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Abstract-Balancing loads in a multi-server system can have a 
significant impact on performance. In this paper, we model such a 
system as a heterogeneous multi-server queueing system. We 
study the behavior of such a system operating under the minimum 
expected delay (MED) routing policy, Le., an arriving customer is 
assigned to the queue which has the minimal expected value of 
unfinished work. This routing discipline can be viewed as a gen- 
eralization of the join-the-shortest queue (SQ) discipline for ho- 
mogeneous servers. There is no closed-form solution for this class 
of queueing problem. In this paper, we provide a methodology to 
compute upper and lower bounds on the mean response time of 
the system. This methodology allows one to tradeoff the tightness 
of the bounds and computational cost. Applications and numeri- 
cal examples are presented which show how to use this methodol- 
ogy for deriving performance measures and also illustrating that 
the excellent accuracy of the computational algorithm which is 
achievable with modest computational cost. 

Index Terms-Load balancing, parallel systems, scheduling, 
queueing models, shortest delay routing. 

I. INTRODUCTION 

ITH the advent of multiprocessors and multicomputer 
systems, there has been considerable interest in the 

problem of balancing the load among processors or computers. 
In this paper, we model such systems as heterogeneous multi- 
server queueing systems. Using such models, we investigate 
the performance of such systems operating under the minimum 
expected delay (MED) routing policy. Although not optimal, 
this policy can provide excellent performance in these systems. 
Some major difficulties in analyzing this kind of a routing 
policy, even under Markovian assumptions, are 

1) each queue in the system is correlated because the arrival 
process to each server depends on the state of the entire 
system and, 

2) since each queue has infinite capacity, the state space of 
the system is multi-dimensional in nature and is infinite 
in each of the dimensions. 

In its general form, there is no known closed-form solution, and 
it is impossible to exactly solve the problem numerically due to 
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the infinite state space. One way to approach this problem is to 
construct a modified model which provably bounds the perform- 
ance of the original policy and for which the performance meas- 
ures of the modified model can be easily computed. 

The goal of this paper is to analyze the minimum expected 
delay (MED) routing algorithm (a natural generalization of the 
join-the-shortest-queue (SQ) policy for homogeneous servers) in 
a multiprocessor or multicomputer system, which is modeled as 
a heterogeneous multi-server queueing system. Let K be the 
number of servers, where K 2 2. Each server has an infinite ca- 
pacity queue, and service rates are exponentially distributed with 
rates pi, i = 1,2, . . ., K. Without loss of generality, we assume pl 
2 pz 2 2 pK. The customer arrival process is a Poisson proc- 
ess with a mean rate of A. We propose a methodology which 
provides upper and lower bounds on the mean number of cus- 
tomers (and thereby the mean response time) in the system and 
which can be used to trade off the tightness of the bounds with 
the computational cost. By virtue of providing bounds, rather 
than simply an approximation, our results are distinguished from 
previous work on this problem. 

We begin with a brief review of the published literature on 
the join-the-shortest-queue routing problem. The optimality of 
the SQ policy for homogeneous multi-server systems has been 
established in numerous papers [lo], [27], [29]. In its most 
general form, SQ has been shown to minimize the queue 
length vector in the sense of Schur-convex ordering [27]. Of 
more interest to us is the literature dealing with the perform- 
ance evaluation of the SQ and MED policies. In [4], MED 
policy was mentioned in the user search sequences. In the case 
of the SQ policy for two identical servers, numerous authors 
have provided exact, though not necessarily computable solu- 
tions [14], [ l l ] ,  [31], [7], [l]. Several authors have provided 
similar solutions to the heterogeneous server problem, for ex- 
ample, [ 151, [2]. The last paper (also [ 11) is interesting because 
it can generate a sequence of increasingly more accurate ap- 
proximations with error bounds that decrease exponentially. 
Recently, Adan, et al. [3] have provided an error bound for a 
homogeneous server system. 

Numerous authors have proposed approximations for the 
SQ and MED policies. These include Conolly [6], Rao and 
Posner [24], and Towsley and Chen [26] in the case of the SQ 
policy. The first of these treats both queues as having bounded 
capacity whereas the last two treat only one queue as having 
bounded capacity. The last two papers produce solutions that 
can be expressed in a matrix-geometric form [23]. The last 
paper, [26], is also noteworthy in that it provides upper and 
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lower bounds on various performance statistics that are estab 
lished using less sophisticated sample path techniques than are 
used in this paper. Grassmann [13] studied the same problem 
with K = 2 and solved for transient and steady state behavior. 
Halfin [12] studied the two servers problem and used a linear 
programming technique to compute bounds on the mean number 
of customers in the system. Blanc [5] studied the SQ routing 
policy with an arbitrary number of heterogeneous servers. He 
proposed an approximation method which was based on power 
series expansions and a recursion which required a substantial 
computational effort. Various approximations for computing the 
mean response time of K homogeneous servers have been pro- 
posed by Lin and Raghavendra [18], Nelson and Philips [21], 
[22], and Wang and Morris [28]. Zhao and Grassmann [30] 
studied the shortest queue model with jockeying. This problem 
has the matrix-geometric form and an explicit solution can be 
obtained. None of the work cited above treated more than two 
heterogeneous servers and simultaneously provided error 
bounds. Lui and Muntz [ 191 were the first to propose a method- 
ology to bound the mean response time of a minimum expected 
delay routing system. This paper differs from [19] in several 
ways. First, we derive improved bounds for the homogeneous 
servers case, and secondly, we use sample path analysis to prove 
the bounds, yielding more elegant and intuitive proofs. 

This work distinguishes itself from previous published re- 
sults in that it simultaneously 

1) allows more than K 2 2 servers, 
2)  allows heterogeneous servers, 
3) includes a scheduling policy based on queue lengths and 

service rates (thus, we treat a generalization of the join- 
the-shortest queue for homogeneous systems) and 

4) provides error bounds on the mean number of customers 
(and thereby mean response time) in the system. 

The bounding methodology has the desirable property that it 
allows one to tradeoff accuracy and computational cost, as will 
be demonstrated. 

