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Abstract
This paper investigates the fusion of absolute (re-
ward) and relative (dueling) feedback in stochastic
bandits, where both feedback types are gathered
in each decision round. We derive a regret lower
bound, demonstrating that an efficient algorithm
may incur only the smaller among the reward
and dueling-based regret for each individual arm.
We propose two fusion approaches: (1) a simple
elimination fusion algorithm that leverages both
feedback types to explore all arms and unifies
collected information by sharing a common can-
didate arm set, and (2) a decomposition fusion
algorithm that selects the more effective feedback
to explore the corresponding arms and randomly
assigns one feedback type for exploration and the
other for exploitation in each round. The elimina-
tion fusion experiences a suboptimal multiplica-
tive term of the number of arms in regret due to
the intrinsic suboptimality of dueling elimination.
In contrast, the decomposition fusion achieves re-
gret matching the lower bound up to a constant
under a common assumption. Extensive experi-
ments confirm the efficacy of our algorithms and
theoretical results.

1. Introduction
Relative feedback is a type of feedback that provides infor-
mation about the relative quality of two or more items (i.e.,
which is better) rather than their absolute quality. The power
of relative feedback has been widely recognized in various
fields. For example, in the human alignment stage of the
large language model (LLM) training (Ouyang et al., 2022;
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Rafailov et al., 2024), the human annotators are asked to
compare the quality of two LLM-generated sentences, rather
than scoring them using absolute values. Given LLMs’ pop-
ularity, designing algorithms that can effectively leverage
relative feedback has become a critical research topic in
the online learning community, e.g., reinforcement learning
with human feedback (RLHF) (Wang et al., 2023a; Xiong
et al., 2024), bandits with human preferences (Ji et al., 2023),
dueling bandits (Yan et al., 2022; Saha & Gaillard, 2022),
etc. This line of work complements the traditional online
learning algorithms that rely on absolute feedback, e.g., re-
ward in bandits and reinforcement learning (Lai & Robbins,
1985; Szepesvári, 2022). We refer to Appendix A for a
detailed discussion on related works.

Most of the prior literature has mainly focused on algorithms
that leverage either relative or absolute feedback alone. In
many real-world applications, however, these two types of
feedback coexist. For example, in LLM training, the human
annotators may provide both absolute scores and relative
comparisons (Ouyang et al., 2022). Another example is in
recommendation systems, where the user feedback can be
both absolute ratings and pairwise comparisons (choose one
among two recommendations) (Zhang et al., 2020). Despite
its practical relevance, there is no prior literature where the
underlying algorithms simultaneously utilize (dubbed as
fuse) the absolute and relative feedback.

In this paper, we investigate how to fuse the absolute and
relative feedback under the framework of the stochastic
multi-armed bandit (MAB) (Lattimore & Szepesvári, 2020),
which is a fundamental problem in online learning. To align
with the terminology in bandit literature, we refer to the
absolute feedback as reward and the relative feedback as
dueling feedback. We consider a MAB with K ∈ N+ arms,
where each arm k is associated with a reward distribution
with an unknown mean, and each arm pair (k1, k2) is asso-
ciated with an unknown dueling probability, representing
the probability that arm k1 is preferred over arm k2 in a
comparison. In each round t, the learner selects a tuple
of arms {kt, (k1,t, k2,t)}, where the reward feedback is the
observed reward drawn from the reward distribution of arm
kt, and the dueling feedback is the observed winning arm
from the comparison between arms k1,t and k2,t.
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Table 1: Regret bounds for DR-MAB

Algorithm Regret Bound

No Fusion† O
(∑

k ̸=1
(α∆(R)

k +(1−α)∆(D)
k ) log T

min{(∆(R)
k )2,(∆(D)

k )2}

)
ELIMFUSION (Alg. 1) O
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k ̸=1

(α∆(R)
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k ) log T

max{(∆(R)
k )2,(∆(D)

k )2/K}

)
DECOFUSION (Alg. 2) O
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log T

max{∆(R)
k /α,∆(D)

k /(1−α)}

)
Simplified LB (Cor. 2.4) Ω

(∑
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log T
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k /α,∆(D)

k /(1−α)}

)
† Two separate algorithms for reward and dueling feedback.

α = 0 α = 1

O(log T ) O(log T )O
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k ) log T
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)ELIMFUSION (Alg. 1)

Constant ConstantO
(∑

k ̸=1
log T

max{∆(R)
k /α,∆(D)

k /(1−α)}

)DECOFUSION (Alg. 2)

Figure 1: Impact of parameter α on regret RT

The goal of the learner is to minimize the accumulative
regret RT over T ∈ N+ rounds. The regret attributes to
reward and dueling feedback, called reward-based regret
R(R)

T and dueling-based regret R(D)
T . The R(R)

T (resp. R(D)
T )

measures the difference between the reward (resp., duel-
ing probability) of the selected arms (resp., arm pairs) and
that of the optimal arm (resp., optimal arm pair) in hind-
sight. One notable advantage of the dueling feedback is
that querying relative feedback from suboptimal arm pairs
is often more cost-efficient than that of the absolute feed-
back (Ouyang et al., 2022). Taking this cost difference into
account, we introduce a weight parameter α ∈ [0, 1] and de-
fine the final regret as RT := αR(R)

T + (1−α)R(D)
T . We call

this model dueling-reward multi-armed bandit (DR-MAB)
and present its details in Section 2. In this paper, we aim to
answer the following central questions:

How do we fuse reward and dueling feedback in DR-MAB
so as to reduce the accumulative regret? How does the
weight factor α influence the fusion process and the regret?

Technical challenges. One key challenge comes from the
separated nature of reward and dueling feedback, each pro-
viding information on one aspect of the arms (i.e., reward
means vs. dueling probabilities), both of which are incom-
parable. That is, the heterogeneity of both feedback types
makes it difficult to fuse them. Furthermore, the relative
costs of reward and dueling feedback (parameter α in the
regret) further complicate the fusion process. For example,
while in general, the learner needs to balance the utilization
of two feedback types to minimize regret, there exist cases
where one feedback is much cheaper than the other, making
it more beneficial to rely solely on the cheaper one.

1.1. Contributions

This paper investigates the fusion of reward and dueling
feedback in stochastic MAB setting. We summarize all our
technical contributions in Table 1. Below are the details of
our technical contributions.

We formulate the dueling-reward MAB problem and study
its regret lower bound in Section 2. We first provide a
general lower bound and then, with an additional assump-

tion, derive a simplified version as Ω(
∑

k min{α/∆(R)
k , (1−

α)/∆(D)
k } log T )1, where the ∆(R)

k and ∆(D)
k are the reward

and dueling gaps of arm k (definition in Section 2). This
bound highlights the benefit of fusing reward and duel-
ing feedback: for each suboptimal arm k, among the two
weighted regret costs induced from reward and dueling feed-
back, fusion makes it possible to only pay the smaller one.

We first propose a simple elimination fusion (ELIMFUSION)
algorithm in Section 3. ELIMFUSION applies the elimi-
nation algorithms for stochastic and dueling bandits sep-
arately to both types of feedback and then fuses their in-
formation by sharing two algorithms’ candidate arm sets
(arms not identified as suboptimal yet). ELIMFUSION en-
joys the benefit of fusion suggested by the lower bound
and achieves a regret bound of O(

∑
k(α∆

(R)
k + (1 −

α)∆(D)
k )min{1/(∆(R)

k )2,K/(∆(D)
k )2} log T ), where the re-

gret cost of dueling feedback is suboptimal in terms of the
factor K, which is inherited from the intrinsic suboptimality
of the dueling elimination algorithm.

