

A pseudo-code implementation is shown in Fig. 4. Exponential averaging is added to minimize

inaccuracies due to fast changing components of the traffic load. Given the estimator for the

number of effective throttles, we can compute a suitable change to ) ! using Eqn. (1). This is the

essence of the new algorithm, as shown in Fig. 5.

With the new algorithm, we wish also to address our fourth objective, namely system stability

in the face of delay between a throttle request sent by the server and the throttle taking effect at a

deployment router. This objective can be achieved by trying to correct only a fraction 465 of the

discrepancy between the aggregate rate and the rate target. The fraction 4�5 should be proportional

to the discrepancy; hence, we also refer to such control as Proportional Aggregate Control (PAC).

We will show in Section IV how one can choose automatically (i.e., without the extra burden of
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Proportional Aggregate Control (PAC) Algorithm

������ � � �
	 � � ��� � ; /* Initialize ��� , �	��
 ��
�����
 */����� ����� � ���
While(1)

sends current rate- ��� throttle to ����� � ;
monitor traffic arrival rate � for time window � ;
If ( ����� � )� � � � � ;

elif ( �� � � )
If ( � � � ��� ��� � � )

remove rate throttle from ����� � ;
break;

else � � � �
� ;����� ����� � � ;
fi;

else
break;

fi;� � � ����� ! � � � � � ;� � � � � � 	 � � est � � � � � � ;
end while;

Fig. 5. Proportional aggregate control fair throttle algorithm specification.

tricky parameter configuration) an appropriate value for 4�5 based on the maximum delay between

the server and a deployment router.

Another detail in the pseudo-code is how to pick the value of � in Eqn. (1). The value should

be in the target control range of
�
��� 	 � ��� . Our current implementation sets the target capacity � to

��� when we have overload and to ��� when we have underload. By advertising a larger aggregate

rate discrepancy, we can maximize the likelihood that the resulting target rate will end up in the

target range.

The PAC algorithm is applied to the same example used before. The results are shown in Table

III. An estimate of the number of effective throttles is given by the change in server load over

the change in throttle rate, � � %�� )"! . For stationary traffic demand, the rate of convergence is

monotonic and relatively fast. The speed of convergence depends on the setting of 4�5 . However,

the setting of 4 5 can also affect system stability. This is discussed next.

C. Proportional-aggregate-fluctuation-reduction (PAFR) control fair algorithms

We now introduce one more optimization to the PAC algorithm presented in the last section.

When there is a change in the offered load at the routers in ����
�� , a higher proportional gain can
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Round )+! � � � % � )+!
1 10 31.78 –
2 8.28 26.62 3
3 6.84 22.30 3
4 6.12 20.14 3

TABLE III

Trace of the throttle rate and server load using the PAC algorithm. Target capacity used is
� � � ��� . Here, ��� � ���
	 so it reduces the search

interval by half at every round.

Proportional-Aggregate-Fluctuation-Reduction Algorithm

��� �� � � �
	 � � ��� � ; /* Initialize � � , �	��
 ��
�����
 */����� ����� � ���
While(1)

sends current rate- ��� throttle to ����� � ;
monitor traffic arrival rate � for time window � ;
If ( �����
� )� � � � �

elif ( �� � � )
If ( � � � ��� ��� � � )

remove rate throttle from ����� � ;
break;

else � � � � � ;
fi;

else
break;

fi;� � � ����� ! � � � � �
� ���6!�� � � ����� ��� ����"� � ���
	 � � est � � � � 
 � ;����� ����� � � ;
end while;

Fig. 6. Proportional-Aggregate-Fluctuation-Reduction fair throttle algorithm specification.

adapt faster to the change. However, such “strong” control may result in large fluctuations in the

throttle rate, which may be annoying to the end users and may cause instability. On the other

hand, a “weak” control causes prolonged congestion at the server. Hence, the goal is to reduce

fluctuations while still achieving fast convergence. The stability problem that arises when a high

proportional gain is used can be mitigated by considering a derivative control parameter, 4�� , as

shown in Fig. 6. As we will show in Section IV, it turns out that 4�� can be optimized to a constant

value, independent of the operating conditions, for a given design time cost function. Hence, 4��
does not introduce any extra burden of parameter configuration. The new algorithm is called a

Proportional-aggregate-fluctuation-reduction (PAFR) controller.
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In this case, if ��� �$! or ��� � ! , the total expected change in throttled traffic rate in all of ���'
(�
at the next control interval is

� �
�
��� � � (#4�5 � � � ( � �1( 4 � � � ��� � �

�
� � �(	 (2)

where � � � is the actual change and � � �� is the expected change in the control interval � .