The organization of the paper is as follows. In Section I1 we 
formally define the queueing model. Sections I11 and IV pres- 
ent the modified models and prove that they do provide 
bounds. In Section V, we provide a methodology for obtaining 
tighter bounds in the special case of homogeneous servers. In 
Section VI, we present an applications with a numerical ex- 
ample which shows the excellent accuracy of this methodol- 
ogy. Conclusions are given in Section VII. 

11. MODEL 

We model a multiprocessor or multicomputer system as a 
queueing system, as depicted in Fig. 1, with K heterogeneous 
servers with associated queues being fed by a Poisson process' 
with mean rate A. The service times at servers form mutually 
independent sequences of exponential random variables that are 
also independent of arrival times with rates pl 2 2 ... 2 pK. 

1. Although in the computational algorithm we assume the arrival process 
to be Poisson, the proofs for the bounds can accommodate a general anival 
process. 

Let Y denote a policy that routes an arriving customer to a server 
on the basis of the server queue lengths and mean service time 
and service rate of the servers. Let Z;(N) denote the identity of 
the queue to which the customer is routed under policy Y when 
the queue length vector is N .  When we are interested in the joint 
queue length at time t under a specific policy, we will denote it 
as N'(t). We assume that p is stationary. 

f @ 

PI>_ P2 >_ """ >_ FK-l> - F K  

state s = ( N 1 , N 2 ,  . . . . - ,  N K )  

Fig. 1 .  Minimum expected delay routing policy queueing model 

We define the minimum expected delay (MED) routing 
policy as follow. Let N,(t) be the number of customers at 
server i (on that server or in the server's queue) at time t. We 
define u,(t) = (1 + N,(t))/p,, which is the mean unfinished work 
at the ith server if a customer arrives at time t and is assigned 
to the ith server. Let us define u*(t) = min{ u,(t), i = 1, . . ., K } .  
Upon arrival of a customer at time t ,  the customer joins a 
server j where tl,(t) = u*(t). If a tie occurs, the customer 
chooses the server with the lowest index. When all service 
rates are equal, this MED routing policy reduces to the classic 
join-the-shortest queue (SQ) routing algorithm. 

Assume the system is stable, that is A < cK p , .  Then 
F 1  

lim,N,(t) = Ni. We can construct a Markov model, M ,  for this 
queueing system with state space: 

{ (Nl, N2, ..., N,) 1 N,  2 0, i = 1, ..., K }  } 
The unique steady state probability vector for this continuous-time 
Markov model satisfies the following system of linear equations: - 

ZG = O  and Z e  = I  (1) 

where ?tis the K-dimensional steady state probability vector, g 
denotes an appropriately dimensioned column vector of Is, and 
G is the transition rate matrix having the following structure: 

(N l,...,~i,...,~K) -+ ( N ~ ,  ..., N~ + i , . . . , ~ ~ )  i{i = min{klu, = U * } } A  

(N1, ..., Nz,...,NK) -+ (Ni  ,..., Nj-1, ... ,NK)  1{Nj > 0}pl 

and the balance equation can be expressed as: 
K K 

n+Ci{N,  > o},u,E(N~, ..., N ~ )  = CE(N,, ..., N, +I, ..., NK) 
i=l i=l 
K 

+ aCi(i = i L E D ( ( ~ l ,  ..., N, -I, ..., N ~ ) ) z ( N ~ ,  ..., N, -1, ..., N K )  
i=l 
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The above model does not possess a known closed form 
solution, and it is not possible to solve the problem numeri- 
cally due to its infinite state space cardinality. Since the 
Markov process lacks the appropriate special structure, tech- 
niques such as matrix-geometric methods do not apply. One 
natural way to approach this problem is to construct other 
models that closely bound the performance of the original 
problem and which, at the same time, have either known 
closed form solutions or at least can be efficiently evaluated by 
numerical methods. 

It is intuitive that the stationary state probabilities for the 
model M are highly skewed or, in other words, the probability 
mass of the system is concentrated in some relatively small 
subset of the state space rather than distributed nearly uni- 
formly over the entire state space. For example, consider a 
system of four homogeneous servers. The purpose of using the 
routing policy discussed above is to balance the load of the 
system as much as possible; therefore it is reasonable to as- 
sume that a highly unbalanced state(e.g., (8, 4, 3, 1)) has a 
much smaller probability mass than a balanced state (e.g., 
(4,4, 4, 4)). This crucial insight provides the rationale for 
constructing two modified versions of the original model 
which can be shown to bound the mean response time of the 
original system. In both cases we represent the exact behavior 
(transition rates) for the most “popular” states (where most of 
the probability mass resides). The number of states in the most 
popular subset is a function of the accuracy demanded and the 
computational cost one is willing to pay. When the system 
leaves this subset we modify the behavior of the system in such 
a way that 

1) the modified system has an efficient solution and 
2) the modified model’s behavior can be shown to bound 

the behavior of the original model from above or from 
below. 

Therefore, one modified model provides an upper bound on 
the mean response time while another provides a lower bound 
on the mean response time. In the next section, we discuss the 
upper bound model and then, in the following section, we 
cover the lower bound model. 

111. UPPER BOUND 

In this section, we present a modified model, Mu, which 
provides an upper bound for the mean response time and the 
mean number of customers in the system for the original 
model, M. The upper bound model has the same system con- 
figuration, namely that the customer arrival process is a Pois- 
son process. and K servers with service rates pi, i = 1, 2, . . ., K,  
where p l  2 p2 2 ... 2 p ~ . ~  The upper bound model Mu has two 
additional parameters. The first parameter we term the artif- 
cia1 capacity vector c = (C,, . . . , C,). The second parameter 
is a threshold setting d,  which is the maximum allowable dif- 
ference between the longest queue and the shortest queue in 

2. We require that the service rates be rational numbers such that they can 
be expressed as integers after normalization, Le., the service rates are mutu- 
ally commensurable. 

Mu. We first give the formal definition of these two parameters 
and, in the following paragraph, we give the intuitive idea of 
how these two parameters can be used construct the upper 
bound model Mu. 

DEFINITION 1. Let @ = (C;, .. ., C i )  be a vector where 

C,* = $ C  and C is chosen to be the minimum positive in- 

teger such that CE* is a positive integer for i = 1, ..., K .  
Then the artificial capacity vector c is an integer multiple 
o f C * , i . e , C =  j C f o r s o m e j 2  1. 