We then devise a decomposition fusion (DECOFUSION) al-
gorithm in Section 4. Notice that the lower bound suggests
a decomposition of the suboptimal arms into two subsets:
one with the smaller regret cost induced by reward feedback
and the other smaller by dueling feedback. DECOFUSION
leverages this insight by approximating this arm decom-
position. However, without the knowledge of the reward
and dueling gaps, the approximated decomposition may
deviate from the ground-truth one, which we further ad-
dress by proposing a novel randomized decision-making
strategy that explicitly separates the exploration and ex-
ploitation. Putting all together, DECOFUSION achieves a
regret bound of O(

∑
k min{α/∆(R)

k , (1−α)/∆(D)
k } log T ),

which matches the simplified lower bound (instead of the
general form) and outperforms ELIMFUSION.

Furthermore, as Figure 1 shows, DECOFUSION is able to
fully utilize a free exploration property when either α = 0
(free reward) or α = 1 (free dueling), to achieve a constant

1Most big-O and big-Ω formulas in the introduction are infor-
mally tailored for readability. We refer the readers to corresponding
theorems for their formal expressions.
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(i.e., independent from T ) regret, which is impossible for
ELIMFUSION. Lastly, we conduct simulations to evaluate
the performance of the proposed algorithms in Section 5.

2. Model Formulation
Consider a dueling-reward multi-armed bandit (DR-MAB)
with K ∈ N+ arms. Each arm k ∈ K := {1, 2, . . . ,K}
is associated with a Bernoulli2 reward distribution with un-
known mean µk ∈ (0, 1). Each arm pair (k, ℓ) ∈ K2 is asso-
ciated with a dueling probability νk,ℓ ∈ (0, 1), representing
the probability that arm k wins arm ℓ in a duel. Especially,
νk,ℓ > 0.5 if µk > µℓ and νk,ℓ = 0.5 if µk = µℓ. and arm
pairs (k, ℓ) and (ℓ, k) are symmetric, i.e., νk,ℓ = 1 − νℓ,k.
Besides this ordering relation between reward means µk and
dueling probabilities νk,ℓ, we do not assume or utilize any
other specific relation between µk and νk,ℓ. For simplicity,
we assume all reward means are distinct, and these arms are
labeled in descending order regarding their reward means,
i.e., µ1 > µ2 > · · · > µK . Therefore, arm 1 is the unique
optimal arm and the Condorcet winner (i.e., ν1,k > 0.5 for
any arm k > 1) (Urvoy et al., 2013).

Consider T ∈ N+ rounds in DR-MAB. In each round
t ∈ {1, 2, . . . , T}, the learner picks a tuple {kt, (k1,t, k2,t)}
consisting of an arm kt and a pair of arms (k1,t, k2,t). Then,
the learner observes the reward realization Xkt,t of the
chosen arm kt and the winner of the pair duel Yk1,t,k2,t,t,
where Xkt,t is sampled from the Bernoulli distribution
with mean µkt

, and Yk1,t,k2,t,t is determined by a sam-
ple from the Bernoulli distribution with mean νk1,t,k2,t

:
Yk1,t,k2,t,t = k1,t if the sample is 1, and Yk1,t,k2,t,t = k2,t
if it is 0. Both Xkt,t and Yk1,t,k2,t,t are independent across
rounds and arms (pairs). We call the Xkt,t as the reward
feedback (absolute) and the Yk1,t,k2,t,t as the dueling feed-
back (relative), following the convention of bandit literature.

Regret objective. The learner aims to minimize the accu-
mulative regret RT over T rounds, composed by the reward-
based regret R(R)

T and the dueling-based regret R(D)
T . Denote

∆(R)
k := µ1 − µk and ∆(D)

k := ν1,k − 0.5 as the reward and
dueling gaps between the optimal arm 1 and the suboptimal
arm k, respectively. Then, R(R)

T is defined as the accumu-
lation of the reward gaps ∆(R)

kt
of all chosen arms kt over

the T rounds, while R(D)
T is defined as the accumulation of

the average of the dueling gaps (∆(D)
k1,t

+∆(D)
k2,t

)/2 of the

2The choice of Bernoulli distributions is mainly for simplicity.
One can extend the assumption to distributions with bounded inter-
val support, i.e., [0, 1]-bounded, via more sophisticated analysis.

picked arm pairs (k1,t, k2,t), i.e.,

R(R)
T :=

T∑
t=1

∆(R)
kt

= T · µ1 −
T∑

t=1

µkt ,

R(D)
T :=

T∑
t=1

∆(D)
k1,t

+∆(D)
k2,t

2
=

T∑
t=1

ν1,k1,t + ν1,k2,t − 1

2
.

Lastly, we introduce a parameter α ∈ [0, 1] to balance the
impact of the reward-based and the dueling-based regrets
on the aggregated regret RT , defined as follows,

RT := αR(R)
T + (1− α)R(D)

T . (1)

2.1. Lower Bound

This section provides the regret lower bound for any con-
sistent algorithm (Definition 2.1) in DR-MAB. We denote
Nk,t as the number of times arm k is picked in the first t
rounds for reward feedback, and Mk,ℓ,t as the number of
times the pairs (k, ℓ) and (ℓ, k) (due to their symmetry) are
picked in the first t rounds for dueling feedback.

Definition 2.1 (Consistent algorithm). An algorithm is
called consistent for DR-MAB if for any suboptimal arm
k ̸= 1 and parameter γ > 0, it fulfills E[Nk,T ] =
o(T γ) and E[Mk,ℓ,T ] = o(T γ) for any arm ℓ ̸= k.

The consistent definition covers all algorithms that achieve
logarithmic regrets in DR-MAB, e.g., UCB and elimina-
tion (Auer, 2002; Auer & Ortner, 2010). This definition
is a “generalization” of the consistent policy in stochastic
bandits (Lai & Robbins, 1985). We first provide a lemma to
bound the number of arm pulling and pair dueling.

Lemma 2.2. For any suboptimal arm k ̸= 1, under any
consistent algorithm, we have

Nk,T kl(µk, µ1) +
∑
ℓ<k

Mk,ℓ,T kl (νk,ℓ, 0.5)

⩾ (1− o(1)) log T,

(2)

where kl(p, q) := p log p
q+(1−p) log 1−p

1−q is KL-divergence
between two Bernoulli distributions with means p and q.

The proof of Lemma 2.2 (formally in Appendix C) is based
on the information-theoretic lower bounds for MAB (Lai &
Robbins, 1985) and the dueling bandits (Komiyama et al.,
2015). This proof needs a careful selection of pairs of the
DR-MAB instances and constructions of the key informa-
tion quantities, so that the attributions from reward and
dueling feedback would both appear in the LHS of (2).

The LHS of (2) can be interpreted as the amount of “infor-
mation” collected by the learner for arm k in the T rounds,
and its two terms are “information” from the reward and
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dueling feedback. Their additive relation in the LHS im-
plies that the “information” can be attributed to two parts:
the reward-based (first term) and the dueling-based (sec-
ond term). Especially, the second term for dueling-based
information of suboptimal arm k is the sum over all pairs
between the arm k and other better arms ℓ (< k), implying
that the effective dueling-based information is collected by
dueling with better arms.

Although Lemma 2.2 suggests that the necessary exploration
on a suboptimal arm k may be fulfilled by aggregating
information collected from the reward and dueling feedback,
we prove the following theorem to show that the potentially
optimal way to minimize regret due to each suboptimal arm
k is to focus on either the reward-based or the dueling-based
exploration, exclusively.

Theorem 2.3. For any consistent algorithm and regret bal-
anced by α ∈ [0, 1], the following regret lower bound holds,

lim inf
T→∞

E[RT ]

log T
⩾

∑
k ̸=1

min

{
α∆(R)

k

kl(µk, µ1)
,min
ℓ<k

(1−α)(∆(D)
k +∆(D)

ℓ )

kl
(
νk,ℓ,

1
2

) }
.