The first term is necessary for the mismatch regulation and the second term tracks the rate of

change in the feedback. The first term has the largest impact on the aggressiveness of the probe

used in the algorithm. A smaller 4 5 will make the system slower to converge. But a larger 4 5
may result in larger overshoots, sometimes even causing the system to become unstable – i.e., the

system oscillates indefinitely around the band
�
� ! 	 �$! � without convergence. The second term gives

a signal proportional to the rate at which the mismatch changes. It is more responsive to changes

in the mismatch than the first term. This second term also has a damping effect on the amount of

rate throttle fluctuation. A larger 4 � implies more damping. It helps the stability of the system,

and allows the proportional gain to be increased. As we shall see in the simulation results, the term

can reduce the amplitude of overshoot significantly during transient response while maintaining

fast convergence.

Table IV shows the PAFR algorithm for 4 5 � �($ � � and 4 � � �($ � � using the previous example.

An estimate of the number of effective throttles is given by the change in server load over the

change in throttle rate, � � % � ) ! . Although this simple example does not show any improvement

in convergence time, the simulation results in Section V will clearly illustrate such improvements.

In addition, the PAFR algorithm tracks the target rate range better. The tracking metric will be

made precise in the next section.

Round )+! � computed � �
�� � � % � )+!

1 10 31.78 0 –
2 7.48 24.22 -10.06 3
3 7.18 23.32 -0.91 3
4 6.05 19.93 -3.38 3

TABLE IV

Trace of the throttle rate and server load using the PAFR algorithm. Target capacity used is
� � � ��� .
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D. Setting the window size )

The criterion for the right window size is twofold– obtain a more accurate estimate of the ef-

fective number of throttled routers & which improves the adaptive throttle algorithms, and enforce

rate limiting. For example, the filter at each throttle may employ some form of deterministic or

probabilistic policy that drops packet according to specific features in the packet. Further, it is

recommended in [21] that a filter policy cannot be completely memoryless while enforcing rate

limiting, i.e., in order for such kind of a filter to operate effectively based on its past measurement

of the number of packets in a window length ) , the throttle rate ) ! cannot change too drastically

in consecutive windows. Similarly, to obtain an accurate estimate of & , ) cannot be too small.

On the other hand, a large ) affects the convergence time of the overload control system. To cope

with this problem, we use a moving window with a parameter which is a function of the maximum

round trip time in the system to obtain a smooth measurement of the incoming aggregate rate � .

Specifically, we define � � ��� % ) where � is the average round trip delay from each router

in ����
�� . Averaging between consecutive windows, we have � � ���
� ��� � # � � (�� � � � where the

subscript denotes the � -th window. We verify by simulations in Sec. V that the above approxi-

mation works very well in measuring the aggregate rate which is used as an input for our throttle

algorithms.

IV. An Analysis of the Fair Throttle Algorithms

In this section, we use a control-theoretic approach to study router throttling. A fluid flow model

is used to analyze the stability of the PAC and PAFR fair throttle algorithms. We represent the

protected server
�

as a single bottleneck node where � �	� � denotes the aggregate amount of traffic

from ���'
�� to
�

. � �
� � serves the same role as � � in our algorithm specifications. In our analysis, we

assume that � is upper bounded by � 	 . For both the PAC and PAFR algorithms, at each control

interval � , the expected change in aggregate throttle rate is computed as in Eqn. (2) where 4�� � �

for the PAC algorithm.

However, the offered traffic at each router varies over time. Therefore, � �
� � will be larger than

the expected change if (1) the load at some previously unthrottled routers increases, but is still

less than the throttle limit, or (2) additional routers are added to ���'
(� while the throttle rates

are changing. On the other hand, � �
� � is less than the expected change if (1) the offered load
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at some previously throttled routers fall significantly below the throttle limit, or (2) some routers

are removed from ����
�� while the throttle rates are changing. These factors can be viewed as

uncertainties at the input of the system. Here, the system refers to maintaining the aggregate

input traffic rate within the bounds
�
���
	 �
��� . Stability is defined in the bounded-input-bounded-

output sense (See [19], pp. 319). Further, estimation of network parameters such as the number of

throttles may introduce additional uncertainty to the system. Indeed, the purpose of using feedback

is to combat uncertainty. An important question is how fast we should adapt the change in throttle

rate while maintaining a stable system. A properly designed negative feedback controller has the

characteristic of rejecting disturbance in the closed loop, and is therefore the focus of this section.

We next introduce a fluid model that governs the system we are analyzing. In our fluid model,

we treat the target capacity to be a constant value, � . By default, � can be the mid-point between

��� and �
� . The input traffic rate at
�

is given by

d � �
� �
d � � (#4�5 � � �	��( � �1( � �1( 4 ��� d � �	��( � �&% d � � $

The parameters 4 5 and 4 � are the proportional and differential control gains, respectively. Se-

lecting appropriate parameters is part of the design of the throttle algorithms. We first consider

the PAC algorithm where the change in the search range strictly converges to zero if the traffic

is stationary. Our first result shows that the amount of feedback is inversely proportional to the

amount of delay that the system can tolerate.

Theorem 1: The system is asymptotically stable using proportional control if and only if � �

4 5 � ����� ��� %��'��� 	 � 	 � � where � 	 is the maximum delay in the system.