For example, if p, = 5 and 

- 

= I ,  then C = 3 and 
C* = (3, 2). So the artificial capacity vector can be c = j c *  

for any j 2 1. 

DEFINITION 2. Let a state of the model be s = (N, ,  . . . , NK). Let 
N;“ be the number of active customers3 in the ith server. 
Define q(s) to be the degree of imbalance for state s, as: 

q(s) = max{N,* - N; I where i ,  j E {I, ..., K ] }  

DEFINITION 3. Let d be the threshold setting in the modified 
model. We require that q(s) I d for each state s in model 
MU. 

We first give an intuitive idea of the construction of model 
M“. In Mu, the degree of imbalance is required to be less than 
or equal to the parameter d .  A customer may depart from the 
system only if its departure does not violate the maximum de- 
gree of imbalance permitted. If the customer departure would 
violate the threshold setting, the customer restarts its service 
within the same server. Intuitively, this mechanism forces a 
customer to stay in the system at least as long as in the original 
model and thereby increases the number of customers in the 
system. Note that, due to the routing policy, an arrival never 
causes the degree of imbalance to exceed d. The rationale be- 
hind the threshold parameter is to generate a model with a state 
space which is a subset of the state space of the original model. 

The second parameter is the artificial capacity, C,, i = 1, 2, 
..., K for each server. In model Mu, there are two classes of 
customers, active customers and suspended customers. At any 
point in time, there are never more than C, active customers in 
queue i ;  all of the remaining customers are suspended. When- 
ever a customer arrives to the system and finds that each server 
i ,  i = 1, . . ., K,  has exactly an integer multiple of Ci customers, 
all active customers in the system (except for the arriving cus- 
tomer) are put into a suspended mode and a new “busy cycle” 
is started. This busy cycle ends when all servers complete all 
active customers. C, suspended customers are then released 
from queue i = 1, . . . , K and can be served. Note that the defi- 
nition here is recursive; during the busy period following sus- 
pension of a set of customers, the capacities C, can again be 
exceeded, causing another set of customers to be suspended. 
When a busy cycle ends, only the set of customers suspended 
at the initiation of that busy cycle is released for service. The 
purpose of the C,, 1 I i I K,  is to create a matrix with a repeti- 

- 

3. Definition of active customers will be defined in a later paragraph. 
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tive structure; based on that structure, we will be able to derive 
an efficient numerical solution algorithm. The computation 
algorithm is based on partitioning the state space of M" into 
u,,,SL ... where: 

- {(ic1, ..., iCK)} i 2 1 

Due to the routing of arrivals and the constraint on departures, 
we can show that all transitions from Si to occur through 
one state in Si and the transitions from Si+l to Si can only go to 
one state in Si. As will be shown later, this property allows us 
to efficiently solve the model via exact decomposition based 
on the partition {So  U Sl U ...}. Intuitively, this second 
modification to the model should also increase the mean narm- 
ber of customers in the system compared to the original model 
since additional server idle time is introduced and service of a 
suspended customers can only be resumed when all active 
customers depart from the system. 

As an example, assume that we have a system with four 
homogeneous servers, and we let Ci= 10, for i = 1, 2, 3,4. It is 
easy to see that So includes all states for which each queue has 
between 0 to 10 customers; SI consists of all states for which 
each queue has 10 suspended customers, and has between 0 to 
10 active customers and at least one queue has an active cus- 
tomer. Observe that the only transition from So to Sl is from 
state (10, 10, 10, 10). This is due to the shortest expected de- 
lay routing of arrivals. The only non-zero transitions from Sl 
to So are from states (11, 10, 10, lo), (10, 11, 10, lo), 
(10, 10, 11, 10) and (10, 10, 10, 11) to state (10, 10, 10, 10). 
This is due to the rule introduced in Mu to the effect that sus- 
pended customers are only served when the busy period 
(corresponding to states in SI) has completed. An important 
point is that the parameters d and Ci, for i = 1, . . . , K, can be 
chosen to control the extent to which Mu behaves like the 
original model M ,  i.e., the larger d and the Cis are, the larger 
the portion of the state space that has behavior identical to the 
original model. 

A. Proof of Upper Bound 
In this section, we prove that the model Mu provides an up- 

per bound on the number of customers in the system at any 
point in time. In the case that the model exhibits stationary 
behavior, Little's result can be invoked to show that Mu pro- 
vides an upper bound for the mean response time. We there- 
fore concentrate on the mean number in the system in the re- 
mainder of this section. It is important to point out that the 
proofs can accommodate a general arrival process. We start by 
defining an auxiliary concept that will be useful in the proof. 

DEFINITION 4. A policy ?f is 'a proper policy if N 5 N' (here 
"I" is taken to mean componentwise) implies that 
N + g % ( N ,  I " + e ?  where e,  is the column vector of 

all 0s except for a 1 in position k.  
--ly(N') 

It is easy to see that the minimum expected delay routing pol- 
icy is a proper routing policy. 

In establishing an upper bound, it is useful to look at the times 
when events such as arrivals and departures occur. In the latter 
case, it is useful to think of each server as continuously serving 
customers. If the queue is empty, then the server serves aficti- 
tious customer. Hence service events at server k occur as a Pois- 
son process with parameter ,uk. (Note that a service event is a 
departure event only when there is a customer in the queue.) 
Furthermore, if a customer is routed to an empty queue, then it is 
assigned the remaining service time of the fictitious customer on 
the server. The exponential assumption guarantees that the time 
to the next service event is an exponential random variable with 
the same parameter. It follows that, under this interpretation, the 
service times are still i.i.d. exponential with the same mean. 