(3)

A full proof is given in Appendix C and is based on minimiz-
ing the regret decomposed in terms of the sampling times
Nk,T and Mk,ℓ,T , given the constraints in Lemma 2.2. As
both the regret minimization objective and the constraints
are linear expressions, the minimization can be solved by
linear programming, yielding the minimal attained in one
of two end nodes of the constraint line segment in (2).

Theorem 2.3 provides a regret lower bound for any consis-
tent algorithm in DR-MAB. The sum in the RHS of (3) is
over all suboptimal arms k ̸= 1. The two terms inside the
outer minimization in the RHS correspond to the reward-
based and dueling-based regrets for arm k. The outer min-
imization indicates that for arm k, an effective algorithm
should explore it through either the reward or dueling feed-
back, depending on which yields a smaller regret.

The second term (inner minimization) in the RHS of (3)
implies that for each suboptimal arm k, there exists a
most effective arm (competitor) to duel with, denoted as
ℓ∗k := minℓ<k (∆

(D)
k +∆(D)

ℓ )/kl
(
νk,ℓ,

1
2

)
. However, as dis-

cussed in Komiyama et al. (2015, §3.2), the most effective
arm ℓ∗k is usually the optimal arm, i.e., ℓ∗k = 1, in many
real world applications. Then, by assuming ℓ∗k = 1, the
key term in the lower bound for any suboptimal arm k be-
comes min{α∆(R)

k /kl(µk, µ1), (1− α)∆(D)
k /kl

(
νk,1,

1
2

)
}.

Further noticing the kl(a, b) = Θ((a − b)2) prop-
erty for the KL-divergence between two Bernoulli dis-
tributions (Lattimore & Szepesvári, 2020, §16), this
term can be simplified as min{α/∆(R)

k , (1− α)/∆(D)
k } =

1/max{∆(R)
k /α,∆(D)

k /(1− α)}. This simplification is sum-
marized in the following corollary.

Corollary 2.4. If for each suboptimal arm k ̸= 1, the most
effective dueling arm ℓ∗k is the optimal arm 1, the regret
lower bound in Theorem 2.3 can be simplified as follows,
for some universal positive constant C,

lim inf
T→∞

E[RT ]

log T
⩾ C

∑
k ̸=1

1

max{∆(R)
k /α,∆(D)

k /(1− α)}
.(4)

From the regret lower bounds in (3) and (4), one may
get a counter-intuitive observation: when α = 0 or 1,
the regret lower bound would become sub-logarithmic for
any consistent algorithm, which is unusual in the bandit
literature. Later in this paper, we will show that a sub-
logarithmic o(log T ) regret is actually achievable (in fact,
T -independent constant regret) in these two scenarios, re-
vealing a novel phenomenon of DR-MAB.

3. ELIMFUSION: Fusing Reward and Dueling
via Elimination

As the reward means and dueling probabilities only have
a weak ordering relation—the dueling probability of arm
k winning over arm ℓ is greater than 0.5 if and only if
arm k has a higher reward mean than arm ℓ—and their
observations are independently sampled from distributions
with different parameters, the estimations of reward means
µk and dueling probabilities νk,ℓ are intrinsically separated.
This separation makes it difficult to combine these two types
of feedback in online learning directly.

To address this challenge, in this section, we introduce our
first approach to fusing reward and dueling feedback in
DR-MAB, named Elimination Fusion (ELIMFUSION). Al-
though ELIMFUSION has a suboptimal regret in DR-MAB,
it suggests a simple and effective way to fuse absolute and
relative feedback. As the ultimate goal is to address the
fusion in general online learning problems beyond bandits,
the intuitive high-level idea of ELIMFUSION may have a
broader application to other learning settings.

3.1. Algorithm Design of ELIMFUSION

Arm elimination is a common technique in multi-armed
bandits (Auer & Ortner, 2010) and dueling bandits (Saha
& Gaillard, 2022). The main idea is maintaining a candi-
date arm set C, initialized as the full arm set K, and as the
learning proceeds, one gradually identifies and eliminates
suboptimal arms from the set C based on the observed feed-
back, until only the optimal arm remains. ELIMFUSION
leverages the maintained candidate arm set as a bridge to
connect the two types of feedback. Specifically, ELIMFU-
SION maintains a single candidate arm set C, and arms in
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this set can be eliminated according to either reward or
dueling feedback, whichever is first triggered.

ELIMFUSION in Algorithm 1 starts with a warm-up phase
(detained in Algorithm 3 in Appendix B) to initialize the
reward and dueling statistics, where each pair of arms is
dueled once, and each arm is queried for rewards in a round-
robin manner in the same time. In each time slots, ELIM-
FUSION picks the arm and arm pair with smallest number
of pulls and dueling times, respectively, which uniformly
explores arms (Lines 7–10). With the new reward and du-
eling observations, ELIMFUSION updates the reward and
dueling statistics for each arm pair and arm, respectively
(Line 11, detailed in Algorithm 4 in Appendix B). Then,
ELIMFUSION eliminates arms based on the observed feed-
back (Line 14). To illustrate the arm elimination, we define
the confidence radius CR(R)

k,t :=
√
2 log(Kt/δ)/Nk,t and

CR(D)
k,ℓ,t :=

√
2 log(Kt/δ)/Mk,ℓ,t for the estimated reward

mean and dueling probability, where δ > 0 is the input con-
fidence parameter of ELIMFUSION. Then, ELIMFUSION
eliminates an arm k if either its upper confidence bound
(UCB) of reward mean estimate µ̂k,t+1 + CR(R)

k,t+1 is less
than the lower confidence bound (LCB) of highest mean
estimate µ̂k̂(R)

t+1,t+1 − CR(R)
k̂(R)
t+1,t+1

(the k̂(R)
t+1 is the estimated

optimal arm in Line 13) or there exists an arm ℓ in C such
that the UCB of its dueling probability ν̂k,ℓ,t+1 +CR(D)

k,ℓ,t+1

is less than 1/2 (i.e., arm ℓ outperforms arm k). ELIMFU-
SION keeps eliminating arms via the above loop, and when
only the optimal arm remains in C, i.e., |C| = 1, it switches
to exploitation (Lines 15–17).

3.2. Regret Analysis of ELIMFUSION

Theorem 3.1 provides the regret upper bound of ELIMFU-
SION. Its proof is deferred to Appendix D.1.

Theorem 3.1. Letting δ ← 1/K2T 2 and taking the expecta-
tion, the regret upper bound of ELIMFUSION can be upper
bounded as follows,

E[RT ] ⩽ O

∑
k ̸=1

(α∆(R)
k + (1− α)∆(D)

k ) log T

max{(∆(R)
k )2, (∆(D)

k )2/K}

 . (5)

Applying elimination algorithms to reward and dueling feed-
back individually without sharing the candidate arm set
yields the regret upper bound as follows,

E[RT ] ⩽ O

∑
k ̸=1

(α∆(R)
k + (1− α)∆(D)

k ) log T

min{(∆(R)
k )2, (∆(D)

k )2/K}

 , (6)

where the denominator is the minimum of the two gap-
dependent terms and can be much worse than the maximum
in the denominator in (5) of ELIMFUSION. This indicates
the improvement of fusing the reward and dueling feedback

Algorithm 1 Elimination Fusion (ELIMFUSION)

1: Input: Arm set K, confidence parameter δ
2: Initialize: Candidate arm set C ← K, time slot t← 0,

reward pull counter Nk,t ← 0 and reward estimate
µ̂k,t ← 0 for all arms k ∈ K, dueling pull counter
Mk,ℓ,t ← 0 and dueling estimate ν̂k,ℓ,t ← 0 for all
pairs (k, ℓ) ∈ K2