Proof: please refer to the Appendix.

Remark 1: When 4 5 � � , the exact mismatch between � �
� � and � is fed back. It is intuitive that

the system is most responsive. However, the system is also the least tolerant to time delay (refer to

the Appendix for the proof). Hence, we note that there is a tradeoff between the system speed of

response and robustness to time delay.

Remark 2: Although a maximum proportional gain is associated with the maximum delay, recall

that over-estimating the number of throttles in ���'
(� has the effect of reducing the proportional

gain. In this sense, a PAC algorithm with a more aggressive gain can be considered. For example,

by assuming the maximum number of routers in ����
�� that will be reacting to the change of control,
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we have a form of doubly conservative PAC algorithm.

Next we introduce a cost function which measures the effectiveness of a fair throttle algorithm,

and is given as

� �
� ��
� � �

��� � � 	 (3)

where � � is the corresponding mismatch between � and � at control interval � , and ��! is a given

terminating interval of the algorithm. Note that � � is positive if the system is overloaded, or nega-

tive if the system is underloaded, hence the use of the squared function. Eqn. (3) is similar to the

proposed cost function (gentle cost function) in [15] where both overloading and underloading are

penalized. In this paper, we treat the cost of overloading and underloading to be the same.

Note that � ! plays the same role as settling time in classical control theory (See [19], pp. 272),

which is defined as the time required for the system response to decrease and stay within a specified

percentage of its final value (e.g., a frequently used value is 5%). This criterion is tolerant to small

but punitive to large errors at every control interval. In other words, a smaller
�

is preferred. For a

given small range
�
� ! 	 � ! � (a very small specified percentage of its final value), a sufficiently long

� ! and offered traffic demand, the metric
�

is useful for differentiating the performance of various

algorithms in the most stringent manner. An over-conservative throttle algorithm tends to have

larger
�

at most of the control intervals. Furthermore, an algorithm that causes large variation in

throttle rate )+! often results in a larger index
�

.

The design of the PAC and PAFR algorithms is based on a time domain optimization approach

where appropriate control parameters 4 5 and 4 � are selected by minimizing
�

subject to the

constraint that the integral exists in the face of a unit step input. In our context, a unit step input is

equivalent to an external disturbance that occurs when the server load is within the band
�
��! 	 � ! � ,

e.g., traffic demand changes in ���'
(� or & changes (e.g., due to re-deployment of the defense

perimeter). Hence, )"! has to be re-adjusted. Without loss in generality, we consider an infinitesimal

control interval and let � !�� � . Since � � has the magnitude of the control error, we obtain the

following integral of squared error, (ISE),

� �	��

	
� 	 �	� � d � $ (4)

The ISE belongs to a family of integral cost functionals for the time domain optimization method in
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control theory, which is used to determine optimal fixed order controller parameters for a particular

input. For a proportional controller, we have the following result.

Theorem 2: The optimal 4 5 � � � that minimizes Eqn. (4) is ��� �6( ����%�� for a delay � and

the optimal proportional control, 4 5 � � 	 � stabilizes the system for all � * � 	 where � 	 is the

maximum delay in the system.

Proof: please refer to the Appendix.

For the PAFR fair throttle algorithm, we have the following main result.

Theorem 3: The system is asymptotically stable using the PAFR algorithm and,
�

in Eqn. (4)

is minimized if and only if 4 5 � � �+� �($ � � %�� for a delay � , and the optimal PAFR algorithm

4 5 � � 	 � stabilizes the system for any delay � * � 	 where � 	 is the maximum delay in the system

and 4 � � �%$ � � .

Proof: please refer to the Appendix.

Remark 3: For both optimal PAC and PAFR algorithms, only a single parameter 4�5 needs to be

configured in view of the maximum delay in the ����
�� routers.

Remark 4: The above theorems imply that, if the control parameters are designed to stabilize the

system for a fixed maximum delay � 	 , ���'
�� router deployment using the same control parameters

is feasible anywhere in the network as long as the maximum delay in the ����
�� routers is less than

� 	 . Furthermore, Theorems 2 and 3 are valid for any number of routers in ���'
�� .

Corollary 1: An optimal PAFR algorithm that minimizes Eqn. (4) always has a smaller
�

than an

optimal PAC algorithm for all � � � .

Proof: please refer to the Appendix.