Consider the ith event. Let N ,  = (LV,,~, ..., Nl,K) be the joint 
queue lengths immediately after the ith event. Let No denote 
the initial queue lengths. We have the following evolution 
equations. If the ( i  + 1)st event corresponds to an arrival, 

Ni+l,k = Ni,k + l { l i ( N i )  = k } .  1 5  k i K ( 2 )  

If the (i + 1)st event corresponds to a service event at serverj, 

(3) 

Now suppose that we have a modified system for which we 
define a new binary valued random variable Y, that takes on 
the value 0 if no customer is allowed to depart and the value 1 
if a customer is allowed to depart at the ith event (provided 
that it is a service event). In the original model M ,  the random 
variable Y, is always equal to 1. On the other hand, in the up- 
per bound model M" presented above, Y, can be 0 or 1 depend- 
ing on the model state. Let N"(t)  be the joint queue lengths for 
the model M". We have the following evolution equations at 
the time of arrival and service events. If the (i + 1)st event 
corresponds to an arrival, 

NLl,, = Nlk  + 1{ i ; (N:)  = k},  1 I k I K (4) 

If it is a service event at server j ,  

LEMMA 1. r fN(0 )  I,y, N "(0) and p is a proper routing policy, 
thenN(t)  < , ,N" ( t ) fo r t20 .  

PROOF. Couple the initial queue lengths so that N(0) I N "(0). 
Condition on the initial queue lengths, arrival times, and 
service event times. The proof is by induction on the event 
times to establish the deterministic relation Ni I NP for i 2 0. 

For i = 0, N ( 0 )  < N "(0). For the induction step, assume 
Ni < NY holds for i = k. For i = k + 1, if the ith event is an 
arrival event, then by the definition of a proper poliGy the 
relationship holds. If the ith event is a service event, then 
due to Yk+l I 1, the relationship holds. Therefore, thetupper 
bound model Mu satisfies the assumptions described above, 



LUI, MUNTZ, TOWSLEY: BOUNDING THE MEAN RESPONSE TIME OF THE MINIMUM EXPECTED DELAY ROUTING POLICY 1375 

and we have N(t) S N "(t). By removing the conditions on 
initial queue lengths, arrival times, and service event times, 

0 

Let Ni = limt+Ni(t) when it exists, 1 I i I K and 
N = E,=,. Ni . Based on this lemma, we have E[N I E[N,]. If 
R and R, denote the stationary customer response times, when 
they exist, then by Little's result, we have E[R] I E[R,]. 

we have N(t) l,yt N"(t) for t 2 0. 

B. Computational Algorithm for Solving the Model M" 
In this section, we provide an algorithm for computing the 

mean response time of the upper bound model when the arrival 
process is Poisson with mean rate A. We partition the state 
space of M", S" = 

SO= { ( N I ,  ..., NK) I O  I N j I  Cj for j = 1 ,  ..., K }  
Si = [(NI, ..., NK) I iCj I Nj I ( i  + l)C, for j = 1, ..., K) 

Qs 

The transition rate matrix Q" has the form depicted in Fig. 2 
when the states are ordered in the natural way. 

and Si n S j  = 0 , Vi  # j ,  where: 

- {(iCl, ..., iCK)} 
= transition rate matrix from states in Si to states in 5. 

1' J 

Fig. 2. Transition rate matrix for the upper bound model. 

This is a block tridiagonal transition rate matrix and there- 
fore represents a quasi-birth-death process. By aggregating 
each partition Si, a birth-death process is formed. First, we 
show how to obtain the exact conditional state probability 
vector, given that the system is in partition Si. Once we have 
this information, it follows easily that we can obtain the exact 
aggregate transition rates. We can then obtain the exact sta- 
tionary state probabilities for the aggregate model. The aggre- 
gate state probabilities and the conditional state probabilities 
together are a complete solution for the stationary state prob- 
abilities for the upper bound model M". 

There are several important features of the upper bound 
model, M". First, there is only a single state in Si that has a 
non-zero transition rate into any state in Si+,, i 2 0. Let us call 
this state si(Co). State si(Co) is: 

si(Co) = ( N l ,  N,,  ..., N K )  E Si 
Nj = (i+l)Cj V j = 1, 2, ..., K 

where 

This follows from the rule used to assign an arriving customer 
to a server. Also, there are K states from Si that have nonzero 
transition rates to a state in Si-, where i 2 1. Each corresponds 
to a state in which a server is the last to complete its ''active" 
(nonsuspended) customer. Let us call these states si(l), 1 I 1 I K, 
i 2 1. These states are: 

si ( l )  = ( N , ,  N 2 ,  ..., NK) E SI 1 = 1, ..., K 

where 
Nl = i C , + l  and Nj = i C j  for j # l  and j = 1 , 2 ,  ..., K 

This follows from the restrictions on departures in the upper 
bound model. The following are easily seen to be the transition 
rates between si(C0) and si+,(l), 1 = 1, 2, . .., K: 

Si(c0) + si+l(li(si(co))) A 
si+l(O + si (co p l  for 1 = 1, 2, ..., K 

The second important observation is that the submatrices 
for i 2 1 ,  are all identical. The conditional state prob- 

abilities P {  s E Si I Si) can now be computed exactly using the 
following lemma from [9]: 
LEMMA 2. Given an irreducible Markov process with state 

QA,A QA,B 

Q, ,s, ' 

space S = A  U B and transition rate matrix: 

[ QB,A e,.,] 
where Qij is the transition rate submatrix from partition i to 
partition j .  If QBA has all zero entries except for  some non- 
zero entries in the ith column, the conditional steady state 
probability vector, given that the system is in partition A, is 
the solution to the following system of linear equations: 

where ET is a row vector with a 0 in each component, ex- 

cept for the ith component which has value 1. 
We are now in a position to compute the conditional state 

probabilities for each partition Si of M" exactly. Without loss 
of generality, let us consider Si, for some i 2 1 .  

THEOREM 1. Let Gs,,s, be the transition rate matrix which is 

--I 

equal to except for the following modifications: 

(6) - - 
43, (cn),s, (cn) - qs,  (cn),st (co) + A 
I 

q S l ( l ) , S l ( l )  = qS , ( l ) , s jm  +& where 1 I 1  I K (7) 

The solution to the following system of linear equations: -- - 
%Qst,sl = 6 and = 1 

is the conditional steady state probability vector for states 
in Si, that is: 

PROOF. Let us partition the state space S" = {Si U Si"} where 
Si  = u'.=' J=o S. J and Si"= {S" - Si ). There is only a single re- 

turn state in Si, which is si(Co), from the states in Si". 
Based on Lemma 2, the modification of (6) provides the 
conditional steady state probability, given the system is in 
Si. Now partition the state space Si = {S,' US i )  where 
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S,' = u:o .Yi. Based on (7) and the definition of the MED 

routing policy, we obtain the conditional state probability 

Since we can compute the conditional state probabilities for 
each partition Si exactly, we can exactly aggregate each si into 
a single state si, i 2 0. The aggregated process is depicted in 
Fig. 3 where, &, ;lug,, and pug, are: 

vector, given the system is in state Si. 