3: Warm-up (Algorithm 3)
4: for each time slot t do
5: # decision making:
6: if |C| > 1 then # {uniform explore}
7: kt ← argmink∈C Nk,t

8: (kt,1, kt,2)← argmin(k,ℓ)∈C2,k ̸=ℓ Mk,ℓ,t

9: Pull arm kt and observe arm reward Xkt,t

10: Duel (kt,1, kt,2) and observe winner Ykt,1,kt,2,t

11: Statistics update (Algorithm 4)
12: # arm elimination:
13: k̂(R)

t+1 ← argmaxℓ∈C µ̂ℓ,t+1

14: C ← C \
{
k ∈ C :

either ∃ℓ ∈ C\{k}, ν̂k,ℓ,t+1+CR(D)
k,ℓ,t+1 < 1

2

or µ̂k,t+1 +CR(R)
k,t+1 ⩽ µ̂k̂(R)

t+1,t+1−CR(R)
k̂(R)
t+1,t+1

}
15: else # {exploit when only the optimal arm left}
16: k ← the only remaining arm in set C
17: Pull arm k for reward and duel pair (k, k)

via sharing the same candidate arm set in ELIMFUSION. We
note that the bound in (6) is not as tight as the one in Table 1
for the “No Fusion” algorithm.

While the fusion via the candidate arm set in the elimination
algorithm is effective and easy to implement, the 1/K factor
in the (∆(D)

k )2/K term of (5) is suboptimal, which is inher-
ited from the suboptimality of the elimination algorithm in
the dueling bandits literature (Saha & Gaillard, 2022, Re-
mark 1). Furthermore, the dependence on the parameter α
in (5), compared to the lower bound in (4), is also subopti-
mal, reflecting the limitation of the elimination algorithm
design for more sophisticated optimization in DR-MAB.
In the next section, we introduce an advanced algorithm
to address these limitations and achieve the optimal regret
balance and dependence on the problem parameters.

4. DECOFUSION: Fusing Reward and Dueling
via Suboptimal Arm Decomposition

This section presents a novel approach to fusing the re-
ward and dueling feedback, called decomposition fusion
(DECOFUSION). We first present the high-level ideas and
technical challenges of DECOFUSION in Section 4.1, and
then provide its detailed algorithm design in Section 4.2.
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Finally, we present the theoretical regret upper bound of
DECOFUSION in Section 4.3.

4.1. High-Level Ideas and Technical Challenges

Decomposed exploration for two set of suboptimal arms.
We denote K(R) := {k ∈ K : α∆(R)

k /kl(µk, µ1) <

minℓ<k (1− α)(∆(D)
k +∆(D)

ℓ )/kl
(
νk,ℓ,

1
2

)
} as the subset

of suboptimal arms incurring smaller regret from reward
feedback, and K(D) = K \ {K(R) ∪ {1}} as that of du-
eling feedback. Then, the RHS of regret lower bound
in (3) can be decomposed as

∑
k∈K(R) α∆

(R)
k /kl(µk, µ1) +∑

k∈K(D) minℓ<k (1− α)(∆(D)
k +∆(D)

ℓ )/kl
(
νk,ℓ,

1
2

)
. This

lower bound decomposition implies that to minimize re-
gret, arms in K(R) and K(D) should be explored by reward
and dueling feedback, respectively. Inspired by this obser-
vation, an algorithm with this minimal regret also needs to
decompose arms as above and explore them accordingly,
which we call that the algorithm has a decomposed explo-
ration policy. However, the above decomposition relies
on the reward and dueling gaps ∆(R)

k and ∆(D)
k , which are

unknown a priori. This poses a significant challenge for
designing a near-optimal algorithm.

Before delving into the details of our algorithm design,
we introduce “empirical log-likelihoods” as the measures
of the amount of information collected for distinguish-
ing arm k up to time slot t from the reward and duel-
ing feedback, I (R)

k,t := Nk,t kl (µ̂k,t,maxℓ∈K µ̂ℓ,t) , I
(D)
k,t :=∑

ℓ∈K:ν̂k,ℓ,t<
1
2
Mk,ℓ,t kl

(
ν̂k,ℓ,t,

1
2

)
, introduced by Honda

& Takemura (2010) and Komiyama et al. (2015) for de-
vising optimal algorithms in stochastic and dueling ban-
dits, respectively. Their algorithms use the conditions of
I (R)
k,t ⩽ log t+f(K) and I (D)

k,t−minℓ∈K I (D)
ℓ,t ⩽ log t+f(K)

for choosing arms to explore, and the function f(K) is in-
dependent of time horizon T and determined later.

Decomposition deadlock. The information measures I (R)
k,t

and I (D)
k,t cannot work with the decomposed exploration pol-

icy. Because both definitions involve the full arm set K and
thus need accuracy estimates of all arms. But under the
decomposed arm exploration policy, arms in K(R) only have
good estimates of reward mean µ̂k,t, while arms inK(D) only
have good estimates of dueling probability ν̂k,ℓ,t, as explor-
ing these arms by feedback other than the corresponding one
would incur redundant regrets. This is a “decomposition
deadlock”: applying the decomposed exploration policy
makes the I (R)

k,t and I (D)
k,t -based optimal bandit algorithms

design invalid, and deploying the bandit algorithm design
makes the decomposed exploration policy invalid. Simi-
lar “deadlock” challenges also exist when considering other
bandit algorithms, e.g., KL-UCB (Cappé et al., 2013).

4.2. Algorithm Design of DECOFUSION

To address the above challenges, we propose the decom-
position fusion (DECOFUSION) algorithm. DECOFUSION,
presented in Algorithm 2, consists of three main compo-
nents: (i) decomposition arm set construction (Lines 5–9),
(ii) randomized decision making (Lines 10–22), and (iii)
exploration arm set update (Lines 23–27). Specifically, for
the challenge of unknown decomposition sets, we conser-
vatively maintain two sets K̂(R)

t and K̂(D)
t in terms of the

collected information instead of the incurred regret (details
in Section 4.2.1). However, this set construction leads to a
mismatch between the constructed and ground-truth decom-
positions, which our proposed randomized decision-making
strategy in Section 4.2.2 can address. Finally, for the “dead-
lock” challenge of the conflict between the decomposed
exploration policy and the calculation of information mea-
sures I (R)

k,t and I (D)
k,ℓ,t, in Section 4.2.3, we devise a novel

approach to update the exploration arm set E based on the
revised definitions of the information measures Î (R)

k,t and Î (D)
k,t

and the approximated arm sets K̂(R)
t and K̂(D)

t .

4.2.1. DECOMPOSITION ARM SET CONSTRUCTION

After the warm-up (Line 3), in each time slot, DECOFUSION
constructs two arm sets, K̂(R)

t and K̂(D)
t , as analogs (not

estimates) of the sets K(R) and K(D). The reason that K̂(R)
t

and K̂(D)
t are only analogs, not estimates, is because that

the lack of knowledge of reward and dueling gaps ∆(R)
k

and ∆(D)
k makes it hard to decompose arms according to

the weighted reward and dueling-based regrets. Instead,
we utilize the revised information measures Î (R)

k,t and Î (D)
k,t

(defined in Section 4.2.3) to construct the arm sets. Because
this information-based set construction does not consider
the weight α, the constructed sets K̂(R)

t and K̂(D)
t mismatches

the optimal decomposition sets K(R) and K(D), even when
the information measures are accurate at the end of the
time horizon; thus only analogs. We also note that while
the optimal decomposition K(R) and K(D), together with the
singleton of optimal arm {1}, forms an exclusive partition
of the arm set K, the conservatively constructed sets K̂(R)

t

and K̂(D)
t often overlap, and their intersection K̂(R)

t ∩ K̂
(D)
t

contains the optimal arm 1 in almost all time slots.