Corollary 1 implies that the PAFR algorithm outperforms the PAC algorithm in minimizing

rate mismatch given that the fair throttle algorithms run for a sufficiently long time. This fact is

further corroborated by the simulation results in the next section. The throttle rate )(! �	� � at each

router is a function of the aggregate feedback and the estimated number of throttles, ' � )(! �	� � � .
The differential equation of the throttle rate is thus given by d ) !��
� ��% d � � � ( 4 5 � �
� ( � � (
4 � d � �	� (�� ��% d � ��%(' � )+! �	� � � where ' � )+! �	� � ��� � d � �	� �&% d � �&%�� d )+! �	� �&% d � � . Assuming that ' � )"! �	� � �
is a constant value, then the dynamics of ) ! �	� � is described by the inverse Laplace transform of



18

� � 4 5�# 4 ��� ��� � ! � %���� #�� 4�5 # 4 ��� ��� � !�� � where
�

is some constant and 4 � � � for the PAC

algorithm. Hence, for small delay � , ) ! �
� � changes approximately (negatively) exponentially with

a time constant of �"% 4 5 when the system is (overloaded) underloaded.

V. Simulation Results

In this section, we study the performance of the proposed fair throttle algorithms in terms of

performance metrics such as convergence time, rate throttle fluctuation and adaptation to different

network parameters using ns-2[26]. We denote the instantaneous offered traffic rate at router � as

� � �	� ��� � . For all experiments, we set � ! � ��� � Mbps and � ! � ���  Mbps. The initial throttle rate

)+! is set as 200 with ) � � � , and the low pass filter time constant of est() is set as 0.25, unless

noted otherwise.

Experiment A: Performance of fair throttle algorithms for heterogeneous network sources

with constant input: In the experiments, we consider 50 heterogeneous sources. In the first

experiment, all sources have constant input of offered traffic rate � � �	� � � � ��� � . Ten of these

sources changes their sending rate to � Mbps and
�
Mbps at � �  � and � � ��� � respectively. The

network delay � between
�

and each of the constant sources is 100ms. The network parameter

setting is the same as in [28]. The corresponding cost function
�

and settling time ��! for each

algorithm are reported under the figures for the input disturbance at � �  � only if the system is

stable. Fig. 7 shows the aggregate server load when AIMD ( * � �%$ ��� Mbps 	�* � �($&� Mbps and * �
�($ � Mbps), binary search ( 	 � � Mbps), PAC ( 4 5 � �($& ) and PAFR ( 4 5 � �($& %	 4 � � �%$ � � )
algorithms are used respectively. From the figure, we observe that the PAFR algorithm is stable,

converges, and has a much less over/under-shoot.
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Fig. 7. (a) AIMD algorithm with step size of �
� 	�� 	 	�

� � � ��� � 	 !���� ����� �
��
���� , �
� 	�� 	�
�� � � � 	�� � !���� � � 	�
���� and

� � 	�� ��
�� � � ��� 	�� � � ��� � � !�
���� . (b) Binary Search algorithm. � � ��
�� � � � � � � !���� � ����!�� "�
���� . (c) PAC ( ���
� ���
	 ) algorithm

� � � �#� � � !���� �$! ��� ��
���� . (d) PAFR algorithm with � � �
	�� � and �&% � 	�� � �'� � ����� � � !��(� ������� � 
���� .

Experiment B: Performance of fair throttle algorithms for heterogeneous network sources
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with varying input: Next we repeat the above experiment, but the first thirty sources are constant

sources of � � �
� � � �
Mbps for � � ��	 $ $�$ 	 � � . The next ten sources are sinusoidal sources where

� � �	� � � ��$& �� ��� � �($�� # � ��# � $  Mbps for � � �(��	�$ $ $ 	 � � . The network delay for each of these sinu-

soidal sources is  � ms. The last ten sources are square pulse sources wherein � � �	� � � �
Mbps for

the time interval � ��
 * ��* ���
����
 # � � and � � �	� � ��� Mbps for the time interval ���
����
 # � � * � *
� �
��
 # � � , � � � ��	 $ $�$ 	  � and 
�� �

�(	 �#	 �%	 $ $�$�� . The network delay for each of these square pulse

sources is 50ms. Fig. 8 shows the aggregate server load for the second experiment.

Based on the above experiments, we can make the following observations.

Remark 1: The stability and performance of the AIMD fair throttle algorithm is dependent on the

step size used. The system is stable but slow for small * , but unstable when * is large. Further,

there is a significant overshoot in the initial transient response for all the three different step sizes.

Remark 2: The binary search algorithm is oscillatory when the number of sources is large, as in

the experiment. Significantly large overshoots are observed before the algorithm finally terminates,

and are due to the large variation in throttle rate ) ! as shown in Fig. 9. In the dynamic traffic case,

slow response to re-initialization is the main cause for the large overshoots between � �  � and

� � ��� � . In general, this effect can be mitigated by a gradual release of ) ! .
Remark 3: The PAC ( 4 5�� �($  ) fair throttle algorithm is comparatively faster and stable, but

there are large overshoots when there is a disturbance to the system at � �  � and � � � � � . As a

result, the convergence time might be longer as shown in Fig. 8.

Remark 4: The PAFR fair throttle algorithm is more robust to external disturbances with much

smaller overshoots, and has fast convergence time. From Fig. 10, we note that the estimator

algorithm is extremely effective in estimating accurately the number of throttles in ���'
�� at � �! �
and � � ��� � . Fig. 9 compares the rate throttle variation for the PAC and PAFR algorithms. We

observe that damping provides excellent performance in reducing the rate throttle variation.