1 0  = qJo(Co)p 

augg  = E(si(Co))a 

P a g g  = p ( J i ( l ) ) P l  
K 

r=i 

Solving this chain, we have: 

(9) 

AI ~ w l  L o  L, Lw 
....... * .... a 

P-go Pass P-00 P ~ O O  Paso 

Fig. 3. Aggregate process for the upper bound model. 

To obtain the mean number of customers, Nu, in the upper 
bound model, let us define the following: 

From Little's result [17], the upper bound mean system re- 
sponse time R, is: 

R, = 

I G(+ * (so) + G(sl)(i - TL * (so)) + cono p'gg .*(so) 
(b - n u , J  

(12) 
It is important to note that the upper bound model Mu has a 

different stability condition compared to the original model M .  
The original model is stable if: 

but the stability condition of the upper bound model is: 

p " = L < l  
k s 8  

In general, pu > p but as we increase d and E ,  we have p" + p 
from below. 

Lastly, to comment about the computational complexity of 
the upper bound model Mu. First, we have to obtain the condi- 
tional state probabilities for rate matrices So and SI. This can 
be accomplish by using numerical methods, such as the power 
iteration method, as suggested in [25]. Although the theoretical 
complexity is 0(n3) where n is the dimension of the rate ma- 
trix. In practice, the number of operations is much less. After 
we obtain the conditional state probabilities, we can use (lo), 
(Il),  and (12) to obtain the expected response time of the up- 
per bound model. 

IV. LOWER BOUND 
K 

In this section we present a model d, which provides a lower 
bound on the mean response time of the original model. As be- 
fore, the arrival process is Poisson, the service time are expo- 
nentially distributed and that there are K servers with service 

r(s)  = N~ for state s E S" 
r=l 

K 

co = C C l  
1=1 

T(s) = r(s)-iCo 

S€S, 

s E Si 

f i ( s , )  = p ( s ) i t ( s )  

where z ( s )  is the solution of the following Markov chain: 
f -  f 

- 
?$&s, = 0 and Ee  = 1 

Then we have: 

Since fi(si) = fi(s,) for i f j where i, j 2 1, we can simplify 
the expression above for Nu to: 

Nu = f i(so)n *(so)+ f i(s ,)(l-n*(so)) 

rates pili, i = 1, 2, . . ., K,  where p1 2 p2 2 ... 2 ,UK. For the lower 
bound model, in addition to the two parameters introduced for 
the upper bound model Mu, we define Cr = xEl C, . 

We first give an intuitive idea of the construction of the 
lower bound model M'. The modified system alternates be- 
tween two phases. The normal service phase begins when the 
system is empty and continues until either the maximum de- 
gree of imbalance d is exceeded or until the total number of 
customers exceeds Cf. Once either event occurs, the system 
enters afull service phase where it behaves as a heterogeneous 
MM/K system in which, if there are j customers, where j I K, 
these j customers are executed on the j fastest servers (i.e., 
customers are moved to the faster servers instantaneously). 
The system operates in this mode untll the system becomes 
idle. Once the system empties, it returns to the normal service 
mode. Intuitively, these modifications yield a lower bound on 
the mean response time since the modifications are an ideali- 
zation in which either the model behaves exactly as the origi- 
nal model or the best possible service rate is delivered. While 
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the result is intuitive, we will also formally prove that the 
modified model M' yields a lower bound on the mean response 
time. Of course, it is intended that d and C,, i = 1, 2, . . ., K,  be 
chosen large enough so that most of the time Mi behaves like 
the original model. On the other hand, to be able to solve the 
model efficiently, we would like to keep these parameters 
small. Numerical examples are given later to illustrate the 
tradeoffs between the size of a model solved and the spread in 
the bounds obtained. 

A. Proof that M' Provides a Lower Bound for M 
In this section, we prove that Ml provides a lower bound on 

the mean response time of the system for all proper routing 
policies p. Again, we point out that the proof can accommo- 
date a general arrival process. The proof is based on the fol- 
lowing two lemmas. The first is straightforward and requires 
little explanation. It will be used to establish the bound during 
the normal service phase. 
LEMMA 3. If N(0)  SFf "(0) and p is a proper routing policy, 

then 

N(t)  Srt N'(t), 0 I t. 
PROOF. Without loss of generality, we can couple the systems 

so that N(0)  I N ' ( 0 ) .  Condition on the arrival times and on 
the service event times at the different servers during the 
time interval [O, t] .  A simple induction argument using that 
p is a proper policy suffices to establish that N(t )  I N'(t). 
Removal of the conditioning yields the desired result. 0 
Consider the system operating solely in the full service 

mode of operation and let N f ( t )  denote the total number of 
customers in the system. Let N P ( t )  = E:, N e  denote the total 
number of customers in the original system under policy p 
(henceforth referred to as the normal service system). 
LEMMA 4. If N f ( 0 )  I,, N p(0) and p is proper routing policy, 

then 

Nf( t )  5,F, N"(t), 0 5 t .  

PROOF. As before, we couple the initial queue lengths so that 
N '(0) I N "(0) and condition on the arrival and departure 
times. Let [t,,} be a sequence of times where each t, corre- 
sponds to an arrival or service event. Let MP(tf l )  denote the 
number of busy servers at time t,, in the system under policy 
p .  Define { 1, ..., K ]  + (1, ..., K }  to be a mapping such 
that y: (k)  is the index of the kth fastest busy server in the 
system, provided k 5 Mp(tfl) .  In the case that K 2 k > Mp(t,,), 
y { ( k )  is the index of the (k - @(t,,))th fastest idle server. 
(Actually, the idle servers can be mapped in an arbitrary 
manner.) We introduce the following sequences of random 
variables (r.v.), 

{A,,} is a sequence of r.v. such that A, = 1 if the nth event 
is an arrival and 0 if it is a service event. 

0 { In}  is an independent and identically distributed se- 
quence of r.v. taking values from { 1,  . . ., K }  such that 
Pr[Z,,= k ]  = 1/K, k = 1,2, . . ., K, and 0 otherwise. 