Specifically, K̂(D)
t := {k ∈ K : Î (R)

k,t ⩽ log t + f(K)} is
defined in Line 6, where the condition Î (R)

k,t ⩽ log t+ f(K)
implies the insufficient information on arm k from reward
feedback. This is a conservative approximation of the duel-
ing arm set K(D): as long as there is insufficient information
from reward feedback to exclude an arm from exploration,
that arm is included in dueling feedback’s corresponding
set. The other set K̂(R)

t is constructed similarly, as detailed
in Line 8. Note that the construction of dueling arm set
K̂(D)

t does not rely on strictly exclusion from the reward arm,
and vice versa. Because for the actual decomposition is

6
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Algorithm 2 DECOFUSION: Decomposition Fusion

1: Input: Arm set K, parameter α, function f(K)
2: Initialize: Exploration arm set E ← K, time slot t← 0,

decomposition arm set K̂(R)
t , K̂(D)

t ← K, Î (R)
k,t, Î

(D)
k,t ← 0

for all arms k, and other initializations in Algorithm 1
3: Warm-up (Algorithm 3)
4: for each time slot t do
5: # decomposition arm set update:
6: K̂(D)

t ← {k ∈ K : Î (R)
k,t ⩽ log t+ f(K)}

7: k̂(D)
t ← argmink∈K̂(D)

t
Î (D)
k,t

8: K̂(R)
t ←

{
k ∈ K : Î (D)

k,t − Î (D)
k̂(D)
t ,t

⩽ log t+ f(K)
}

9: k̂(R)
t ← argmaxk∈K̂(R)

t
µ̂k,t

10: # randomized decision making:
11: Pick an arm kexp

t from E according to a fixed order
12: if Uniform[0, 1] > α2

α2+(1−α)2 then
13: # {reward explore, dueling exploit}
14: kt ← kexp

t and (k1,t, k2,t)← (k̂(R)
t , k̂(R)

t )
15: else # {dueling explore, reward exploit}
16: Ôkexp

t ,t←{k ∈ K̂
(D)
t \{k

exp
t } : ν̂kexp

t ,k,t⩽
1
2}

17: if k̂(D)
t ∈ Ôkexp

t ,t or Ôkexp
t ,t = ∅ then

18: kduel
t ← k̂(D)

t

19: else kduel
t ← argmink∈K̂(D)

t \{kexp
t } ν̂kexp

t ,k,t

20: kt ← k̂(D)
t and (k1,t, k2,t)← (kexp

t , kduel
t )

21: Pull arm kt and observe arm reward Xkt,t

22: Duel (kt,1, kt,2) and observe winner Ykt,1,kt,2,t

23: # exploration arm set update:
24: E ← E \ {kexp

t } # {remove the explored arm}
25: B ← B∪{k ∈ K̂(R)

t \E : Î (R)
k,t ⩽ log t+f(K)}∪{k ∈

K̂(D)
t \ E : Î (D)

k,t − Î (D)
k̂(D)
t ,t

⩽ log t+ f(K)}
26: if E is empty then # {last E was traversed}
27: E ← B and B ← ∅ # {renew E}
28: Statistics update (Algorithm 4)
29: Î (R)

k,t+1 ← Nk,t kl(µ̂k,t,maxℓ∈K̂(R)
t
µ̂ℓ,t)

30: Î (D)
k,t+1 ←

∑
ℓ∈K̂(D)

t :ν̂k,ℓ,t<
1
2
Mk,ℓ,t kl(ν̂k,ℓ,t,

1
2 )

unknown a prior in DECOFUSION, one needs to be conser-
vative (i.e., allow both sets K̂(D)

t and K̂(R)
t to have some

overlap instead of taking exclusion) to ensure enough explo-
rations from both feedback sides for uncertain arms so to
learn the ground-truth decomposition at the end. Especially,
we calculate the estimated optimal arms k̂(D)

t and k̂(R)
t among

the approximated dueling and reward arm sets, respectively,
in Lines 7 and 9. Because arms outside the corresponding
sets may not have good estimate accuracy and thus are not
considered.

4.2.2. RANDOMIZED DECISION MAKING

To tackle the mismatch between the constructed (K̂(R)
t , K̂(D)

t )
and the ground truth (K(R),K(D)) and realize the decom-
posed exploration policy, we devise a randomized decision-
making strategy. In each time slot, DECOFUSION picks
one arm kexp

t from the exploration arm set E according to
some fixed order in Line 11, e.g., the arm with the smallest
index in the set. Then, DECOFUSION randomly chooses
either the reward or dueling feedback to explore the arm
kexp
t in Line 12. Specifically, if the round’s realization of the

uniform distribution Uniform[0, 1] is greater than a thresh-
old α2

α2+(1−α)2 , then the algorithm explores the arm kexp
t

by the reward feedback and exploits the pair of the reward
estimated optimal arm (k̂(R)

t , k̂(R)
t ) by the dueling feedback;

otherwise, the algorithm explores the arm kexp
t by the du-

eling feedback and exploits the dueling estimated optimal
arm k̂(D)

t by the reward feedback. When exploring kexp
t

via dueling feedback , we follow the RMED1 algorithm
of Komiyama et al. (2015) for dueling bandits to pick the
comparison arm kduel

t (Lines 17–19). One key difference is
that our comparison arm kduel

t is selected from the set K̂(D)
t

instead of the full arm set K.

Finally, the threshold α2

α2+(1−α)2 is chosen to compensate
for the mismatch in the decomposition arm set construction.
Although chosen by careful derivations, the threshold has an
intuitive explanation: take individual squares on all terms in

α
α+(1−α) = α. The square exponent can be regarded as the
compensation for the mismatch between the optimal setK(R)

(omit K(D)) according to the regret with a linear dependence
on 1/∆(R)

k and the constructed set K̂(R)
t via the collected

information Î (R)
k,t with quadratic (1/∆(R)

k )2 dependence.

4.2.3. EXPLORATION ARM SET CONSTRUCTION

Besides sets K̂(R)
t and K̂(D)

t , DECOFUSION also maintains
an exploration arm set E and an auxiliary arm set B for
updating E . In each time slot, the exploration arm set E
outputs an arm to explore and removes it after exploration
(Line 24), and the auxiliary arm set B adds arms that need
further exploration regarding either the reward or dueling
feedback, as detailed in Line 25, and each arm in the set B is
unique and not duplicated. When all arms in E are explored,

7
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i.e., E = ∅, the algorithm renews the exploration arm set E
by the auxiliary arm set B (Line 27).

At the end of a time slot, DECOFUSION updates the statistics
via Algorithm 4 (Line 28) as well as the revised empirical
log-likelihoods Î (R)

k,t and Î (D)
k,t in Lines 29 and 30. The key

difference between the revised empirical log-likelihoods
Î (R)
k,t and Î (D)

k,t and the original ones I (R)
k,t and I (D)

k,t is that the
revised ones only involve the arms in the approximated sets
K̂(R)

t and K̂(D)
t instead of the full arm set K.