Experiment C: Effect of system parameters on Binary Search (BS) fair algorithm: Here

we evaluate an improved version of Binary Search algorithm using the estimator algorithm. Re-

initializing the control parameters in the Binary Search algorithm which leads to a gradual change

in )+! can be achieved by taking into account the current aggregate rate mismatch and the total

number of effective throttles. Specifically, if we have (under)/overload, we let
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Fig. 8. (a) AIMD algorithm with step size of � � 	�� 	 	�
�� � � � "�� ! !��(� � � ����
���� , � � 	�� 	�
�� � � � 	�� 	 !���� � 	 ���
��
���� and

� � 	�� ��

� � � � � � �
� !���� � 	�! � � ��
���� . (b) Binary Search algorithm. � � ��

� � � � "�� � !��(� � 	 	�"�� 	�
���� . (c) PAC ( ��� � ���
	 )
algorithm � � ��� 	�� � !��(� � ��	�� "�
���� . (d) PAFR algorithm with � � �
	�� � and �&% � 	�� � �'� � ����� � ! !��(� � � �
��
���� .
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Fig. 9. (a) Binary Search algorithm exhibits large rate throttle variation. (b) PAC ( � � �
	�� � ) algorithm. Significantly large rate throttle variation

is observed in the transient response. (c) PAFR algorithm with � � � 	�� � and �&% �
	�� � � . Damping provides better transient response while

maintaining excellent response time.

��� � ��( �������
	 ��	 �
� high � low � ����� � ����
 � )+! # � � ( � �&% � � � � �
	 )+! � 	 ��� 	 � � �
� �

We repeat the second experiment using the improved Binary Search, and observe the system

response when the step disturbance occurs at � �  � . Fig. 11 shows the effect of different 	 on

� ! and
�

of the improved Binary Search algorithm and as shown in Fig. 11(a) and (d), if 	 is

too small or too big, the convergence time is much longer. If 	 is too small, the algorithm takes

unnecessarily longer to detect that re-initialization is required, and the system transient response is

characterized by very large overshoots. If 	 is too large, the algorithm becomes more sensitive to

small perturbation in the offered load. In comparison to the previous experiment, it is not surprising
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Fig. 10. Estimating the number of throttles in ����� � using the est() algorithm.
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that gradual re-initialization will stabilize the Binary Search algorithm. In fact, by making use of

delayed information on the aggregate mismatch, the gradual re-initialization mechanism brings the

improved Binary Search a step closer and comparable to a PAC algorithm. However, in general,

the system response is sensitive to the parameter setting of 	 , delay and offered traffic load. Hence,

the performance of the improved Binary Search is not satisfactorily as compared to the PAC or

PAFR fair throttle algorithm.
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Fig. 11. Improved Binary Search (BS) algorithm with (a) � � 	�� 	�
�� � � � !�� � !���� � 	�� � 	�
���� , (b) � � ��
�� � � � � � � !���� � � !�� 	�
���� ,
and (c) � ����	�
 � � � � 	�� ! !��(� � 	 ��� ��
���� .

Experiment D: The effect of parameters � ! and � ! on the fair throttle algorithms: We repeat

the second experiment, but increase the range
�
� ! 	 � ! � to

� ��� � Mbps 	 � �� Mbps� . Fig. 12 shows the

aggregate server load for binary search, PAC ( 4 5 � �($  ) and PAFR algorithms, respectively. From

EXP B and D, we note that a smaller range of
�
� ! 	 � ! � makes binary search unstable, again due

to the need for repeated re-initializations and delays. The PAC algorithm is stable, but overshoots

remain in the transient response, while the PAFR algorithm maintains its excellent performance

with fast convergence time. Generally speaking, a narrower range
�
��! 	 � ! � is more demanding for

the throttle algorithms.
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Fig. 12. (a) Binary Search (BS) with � � ��

� � � � !�� " ��� � ��� � 	�
���� . (b) Improved binary search with � � ��

� � � � � � � !��(� �
��	�� "�
���� . (c) PAC algorithm with ���
� ���
	 � � � � !�� 	 �(� � � "�� ��
���� (d) PAFR algorithm with ��� � 	�� � � �&% � 	�� � ��� � � �
� � 	 !��(� ��� � 	�
���� . As compared to EXP B, a larger

� � � ��� ��� reduces the cost � .