[B,,)  is an i.i.d. sequence of uniformly distributed r.v. in 
the interval [O, 11. 

The evolution of the two systems is described as follows. 
Let N," denote the joint queue lengths under p immediately 
after the nth event and let N,f denote the total number of 
customers in the full service system immediately after the 
nth event. Let N{k be the kth component of N," . We have: 

It remains to establish that N i  is less than N," (the total 
number of customers under policy p )  immediately after the 
nth event for n = 1, 2, . . . . This is easily done by induction. 

Basis step. For to = 0, the result follows from the coupling of 
the initial queue lengths. 

Inductive step. Assume that the hypothesis holds for the first 
n-1 events. We must distinguish between arrivals and serv- 
ice events. If an arrival occurs at time tn (A,, = l),  then the 
result follows immediately from the above evolution equa- 
tions. In the case of a service event, we distinguish between 
four cases depending on whether I,, corresponds to a busy or 
idle server in each system. 

Case (1). In both systems the server in the chosen position is 
idle. Then there is no departure from either system and the 
full service system model continues to have a lower total 
number of customers, Le., N,f = N,f_l I N:-, = N,". 

Case (2).  In the normal service system, the chosen position 
corresponds to a busy server, but in the full service model it 
corresponds to an idle server. In the normal service system 
there can be customers waiting in queues while some serv- 
ers are idle. This does not occur with the full service sys- 
tem. It follows that the total number of customers in the full 
service system is strictly less than the total number of cus- 
tomers in the normal service model in the interval t,,-1 I t < t,,, 
i.e., N,f_, < N&,. Hence, N,f I N," since the normal serv- 
ice system only "catches up" by 1. 

Case (3). The server is busy in the full service system, but it is 
not busy in the normal service system. Clearly 

Nnf I NJ-, I N,"-, = N,", 

Case (4). The servers are busy in both systems. In this case let 
j be the label of the server in the full service system and let 
k be the index of the server in the normal service system. 
Since, in the full service system, the fastest servers are al- 
ways being utilized it follows that j 5 k,  Le., the chosen 
server in the full service system is at least as fast as the chosen 
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server in the normal mode system. Therefore, if B, < Mp, 
then B, I pjlp. Hence it follows from the evolution equa- 
tions, if there is a departure from the normal service system, 
then there is also a departure from the full service system. 
So we conclude that N,f I N,". 
This completes the inductive step. Removal of the condi- 
tioning on the initial queue lengths, the arrival times, and 

Lastly, let Nl(t) denote the total number of customers in the 
lower bound system at time t. We have the following result. 
THEOREM 2. ZflVl(0) I,r, N p ( O ) ,  then Nl(t) I,, Np(t)for t 2 0,for 

any proper routing policy p .  

PROOF. This follows directly from the above two lemmas by 
noting that ML goes through alternating intervals in which it 
operates in normal mode and full service mode. When the 
transition is made from the full service phase to the normal 
phase, N' (t)  = 0 which implies that N'(t) < Np(t) and so the 
first lemma can be applied during each normal service mode 
interval. Similarly, when there is a transition from the nor- 
mal service phase to the full service phase, "(t) < W(t) 
which implies that $(t) 5 M(t)  and so the second l e m a  is 

It is important to note that the stability conditions for the 
lower bound model M' and the original model M are the same. 

B. Computational Algorithm for Solving the Model M' 
In this section, we describe an algorithm for computing the 

mean response time of the lower bound model M'. Let us de- 
fine the following notation: 
So = set of states with 0 5 Nj I Cj, j = 1, 2, ..., K such that the 

threshold d is satisfied. 

the service events completes the proof. 

applicable during every full service mode interval. 

G, = ( S o - ( O , O ,  ..., 0 ) ) .  
ai = a state not in the set So, in which the system contains ex- 

actly i customers. 
= transition rate matrix between and state ai. 

gz,,u, = transition rate from state ai to state uj 

The transition rate matrix of the model M z  is depicted in 
Fig. 4. (Note that some of the @,,ui = 0 but this will not effect 
the development that follows.) 

Fig. 4. Transition rate matrix for lower bound model 

Since So represents all possible states during the normal 
mode and states or, i 2 1, represent all possible states during 
the full service mode, it is easy to see that the transition rate 

g:,,u,-l is: 

(15) 

Observe that if we know the conditional state probabilities for 
the states in So (where So = { a0 U }), then we can aggregate 
&, as a single state, SO, and we will have a simple aggregated 
process from which the mean number of customers in the sys- 
tem can be easily derived. Note that there is only a single entry 
to So from all states outside So because the system must be idle 
to switch from full service mode to the normal mode. Based on 
L e m a  2, the state probabilities conditioned on the system 
being in So can be obtained by solving the following system of 
linear equations: 

+ 

Z(So)g = 1 - 
where ;;(So> is the steady state probability vector, given that 
the system is in So. We can now apply exact aggregation; the 
aggregated process is depicted in Fig. 5. 

Fig. 5. Aggregate process for the lower bound model 

The transition rates for the aggregated chain are: 

* = %((so)Qso,u, i = 1, .. ., Cf +1 g, a, 

s : A ,  = A i21 
gu1,s0 x = Pl 

where p * = czl pi . 
Solving the chain, we have: 
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i = Cf  4-2, ... 
(18) 

To obtain the mean number of customers in the system, Nl, 
and the mean response time, R,, let 

fi(s0)= C r(s)it(s) 
.do 

where r(s) = E Ni, then we have: 
m 

After simplifying, the mean number of customers N, is: 

N~ = i(S0)n *(so) + C in * (ai) 
c, 

i=l . .  
(19) 

Cf n * (+,+1)Y * n * (UC,+l)P * 
y*-A (P * -A)2 

+ + 

From Little's result [ 171, the lower bound mean response time 
is: 

Ri = 

1 c/ Cfn*(%,+l)P* n*(aC/+l)P* 

i=l p - a  (P * -AIZ 
i7(.sO)n * (so) + 2 ia * (q) + + 

(20) 
Lastly, to comment about the computational complexity of the 

lower bound model M'. First, we have to obtain the conditional 
state probabilities for rate matrix &. Again, this can be accom- 
plish by using the power iteration method. After we obtain the 
conditional state probabilities, we can use (16) to (20) to obtain 
the expected response time of the lower bound model. 