4.3. Regret Analysis of DECOFUSION

Theorem 4.1 (Regret upper bound of Algorithm 2). For
sufficiently small ξ > 0, and a constant c > 0 depending on
the bandit instance, DECOFUSION has the regret bound,

E[RT ] ⩽ O(K2) +O(ξ−2) +O(ecK−f(K))+∑
k ̸=1

(∆(R)
k /α+∆(D)

k /(1−α))((1+ξ) log T + f(K))

max
{
kl(µk, µ1)/α2, kl(νk,1,

1
2 )/(1−α)2

} .(7)

Simplifying the above bound by letting T → ∞, f(K) =
cK1+ξ, and noticing kl(p, q) = Θ((p− q)2), we have

E[RT ] ⩽ O

(∑
k ̸=1

log T

max{∆(R)
k /α,∆(D)

k /(1− α)}

)
. (8)

The proof of Theorem 4.1 consists of two key claims (steps
2 and 3 of the proof in Appendix D.2): (i) in most time slots,
the estimated optimal arms k̂(R)

t and k̂(D)
t from both feedback

types are exactly the optimal arm 1, i.e.,
∑T

t=1 E[k̂
(R)
t =

k̂(D)
t = 1] = T − O(1), and (ii) under the first claim, the

regret of the randomized decision-making policy is upper
bounded by the last regret term in (7). While the claim (i) is
proved via similar techniques in Honda & Takemura (2010)
and Komiyama et al. (2015), the proof of claim (ii) needs
a novel analysis to handle the regret costs of randomized
decision-making. It needs to construct a sampling threshold
regarding both feedback and then bounds actual sampling
times of reward feedback Nk,T for each arm and dueling
feedback for each pair Mk,ℓ,T when ℓ = 1 and ℓ ̸= 1 case-
by-case. The choice of the threshold α2

α2+(1−α)2 is crucial
for balancing the regret costs of both feedback types.

Near-optimal regret when ℓ∗k = 1. The simplified regret
upper bound in (8) tightly matches the simplified regret
lower bound in (4) in terms of all non-trivial factors (except
for a universal constant). However, this simplified lower
bound only holds when the most effective comparison arm
ℓ∗k is the optimal arm 1 for all arms k. Without this condition,
the regret upper bounds in Theorem 4.1 are worse than the
general lower bound in (3), where the main gap comes from
that DECOFUSION often uses the dueling estimated optimal
arm k̂(D)

t to duel with the exploration arm kexp
t , where the

k̂(D)
t may not be the most effective comparison arm ℓ∗k. This

issue also exists in the design of optimal dueling bandit
algorithms (Komiyama et al., 2015, RMED1 and RMED2),
which is only partially resolved by assuming the knowledge
of time horizon T in dueling bandit literature.

Physical meanings for regret when α = 0 or α = 1.
When either α = 0 or α = 1, the leading term of the
regret bound in (7) vanishes, and the regret becomes a T -
independent constant. Because when α = 0, the reward-
based regret R(R)

T is not counted in the regret, i.e., reward
feedback is free! In this case, the threshold α2

α2+(1−α)2 = 0

in the randomized decision-making, and the algorithm al-
ways explores arms via reward feedback (i.e., free explo-
ration) and exploit the estimated optimal arm k̂(R)

t by the
dueling feedback, which only incurs a constant regret. Simi-
larly when α = 1, the duel feedback is free, and the algo-
rithm enjoys free exploration from dueling feedback and
achieves a constant regret as well. As illustrated in Figure 1,
such an advantage is only achieved by DECOFUSION, while
ELIMFUSION always suffers O(log T ) regret cost.

5. Experiments
This section reports the numerical experiments of the pro-
posed fusion algorithms. We compare our algorithms with
two baselines: 1) ELIMNOFUSION that maintains two sepa-
rate sets for arm elimination, one based on reward feedback
and the other on dueling; 2) MEDNOFUSION (Minimum
Empirical Divergence) that deploys the optimal algorithms
from Honda & Takemura (2010) and Komiyama et al. (2015)
to choose arm kt and dueling pair (k1,t, k2,t) separately.

Figures 2(a), 2(b), and 2(c) illustrate the trends of aggre-
gated regret (α = 0.5) in various settings. The setup details
are in Appendix E. DECOFUSION outperforms all other al-
gorithms across all settings. In Figure 2(a), the aggregated
regret of DECOFUSION is around 41 times lower than that of
ELIMFUSION. While ELIMFUSION outperforms ELIMNO-
FUSION by 81.3%, and DECOFUSION outperforms MED-
NOFUSION by 47.5%, both elimination-based approaches
are worse than the other two due to the suboptimality of the
elimination mechanism. Figures 2(b) and 2(c) examine the
impact of reward and dueling gaps on total regret. As either
gap increases, distinguishing suboptimal arms becomes eas-
ier, thereby reducing the regret cost of the algorithms. The
slight increase in the regret of DECOFUSION in Figure 2(c)
is due to the regret incurred during the warm-up (Line 3),
which scales with the dueling gap and constitutes a large
portion of the relatively small total regret.

Figure 2(d) investigates the impact of the parameter α on
DECOFUSION. The aggregated regret (blue) reaches its
maximum when α = 0.5 and decreases as α is close to
either 0 or 1, which verifies its free exploration property and
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(a) Aggregated regret RT (b) Vary reward gap ∆(R)
2 (c) Vary dueling gap ∆(D)

2 (d) Vary α in DECOFUSION

Figure 2: Regret comparison in different settings

constant regrets when α = 0 or 1. The curves of reward-
based and dueling-based regrets (red and green) corroborate
the effectiveness of the randomized decision-making policy:
when α = 0, the algorithm assigns all explorations to reward
feedback, while the case of α = 1 assigns all explorations to
dueling feedback, and one can tune α to balance the regret
cost between the two types of feedback.

6. Conclusion
This paper studies the fusion of reward and dueling feed-
back in stochastic multi-armed bandits, called DR-MAB.
We derived regret lower bounds for DR-MAB, and pro-
posed two algorithms, ELIMFUSION and DECOFUSION.
ELIMFUSION provides a simple and efficient way to fusion
both feedback types via sharing the same candidate arm set,
but its regret is suboptimal regarding a multiplicative factor
of the number of arms. DECOFUSION, on the other hand,
is designed to achieve the optimal regret up to a constant
factor, by decoupling the suboptimal arms into two sets for
reward and dueling feedback. Both algorithms and the lower
bound suggest that the advantage of fusing both feedback
types is that it saves the higher regret costs among both
feedback types for each suboptimal arm, achieving a better
regret than solely relying on any one of the two.

The standard LLM training usually has two separate steps:
(1) use the responses from human experts (absolute feed-
back) to conduct a supervised learning, called supervised
fine-tuning (SFT), and (2) use the human preference (rel-
ative feedback) among multiple responses generated from
the SFT model to conduct a preference directly training
(either directed preference optimization (DPO) (Rafailov
et al., 2024) or reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022)). Although not exactly the
same, these two steps correspond to the reward (absolute)
and dueling (relative) feedback in our bandits setting. Our
algorithms suggest a training approach to conduct these two
steps in parallel, which can potentially save the human la-
beling cost and improve the training efficiency (as our regret
upper bounds improve over the existing ones). Investigating
this potential approach in LLM training is an interesting
direction.
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Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and
Stoltz, G. Kullback-leibler upper confidence bounds for
optimal sequential allocation. The Annals of Statistics,
pp. 1516–1541, 2013.

Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi-
armed bandit: General framework and applications. In
International conference on machine learning, pp. 151–
159. PMLR, 2013.

Cutkosky, A., Dann, C., Das, A., and Zhang, Q. Leveraging
initial hints for free in stochastic linear bandits. In Inter-
national Conference on Algorithmic Learning Theory, pp.
282–318. PMLR, 2022.

Faury, L., Abeille, M., Calauzènes, C., and Fercoq, O. Im-
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A. Related Works
Stochastic bandits with absolute or relative feedback. Stochastic multi-armed bandits (MAB) is a fundamental online
learning model, introduced by Lai & Robbins (1985) and later comprehensively studied, e.g., by Bubeck et al. (2012);
Slivkins (2019); Lattimore & Szepesvári (2020). Later on, various extensions of the stochastic bandits have been proposed,
such as the linear bandits (Abbasi-Yadkori et al., 2011), contextual bandits (Li et al., 2010), and combinatorial bandits (Chen
et al., 2013). The relative feedback in the stochastic bandits setting is known as dueling bandits, which is initialized by Yue
et al. (2012) and studied by Ailon et al. (2014); Komiyama et al. (2015); Sui et al. (2018); Saha & Gaillard (2022), etc. All
of the above models assume that the learner receives either the absolute feedback, i.e., the reward of the selected arm, or
the relative feedback, i.e., the winning arm in a pair of arms, but not both, which are different from the study on fusion of
absolute and relative feedback in this paper.