Experiment E: Performance of fair throttle algorithms for heterogeneous network sources

with stochastic varying input: In this experiment, we introduce stochastic elements in the load
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level of the ���'
�� routers. The presence of stochastic elements represents closely realistic traffic

with background flows in a network, and we can expect to see larger variation in the input with

lower stability margin. The delay in each link is uniformly distributed from � � to �($& � , and ) �
� � . There are altogether 50 routers in ���'
�� . Fifteen routers have sinusoidal varying sources–Five

with rate of �($& �� � � � �%$ � # � � # � Mbps, five with rate of �($& �� ��� � �($�� # �$# �($& � � # ��$& Mbps and five

with � � � � �%$ � # ��# ��$  � ��# �($& Mbps. Ten routers have square pulses that vary between �#$  Mbps and

�%$& Mbps with a period of � � � . Twenty five routers have Gaussian varying sources–Ten with mean

� Mbps and variance � Mbps, ten with mean �($  Mbps and variance �($  Mbps and five with mean
�
Mbps and variance � Mbps.

We perform the experiment for two scenarios: In the first scenario,
�

assumes � ���'
����max as

50. As shown in Fig. 13(a)-(c), the response of the control system is relatively smooth for small

4�� in the presence of large delays and large variation in the sources. Larger 4�� makes the system

sensitive to noise in the load level. Fig. 13(d) shows that est() predicts that there are close to  �
effective throttles in the system. The second scenario assumes a smaller � ����
�� �max � � � . As

shown in Fig. 13(a)-(c) and 14(a)-(c), the responses for 4�5 � �($ �� and 4 5 � �%$ � are relatively

smoother than that for 4 5 � �($&� . However, as shown in Fig. 14(d), even though the number of

routers can be grossly underestimated, the PAFR algorithm can still function properly and meet the

target load. We repeat the experiment for the case of � ���'
����max �  � and increase the low pass

filter time constant to
� � �%$&"� . As shown in Fig. 15(d), a larger

�
tracks a larger variation in the

number of effective throttle routers, but the equilibrium points are not affected much as shown in

Fig. 15(a)-(c).
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Fig. 13. Performance of the PAFR throttle algorithm with an estimate that � � ��� ���max � � 	 , �&% � 	�� � � as ��� takes the value of (a)

��� ��	�� 	 ��� � � � � !�� � !��(� � " 	�� 	�
���� , (b) � � � 	��
� � � � � ��� � !���� � � 	�� � 
���� and (c) ��� � 	�� 	�� � � � � !�� � !���� � � � � 	�
���� .
(d) Estimated number of effective throttles using the est() algorithm for the case � � �
	��
� .
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Fig. 14. Performance of the PAFR throttle algorithm with complete information that � � � � ���max � ��	 , �&%
� 	�� � � as ��� takes the value of (a)

���
� 	�� 	 ��� � � � ! ��� � !���� � 	 � � � ��
���� , (b) ���
� 	��
� � � � � � "�� � !��(� � ��� ��� 	�
���� and (c) ��� � 	�� 	'� � � � � 	�� 	 !���� ��� " 	��
��� .
(d) Estimated number of effective throttles using the est() algorithm for the case � � �
	��
� .
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Fig. 15. Performance of the PAFR throttle algorithm using low pass filter time constant
� � 	�� " � for est() with an estimate of upper bound

� � � � � �max �
� 	 for (a) ��� �
	�� 	 ��� � � � � � �
� !���� � � � � � 
���� , (b) ��� � 	��
� � � � � ��	�� " !���� � � !�� ��
���� and (c) ��� � 	�� 	�� � � �
����� � !���� ����� 	�� 	�
���� . (d) Estimated number of effective router for the case of � � � 	��
� .

A. Discussion

There are three major observations from the experiments above: (1) the proposed throttle al-

gorithms are very effective in reducing the fluctuation when there are many unknown parameters

during high volume DDoS attacks, e.g., the number of effective throttles. The PAFR throttle algo-

rithm is more robust than PAC, binary search and AIMD throttle algorithms in minimizing the load

variation under all window size we used for traffic intensity measurement. This is very important

because it ensures that statistical filtering can be performed with a higher degree of confidence in

the measured traffic intensity between consecutive window measurements.

VI. Related Work

Handling high bandwidth aggregates using router throttling can be viewed as a congestion con-

trol problem. A large body of work on congestion control assumes the feedback is in the form of a

binary signal. In our context, we have the luxury of sending an explicit throttling rate to the traffic

regulators (routers in this case). So it is simpler for us to achieve maxmin fairness without using

AIMD-style distributed algorithms. In this respect, our approach is similar to XCP [14], in being

able to separate the problem of fair allocation with the problem of controlling the total aggregate
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traffic.

In searching for the simplest control (for total aggregate rate), we consider binary search which

is inspired by the analysis in [15]. But this approach quickly becomes more complex and less

effective when considering dynamic traffic and delay.

Our analysis is similar to those efforts in analyzing Internet and ATM congestion control with

delay based on fluid models, for example, the rate-based control strategy with delayed feedback in

[9], the ATM Available Bit Rate (ABR) model in [3], [17] and the TCP model in [11], [18]. The

departure is in the detailed model where we use explicit rate feedback and introduce a hysteresis for

the desired capacity. Also, unlike congestion control in the Internet, an effective estimator that esti-

mates the number of effective throttles and the role of the window size is crucial for distinguishing

legitimate users and attackers.