V. HOMOGENEOUS SERVERS 

In this section we consider a system with K homogeneous 
servers having exponential service times with rate p. In this 
case, we can improve on the lower bound for the heterogene- 
ous system as well as on the upper bound at high utilization. 
Here, the minimum expected delay policy becomes the classi- 
cal join the shortest queue (SQ) policy. 

We first describe the new upper bound model under very 
high system utilization. For the upper bound model M" in Sec- 

tion I11 we do not have a very tight upper bound under very 
high system utilization, since we put a constraint on the depar- 
ture events based on the state of the system. Due to this con- 
straint, the upper bound model saturates at a lower traffic in- 
tensity; if we can find an upper bound model that saturates at 
the same point as the original model, we can use the minimum 
of this model and M" model as an upper bound. One simple 
upper bound for the homogeneous case which has the same 
saturation point as the original model is formed by assigning 
customers to servers in a cyclic fashion, [lo]. In this case, each 
server in the system behaves as an EK/M/ l ,  and the mean re- 
sponse time of this system is well known [16]. Taking the 
minimum response time of this model and M" provides a good 
upper bound over the entire range of traffic inten~ity.~ 

We now define the new lower bound model under the iden- 
tical servers assumption. Let N(t) = (Nl(t) ,  Nz(t), ..., Ndt ) )  
denote the joint queue lengths at time t > 0 under SQ, and let 
N(t)  = c r = l N k ( t ) .  Let Gk(t) denote the kth largest queue 

length, k = 1, 2, . . ., Kat  time t 2 0. The new lower bound sys- 
tem operates as follows: 

- GK = d , and a de- 
parture would normally occur from the smallest queue, it 
is forced to occur instead from the next largest queue 
(i.e., if a departure would cause the system to exceed the 
maximum degree of imbalance d, then the departure is 
made to occur from the second shortest queue). 

0 Whenever N(t) 2 C' and a departure occurs, it is taken 
from the largest queue. 

Here C and d are parameters that can be tuned to provide a 
tight bound. 

In order to describe in what sense this system is a lower 
bound, we introduce the concept of majorization [20]. Let 

DEFINITION 5 .  Y is said to majorize X (written X < Y )  i f s  

Whenever N ( t )  < Cf = Z:, Ci , 

x, Y E   IN^. 

r=i 1 4  

where gl(fi) is the 1-largest component of X(Y). If we re- 
place the equality in (21) by 

K K 

1=1 1=1 

we obtain a weaker ordering. In this case we say that Y 
weakly majorizes X (written X i, Y). 
The following lemma states some properties regarding op- 

erations that can be performed on X and Y such that weak 
majorization is preserved. 

4. Note that this approach cannot be applied to the heterogeneous case since a 
cyclic assignment policy may not provide an upper bound response time. 
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LEMMA 5. Let X ,  Y E INK such that X <w Y ,  then 
. . . .  A *  

1) (ri, ,..., 2, ,..., 2, + l,.. ., iK) <w (r; ,..., yk +1,..., 8 ,..., YK) ,  

2) 2 ,"", (i, -I)+ ,..., X ,  )..., X,) <w ( q  ,..., yk ,..., (i; -l)+ ,..., fK), 
for I l k l l I  K 

. . *  

f o r l 5 k I l I K  

PROOF. The proof follows in a straightforward manner from 
the definition of "KW" The reader is referred to [ZO] for a 

Before we define a stochastic comparison based on majori- 
zation, we introduce the notion of a Schur-convexfunction. 
DEFINITION 6. A function 4 : IN + IR is said to be Schur- 

detailed proof. 

convex i f  

&X) I &Y), V X ,  Y E  INK such that X < Y. 
DEFINITION 7. I f X ,  Y E INK are random variables, then we 

say X is smaller than Y in the sense of Schur-convex order 
(written X Iscn Y )  iff 

&X) <si r$(Y), VSchur-convex 4. 
r f  the class of functions is restricted to be increasing Schur- 
convex, then we say that X is smaller than Y in the sense of 
increasing Schur-convex order ( X  Y). 

Last, if 4 is a function such that &X) I &I"), V X ,  Y E  Iru" such 
that X KW Y ,  then 4 can be shown to be an increasing Schur- 
convex function. 

Let N'(t) denote the joint queue length vector for the new 
lower bound system. We have the following result. 
THEOREM 3. IfN'(0) = N(O), then "( t )  <is, N(t)  V t  > 0. 

PROOF. Couple the initial queue lengths so that "(0) = N(0). 
Condition on the arrival times of the two systems. For the 
kth largest queue, we have an associated service event proc- 
ess which is a Poisson process with parameter p. Whenever 
a service event occurs associated with the kth largest queue, 
a departure occurs if there is one or more customer in the 
queue at the time of the event. Observe that the coupling of 
the the service event times at the different servers is only 
possible if the service times at the servers are all mutually 
independent sequences of i.i.d exponential random variables 
with the same parameter. 

Let be the sequence of times at which arrivals or 
service events occur (to = 0). We will estabIish the relation 
N'((t) -=& N(t)  by induction on the event times. Clearly, if 
N'(ti) KW N(tJ  then N'(t) <,N(t), ti I t < ti+*, i 2 0. 

Basis step. This follows from the coupling of the initial queue 
lengths. 

Inductive step. Assume that N'(t) <, N(t)  for t < ti. We will 
establish it for t = ti. There are two cases depending on 
whether the event is an arrival or a service event. For arrival 
event, N'(ti) -%, N(ti) follows because arrivals are to the 
smallest queue, so Property 1 of Lemma 5 can be applied. 
For service event, there are two cases depending on whether 
N'(t,F) < Cf . In either case, result follows from an applica- 

This completes the inductive step and thus we have N'(t) <w 

N(t), t 2 0. By the definition of weak majorization (<,), this 
implies thatf(lv(t)) I f (N(t))  for any increasing Shur-convex 
functionf(t). Removing the conditioning on the arrival times 

cl and service times, we have N"l(t) I,,, N(t) V t  > 0. 