Bandits with additional information. While we are the first to study the fusion of absolute and relative feedback in the
stochastic bandits setting, there are prior works considering the absolute (reward) feedback with some types of “augmentation”
feedback. In the line of works of conversational bandits (Zhang et al., 2020; Wang et al., 2023b; Li et al., 2024), a learner
interacts with a contextual linear bandit model, and besides receiving the reward feedback from puling arms, the learner
can also occasionally query “key-terms” to collect some side information of the bandit model. Another line of works
considers the bandits with “hints”, where the “hint” can be additional reward observations (Yun et al., 2018; Lindståhl
et al., 2020), initial reward mean guesses (Cutkosky et al., 2022), or the order of the reward realizations among two or more
arms (Bhaskara et al., 2022), etc. However, these types of augmentation feedback provide information directly related to the
reward mean parameters (i.e., used to estimate the reward means), which is different from the relative feedback depending
on dueling probabilities in the dueling bandits setting, and therefore, they are different from our study on the fusion of
absolute and relative feedback in this paper.

Beyond stochastic bandits. The stochastic bandit literature is only a small subset of the wide online learning research
area (Orabona, 2019). In contrast to the stochastic setting, the adversarial bandits—including adversarial MAB (Auer et al.,
2002) and adversarial dueling bandits (Saha et al., 2021)—assume that the environment is determined by an adversary and
may adapt to the learner’s strategy. Generalizing the bandits setting with state transition, reinforcement learning (RL) (Sutton
et al., 1998) is another popular online learning model, where the learner interacts with the environment and receives reward
feedback based on the state-action pairs. Noticeably, there is a reinforcement learning with human feedback (RLHF)
model (Wang et al., 2023a; Ouyang et al., 2022) in RL literature, which can be regarded as a counterpart of the dueling
bandits in bandits literature, where the learner receives pairwise comparison (relative) feedback. While there is vast online
learning literature beyond the stochastic bandits, due ot the importance of the stochastic MAB, our study on the fusion of
the absolute and relative feedback on bandits is a novel and unexplored topic.

B. Deferred Pseudo-code
This section presents the pseudo-code of initial warm-up phase (Algorithm 3) and the statistics update phase (Algorithm 4)
of the proposed DR-MAB algorithms.

Algorithm 3 Warm-up (Initial phase)

1: Duel each pair of arms (k, ℓ) for k ̸= ℓ once (in total K(K − 1) times), meanwhile, query each arm for rewards in a
round-robin manner

2: t← K(K − 1)
3: Update Mk,ℓ,t and ν̂k,ℓ,t for all pairs (k, ℓ) ∈ K ×K (k ̸= ℓ), and Nk,t, µ̂k,t for all arms k ∈ K

C. Proof of Lower Bound
Proof of Lemma 2.2. Step 1. Instance and event construction. Pick any suboptimal arm k ̸= 1. We use the standard
parameters defined in model section as the original instance I and then construct an alternative instances I ′ with parameters
with a prime, e.g., µ′

k and ν′k,ℓ, as follows,

• Reward means µ′
ℓ =

{
µℓ if ℓ ̸= k

µ1 + ϵ if ℓ = k
,
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Algorithm 4 Statistics update

1: for all arm pairs (k, ℓ) ∈ K ×K do
2: if (k, ℓ) = (kt,1, kt,2) or (kt,2, kt,1) then
3: Mk,ℓ,t+1 ←Mk,ℓ,t + 1

4: ν̂k,ℓ,t+1 ← ν̂k,ℓ,tMk,ℓ,t+1{Yk,ℓ,t=k}
Mk,ℓ,t+1

5: else
6: Mk,ℓ,t+1 ←Mk,ℓ,t and ν̂k,ℓ,t+1 ← ν̂k,ℓ,t
7: for all arms k ∈ K do
8: if k = kt then
9: Nk,t+1 ← Nk,t + 1

10: µ̂k,t+1 ←
µ̂k,tNk,t+Xkt,t

Nk,t+1

11: else
12: Nk,t+1 ← Nk,t and µ̂k,t+1 ← µ̂k,t

• Dueling probabilities νℓ1,ℓ2 =


1
2 + ϵℓ2 if ℓ1 = k and ℓ2 < k
1
2 − ϵℓ1 if ℓ1 < k and ℓ2 = k

νℓ1,ℓ2 otherwise
,

where the ϵ > 0 is a small constant to be determined later, and the ϵℓ parameters are chosen such that kl(νk,ℓ, 1
2 + ϵℓ) =

kl(νk,ℓ,
1
2 ) + ϵ. Under this instance construction, the optimal arms are arm 1 and arm k in the original and alternative

instances, respectively. All reward distributions are Bernoulli. We denote E,P and E′,P′ as the expectation and probability
under the original and alternative instances, respectively.

To facilitate the rest of the analysis, we define the empirical KL-divergence as follows,

K̂L
(D)
ℓ (n) :=

n∑
s=1

log

(
Yk,ℓ,(s)νk,ℓ + (1− Yk,ℓ,(s))(1− νk,ℓ)

Yk,ℓ,(sn)ν
′
k,ℓ + (1− Yk,ℓ,(s))(1− ν′k,ℓ)

)
,

K̂L
(R)
k (n) :=

n∑
s=1

log

(
Xk,(s)µk + (1−Xk,(s))(1− µk)

Xk,(s)µ
′
k + (1−Xk,(s))(1− µ′

k)

)
,

K̂L(I, I ′) := K̂L
(R)
k (Nk,T ) +

∑
ℓ<k

K̂L
(D)
ℓ (Mk,ℓ,T ),

where the subscript (s) refers to the sth observation of the corresponding random variable, which differs from the time index.
With these empirical KL-divergences defined, for any event E , we have the following relation holds (change of measure),

P′(E) = E
[
1{E} exp(−K̂L(I, I ′))

]
.

In the end of the first step, we define two events as follows,

D1 :=

{∑
ℓ<k

kl
(
νk,ℓ, ν

′
k,ℓ

)
Mk,ℓ,T + kl(µk, µ

′
k)Nk,T < (1− ϵ) log T

}
,

D2 :=
{
K̂L(I, I ′) ⩽

(
1− ϵ

2

)
log T

}
.

In the remaining of this proof, we use two steps to prove that P(D1) = o(1), which then implies the lemma.

Step 2. Prove P(D1 ∩ D2) = o(1). We first apply the change of measure argument to transfer the measure of the event
D1 ∩ D2 from instance I to instance I ′,

P′(D1 ∩ D2) = E[1{D1 ∩ D2} exp(−K̂L(I, I ′))] ⩾ E[1{D1 ∩ D2}]T−(1− ϵ
2 ),
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which yields

P(D1 ∩ D2) ⩽ T 1− ϵ
2P′(D1 ∩ D2)

⩽ T 1− ϵ
2P′
(
Nk,T <

(1− ϵ) log T

kl(µk, µ′
k)

)
= T 1− ϵ

2P′
(
T −Nk,T > T − (1− ϵ) log T

kl(µk, µ′
k)

)
⩽ T 1− ϵ

2
T − E′[Nk,T ]

T − ((1− ϵ) log T/kl(µk, µ′
k))

(9)

= T 1− ϵ
2

∑
ℓ̸=k E′[Nℓ,T ]

T − ((1− ϵ) log T/kl(µk, µ′
k))

⩽ o(T γ− ϵ
2 ) = o(1), (10)

where inequality (9) is due to the Markov inequality, and inequality (10) is due to the consistent policy assumption
(Definition 2.1) that for any suboptimal arm ℓ ̸= k under instance I ′, we have E′[Nℓ,T ] = o(T γ) for any positive γ.