Defending against DDoS flooding based attack or flash crowds using different rate throttling

mechanism at upstream routers can be found in [20], [22]. In [20], rate throttling is achieved

using the Indirection Infrastructure, and filtering only at the last hop routers. In [22], a pushback

max-min fairness mechanism used for controlling large bandwidth aggregates is proposed, which

is initiated at the congested source and applied recursively to the upstream routers. However, this

may cause upstream routers with low traffic demand to be excessively penalized.

Other router-assisted network congestion control schemes that handle high bandwidth aggre-

gates in a fair manner include detection and dropping using Active Queue Management (AQM)

mechanism in congested routers such as balanced RED [1], RED with Preferential Dropping [23],

Stochastic Fair Blue [10] and CHOKe [25]. In addition, edge routers that use mechanism such as

the edge-based utility mapping in [4] that manipulates utility functions of un-cooperative flows, and

the Network Border Patrol (NBP) with Enhanced Core-stateless Fair Queueing (ECSFQ) frame-

work [2] are proposed to control flow aggregates in the core network. However, some of these

schemes require either full or partial state information and some schemes do not guarantee strict

fairness in the shortest possible time. Besides, these schemes are often much more complex than

rate throttling which has low runtime overhead.
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VII. Conclusion

We analyze how a class of distributed server-centric router throttling algorithms can be used to

achieve max-min fairness in a number of routers that are 
 hops away when the server is overloaded

by large bandwidth aggregates that may occur under DDoS attack or flash crowd scenarios. Our

class of adaptive throttle algorithms, which are based on a control-theoretic approach, are shown

to be highly adaptive to dynamic traffic situations. The stability and convergence issues of these

algorithms are also studied. In particular, we show that the PAFR fair throttle algorithm is robust

against a wide range of settings – not only does it guarantee convergence, but also it has much

smaller over/under-shoot for the aggregate rates to the server
�

. Level- 
 max-min fairness is also

guaranteed for all the throttling routers in ����
�� .

Designing throttle algorithms to counter DDoS attacks with limited information is challenging,

thus it is not surprising that many issues remain open in this topic. First, it will be desirable to

have a quantitative analysis of AIMD, binary search, PAC and PAFR throttle algorithms in terms

of convergence rate and transient performance. Second, we can investigate other cost functions

for optimal setting, which may lead to other optimal fair throttle algorithms. The effectiveness of

various throttle algorithms can thus be examined under a variety of cost functions that correspond

to different network scenarios under DDoS attacks. Third, we have taken delay into account in

our analysis of our throttle algorithms. The next step would be to test our throttle algorithms in

network scenarios under which the deployment depth varies. This has implication on the prac-

tical deployment of rate throttle algorithms in a real network as well as providing different lines

of defense against DDoS attacks. Related issues on the impact of deployment depth on throttle

algorithms can be found in [28].

Future directions of our work include testing our algorithms in networks with diverse delays. We

also plan to implement our proposed throttle algorithms in OPERA, which is an open-source pro-

grammable router platform that provides flexibility for researchers to experiment security services

[24]. Particularly, OPERA allows dynamically loadable software modules to be installed on the fly

without shutting down the routing functionalities in the router, which facilitates testing different

throttle and statistical filtering algorithms on a security testbed. In practice, information provided

by rate throttles such as traffic burstiness may also be incorporated in our throttle algorithms for

rate estimation or used in statistical filtering.
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APPENDIX

A. Proof of Theorem 1

The change in the aggregate input rate is given by d � �	� �&% d � � 4 5 � � ( � �	� ( � � � . Let � �	� � �
� �	� � ( � . Hence, we have d � �	� ��%�� � � (#4 5 � �	� ( � � . Theorem 1 can be proved using Nyquist

criterion ([19], pp. 330) to yield a sufficient condition. A necessary and sufficient proof that follows

the method in [29] is given as follows. For stability, the roots of any characteristic equation must

lie on the left half complex plane (See [19], pp. 321). We wish to determine 4�5 such that the

characteristic equation � # 4 5&�
� !�� � � has stable poles with delay from � up to � 	 , and this set

of 4 5 is denoted as
�
� (following the convention in [29]). First, by the Routh-Hurwitz criterion

(See [19], pp. 322), the set of 4 5 ’s that stabilize the delay-free plant (given as
�
	 in [29]) is

�
	 �

� 4 5 � � � . Second, there exists 4 5 such that the characteristic equation is stable if � � � . Third,

we compute the set
� � � � 4�5 � 4�5��� ���

and � � � �
�(	 � 	 ��	�� � ��	���$ � $
	
� # 4�5&�

���
� � � � � ,
which is given by

� � � � 4 5�� � %������ 	 � � . Hence,
�
� � �

	�� � � and thus
�
� � �

� � 4 5 �

� %������ 	 � � . But 4 5 must necessarily be not more than 1 for convergence since the dynamics of

the system is a search for a value between the current server load and the capacity � . Hence,

� � 4�5 � ����� ��� %�� � 	 	 � � . Denote the open loop transfer function as � ����	 4�5 	 � � � 4 5&�
� !�� % � .