COROLLARY 1. IfN'(0) I , ,  N(O), then N"l(t) 

PROOF. Thrs follows from the preceding theorem and the fact that 
$ ( X )  = ct=, X, is an increasing Schur-convex function. 0 

For the purpose of computing performance measures, let us 

N(t),  for  t 2 0. 

define the following: 
So = set of states with 0 5 N, 5 C and IN, - N,I 5 d, Vi, j .  
so(Co) = this is the only state in So that has a positive transition 

Z(so(Co)) = conditional probability of state so(Co), given that 

so = aggregate state which represents all states of So. 
si = state which represents the system having C' + i customers 

@(si) = steady state probability of state si. 
N(s,) = mean number of customers given that the system is in SO. 

The mean number of customers and mean response time for 
this lower bound are: 

rate into it from states outside So. 

the system is in So. 

fori 2 1. 

ca 

i~~ = N(s~)z* (~~)+C[C~ + i ] x * ( s , )  
1=1 

= f i (So)z  *(so)+ Cf (1 - n *(so)) + a0 K p  Z * ( S 0 )  

( K P  - 

and 
r 

n*(so)= I+------- [ K , L l '  

n*(sJ = [ l+----e K;-ar( - ;;)( - hn,)i' for  z = 1, 2, ... (26) 

Before we illustrate this appllication of this methodology, it is 
interesting to note that it is possible to reduce the state space 
further by lumpability as illustrated in [19]. 

VI. APPLICATION AND NUMERICAL EXAMPLE 

In this section, we present an example to illustrate the appli- 
cation of this methodology and the accuracy of the bounding 
algorithm. The example concerns the transmission policy in a 
computer network. For a packet switching system, there are 

tion of Property 2 of Lemma 5. basically two modes of data transmission. In one case, the vir- 



LUI, MUNTZ, TOWSLEY: BOUNDING THE MEAN RESPONSE TIME OF THE MINIMUM EXPECTED DELAY ROUTING POLICY 1381 

tesponse Time 
Upper Bound 
0.1000252 
0.2000863 
0.3008306 
0.4052623 
0.5208162 
0.6610820 
0.8522784 
1.1652135 
1.9273843 

tual circuit transmission mode, a path is first set up from the 
source node to the destination node. User packets then traverse 
the network following the path chosen during the initial con- 
nection setup. In this mode, user packets can arrive in se- 
quence in which they were transmitted but the user has to pay 
for the overhead for the initial connection setup (ex: 3-way 
handshake in TCPDP). The other transmission mode is the 
connectionless mode, where each individual packet or data- 
gram independently traverses the network from source node to 
destination node. No initial connection is set up in this case 
and datagrams are forwarded through the network on an indi- 
vidual basis. Routing of each datagram is based on the desti- 
nation address and the availability of output portsS at each in- 
termediate nodes. Usually, connectionless transmission can 
yield better performance since there is no overhead for con- 
nection setup, but downside is that the user has to take care of 
packet resequencing and retransmission in case datagrams are 
dropped. 

In this first example, we assume datagram transmission 
mode and we want to evaluate the transmission time of data- 
grams in each communication node (see Fig. 6). 

Spread of Percentage 
Bounds Error 

0.0000007 6.27~10” 9 
0.0000120 9 . 0 7 ~ 1 0 ~  9 
0.0001772 0.0103 % 
0.0011349 0.0487 % 
0.0165987 0.4324 % 

/ T i l  output port 1 

C 

8 
10 
12 
13 

output port 2 
output port 3 

States Response TimeResponse Time Spread of Percentage 

1815 1.8521678 2.1078925 0.2557247 6.4576 % 
2475 1.8973256 2.0013574 0.1040318 2.6684 % 
6831 1.9107856 1.9273843 0.0165987 0.4324 % 
15015 1.9123782 1.9261783 0.0138001 0.3591 %, 

Generate? Upper Bound Lower Bound Bounds Errors 

d el^ output port 8 

communication node 

Fig. 6. Communication node for sending out datagram. 

Assume that the communication node has eight output ports. 
We model the datagram arrival .process of to be a Poisson 
process with rate il and each output port as having an expo- 
nential service rate of p. We normalize the service rate to 1.0 
and we increase the datagram arrival rate so that the system 
utilization will vary from 0.1 to 0.9. Table I illustrates the up- 
per and lower bound on the mean response time of the data- 
gram(the time to send the datagram across the output link of 
the communication node) as a function of system utilization. 
As can be seen by the percentage error,6 the bounding meth- 
odology we developed provides a very good accuracy fro the 
mean response time and at a moderate cost. 

To illustrate the tradeoff between computational cost and 
accuracy of the bounds, we can vary the d and C parameters. 
By fixing the system utilization at 0.9 and increasing the num- 
ber of states generated, we see the improvement obtained for 
the bounds on the mean response time. The results are illus- 
trated in Table 11. 

5. Assuming these output ports can reach the destination node. 
6 .  If the spread in the bounds is less than < I 0-6, we leave the percentage 

error entry blank. 

System 
Utilizatioi 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

TABLE I 
DATAGRAM RESFQNSE TIME 

.esponse Timc 
,ewer Bound 
0.1000252 
0.2000863 
0.3008306 
0.4052623 
0.5208155 
0.6610700 
0.8521012 
1.1640786 
1.9107856 

COMPUTATIONAL COST VS. ACCURACY 

d 

4 
4 
5 
6 

- - 

- 

VII. CONCLUSION 

The minimum expected delay routing policy is appealing to 
study not only due to its simplicity in implementation, but also 
due to the fact that it is theoretically difficult to analyze be- 
cause the routing of arrivals is state dependent and no closed 
form solutions exist in general. Also, due to the fact that each 
server has an infinite capacity queue, the state space cardinal- 
ity of the Markov model is infinite, and it becomes impossible 
to generate the entire state space to solve the Markov model 
numerically. We have presented an approach to bound the 
mean response time and the mean number of customers in the 
minimum expected delay routing policy, which is a generali- 
zation of the join the shortest queue routing policy. The algo- 
rithmic approach provides the flexibility to tradeoff computa- 
tional resources and tighter bounds. There is ongoing work on 
the subject to determine d and C, to obtain specified error 
bounds. We are also investigating the possibility of bounding 
the mean response time under more relaxed conditions, e.g., by 
allowing general service distributions. 
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