For a fixed � and for any � � � 	 , � � ��	�� 	 4�5 	 � � ��� � ��	�� 	 4 5 	 � 	 � , i.e., we always have

positive phase margins. Hence, the PAC algorithm can stabilize the system for any � * � 	 . To

prove convergence of � �
� � to zero, note that � 4 5 �
��� ! � % � � � � as � � � . Hence, zero steady

state error is ensured in the face of a step disturbance. The tradeoff between system response

and delay tolerance can be verified by noting that the closed loop system bandwidth ��� satisfies

4 5 ����� � � 4�5 , and ��� is roughly inversely proportional to the response time of the system in

response to a step disturbance.



27

B. Proof of Theorem 2

Note that for the integral
�

to exist, � �	� � must converge to zero in the limit as � � � . From

Theorem 1, this is true if and only if � � 4 5 � � � � ��� %���� 	 	 � � . Hence, we first assume that any

optimal 4 5 , if it exists, must satisfy Theorem 1. Next, we use Parseval’s theorem to compute the

integral
�

in the complex frequency domain (See [19], pp. 583). Hence,

� � �
	%� � �

� 
��� 

� ��� � � � ($� � d �

where
� ��� � denotes the Laplace transform of the mismatch � �
� � . Ignoring initial conditions, we let

� ��� � ���"%���� # 4 5 �
� ! � � and

� ��� � ���"%���� # � 4 5 # 4 � � ��� � !�� � for the PAC and PAFR algorithm

respectively. For the PAC algorithm, we obtain

� � � � � 4 5 � # ����� 4 5 �
� 4�5 �

� � � � 4 5 � %���# � % � �
� 4�5 $

To yield the optimal 4 5 , we require that d
� % d 4 5 � � . Solving for the stationary point, we have

��� � 4 5 � � 4�5 � . Using Taylor’s series approximation, we have � ( � 4�5 � � 	 %�� � 4�5 � . Finally,

we have 4 5 � � � , � 4 5 � � � � ( ����%�� . Since d 	
� % d 4 	5 � � �(#

�
� ( � 4 5 � � � ,
� � 	 ��%���� 4 	5 � � � , � � � � ,�

is indeed the minimum. Moreover, the set of 4 5�� � � , for all � lies within the set of 4 5 given by

Theorem 1, thus we have a necessary and sufficient result that 4�5 � � � , stabilizes the system for all

delay � � � 	 .

C. Proof of Theorem 3

For the PAFR algorithm, the integral
�

exists since � � 4 5 # 4 ��� ��� ��� !�� % � � � � as � � � .

The set of controller parameters 4 5 and 4 � must satisfy the sufficient and necessary condition

for asymptotic stability which can be obtained by the approach in [29] and the Nyquist criterion to

yield
� 5 � � �

� � 4 5 � ��	 and 4 5 � %
�
� ( 4 	� � �
	 ����� � � ( 4 � � � . Hence the optimal set of

control parameters 4 5�� � � , and 4 ��� � � , must lie in the set,
� 5 � . For the PAFR algorithm, we have

� � �
� 4 5

�
� ( 4 	�

4 5���� ��
 � # 4 ��
 � ��� 
 �

 ( 4 5 � ��� 
 � #�
 4 ����� ��
 �
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where 
 � 4 5 %
�
� ( 4 	� , which can be simplified as

� � �
��� � � � 	��

� � � �
� #��
� �

where � � 4 5 � %
�
� ( 4 	� and � � � 	 ����� � 4 � . To yield the optimal 4 5 and 4 � , we have

� � % � � � � and
� � % � � � � for � � � � � and � ��� � � ( � . Finally, we have �!� � � � � � #�� �

and � � �($& � � � � which is a pair of transcendental set of equations. The numerical solution for

the optimal � � � , is ��� �($ "�� , and since ��� � , � �($  � � � � , we have

4 5 � ��� 	� � ,
�
�
� # � � 	� � ,

and 4 � � ��
� # � � 	� � ,

$

Hence, we obtain 4 5 � �($ � %�� and 4 � � �($ � � . We invoke the same steps as before by fixing �
and for all � * � 	 , we always have a loop transfer function with positive phase margin. Hence,

the theorem is proved.

D. Proof of Corollary 1

For a fixed � , from Theorem 2, the cost function for the PAC algorithm is

� 5 � � � #
�
� ( � 4 5 � � � ,	� � 	 ��%�� 4 	5�� � � , �

which is approximately ��$�# � , and, for the PAFR algorithm, from Theorem 3, 
+� 4�5 � � � , % � � ( 4 	��� � � , �
�($ "(�"%�� , hence the cost function,

� 5 � � ��$ � � . Thus, for all � � � ,
� 5 � � 5 � .
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