Step 3. Prove P(D1 \ D2) = o(1). To prove this claim, we first telescope the P(D1 \ D2) and focus on bounding of the
empirical KL-divergence as follows,

P(D1 \ D2)

= P

(∑
ℓ<k

kl
(
νk,ℓ, ν

′
k,ℓ

)
Mk,ℓ,T + kl(µk, µ

′
k)Nk,T < (1− ϵ) log T, K̂L(I, I ′) >

(
1− ϵ

2

)
log T

)

⩽ P

(∑
ℓ<k

kl
(
νk,ℓ, ν

′
k,ℓ

)
Mk,ℓ,T + kl(µk, µ

′
k)Nk,T < (1− ϵ) log T,

max
nk,mℓ∈N+,∀ℓ<k:

∑
ℓ<k kl(νk,ℓ,ν

′
k,ℓ)mℓ

+kl(µk,µ
′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k

K̂L
(D)
ℓ (mℓ) >

(
1− ϵ

2

)
log T



⩽ P

 max
nk,mℓ∈N+,∀ℓ<k:

∑
ℓ<k kl(νk,ℓ,ν

′
k,ℓ)mℓ

+kl(µk,µ
′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k

K̂L
(D)
ℓ (mℓ) >

(
1− ϵ

2

)
log T

 .

Next, we a variant of the maximal law of large numbers (LLN) (Bubeck, 2010, Lemma 10.5) to bound the empirical
KL-divergence. To guarantee that all sample times Nk,T and Mk,ℓ,T are large enough to apply LLN, we set the lower bound
of Nk,T and Mk,ℓ,T as δ log T for some small constant δ > 0 as follows,

maxnk,mℓ∈N+,∀ℓ<k:
∑

ℓ<k kl(νk,ℓ,ν
′
k,ℓ)mℓ

+kl(µk,µ
′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k K̂L

(D)
ℓ (mℓ)

log T

⩽

max nk,mℓ∈N+,nk,mℓ>δ log T,∀ℓ<k,:∑
ℓ<k kl(νk,ℓ,ν

′
k,ℓ)mℓ+kl(µk,µ

′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k K̂L

(D)
ℓ (mℓ)

log T
(11)

+
δ(k − 1)

minℓ<k kl
(
νk,ℓ, ν′k,ℓ

) +
δ

kl(µk, µ′
k)

.

Then, because the maximal LLM (Bubeck, 2010, Lemma 10.5) implies limN→∞ max1⩽n⩽N
K̂L

(R)
k (n)
N = kl(µk, µ

′
k) and

limM→∞ max1⩽m⩽M
K̂L

(D)
ℓ (m)
M = kl(νk,ℓ, ν

′
k,ℓ) for any arm ℓ < k, almost surely (a.s.), we bound the first term in the
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right-hand side of (11) by the maximal LLN as follows,

lim sup
T→∞

max nk,mℓ∈N+,nk,mℓ>δ log T,∀ℓ<k,:∑
ℓ<k kl(νk,ℓ,ν

′
k,ℓ)mℓ+kl(µk,µ

′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k K̂L

(D)
ℓ (mℓ)

log T
⩽ 1− ϵ. (12)

Therefore, combining (11) and (12), we have

maxnk,mℓ∈N+,∀ℓ<k:
∑

ℓ<k kl(νk,ℓ,ν
′
k,ℓ)mℓ

+kl(µk,µ
′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k K̂L

(D)
ℓ (mℓ)

log T
⩽ 1− ϵ+Θ(δ), a.s.

Noticing 1− ϵ < 1− ϵ
2 and letting δ → 0, we proved that

P(D1 \ D2) ⩽ P

 max
nk,mℓ∈N+,∀ℓ<k:

∑
ℓ<k kl(νk,ℓ,ν

′
k,ℓ)mℓ

+kl(µk,µ
′
k)nk<(1−ϵ) log T

K̂L
(R)
k (nk) +

∑
ℓ<k

K̂L
(D)
ℓ (mℓ) >

(
1− ϵ

2

)
log T


= o(1).

Lastly, by letting ϵ be infinitesimally small, we have P(D1) = o(1), which implies the lemma.

Proof of Theorem 2.3 (regret lower bound). We first present the regret decomposition in terms of the reward and dueling
feedback as follows,

RT =
∑
k>1

(
α∆(R)

k Nk,T +
∑
ℓ<k

(1− α)
(
∆(D)

k +∆(D)
ℓ

)
Mk,ℓ,T

)
. (13)

Then, with Lemma 2.2, its corresponding regret of each suboptimal arm k ̸= 1 can be lower bounded by the following
optimizing problem,

min α∆(R)
k Nk,T +

∑
ℓ<k

(1− α)
(
∆(D)

k +∆(D)
ℓ

)
Mk,ℓ,T

s.t.
∑
ℓ<k

kl

(
νk,ℓ,

1

2

)
Mk,ℓ,T + kl(µk, µ1)Nk,T ⩾ (1− o(1)) log T,

whose asymptotical solution is as follows,

lim inf
T→∞

E[∆(R)
k Nk,T +

∑
ℓ<k(1− α)

(
∆(D)

k +∆(D)
ℓ

)
Mk,ℓ,T ]

log T
⩾ min

{
α∆k

kl(µk, µ1)
,min
ℓ<k

(1− α)(∆(D)
k +∆(D)

ℓ )

kl
(
νk,ℓ,

1
2

) }
.

Lastly, we substitute the above lower bound for each terms in (13) and obtain the regret lower bound.
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D. Proof of Upper Bounds
D.1. Regret Upper Bound for ELIMFUSION (Algorithm 1, Theorem 3.1)

Proof of Theorem 3.1. Step 1. Bound small probability event. We first show the concentration of the reward and dueling
probabilities as follows,

P

(
|µ̂k,t − µk| ⩾

√
2 log(Kt/δ)

Nk,t

)
=

t∑
n=1

P

(
|µ̂k,t − µk| ⩾

√
2 log(Kt/δ)

n

∣∣∣∣∣Nk,t = n

)
P (Nk,t = n) (14)

⩽
t∑

n=1

P

(
|µ̂k,t − µk| ⩾

√
2 log(Kt/δ)

n

)

⩽
t∑

n=1

2 exp (−4 log(Kt/δ)) (15)

⩽
2δ4

K4t3

where inequality (14) follows from the formula of total probability, and inequality (15) follows from Hoeffding’s inequality.

Therefore, we have

P

(
∀t ∈ T , k ∈ K, |µ̂k,t − µk| ⩾

√
2 log(Kt/δ)

Nk,t

)
(a)
⩽

T∑
t=1

K∑
k=1

δ4

K4t3
⩽

δ4

K3

T∑
t=1

1

t3
⩽

3δ4

2K3
, (16)

where inequality (a) follows from the union bound and the above concentration.

With a similar argument, we can show that the dueling probabilities also concentrate as follows,

P

(
∀t ∈ T , k, ℓ ∈ K, |ν̂k,ℓ,t − νk,ℓ| ⩾

√
2 log(Kt/δ)

Mk,ℓ,t

)
⩽

3δ4

4K2
,

where the RHS’s dominator different from (16) is because the number of arm pairs is K(K − 1)/2.

Step 2. Bound the maximal sample times for both types of feedback.

Elimination with reward feedback. One suboptimal arm k is eliminated by reward feedback if the following event happens,

µ̂1,t − µ̂k,t ⩾ µ1 − µk − 2

√
2 log(Kt/δ)

Nk,t
> 2

√
2 log(Kt/δ)

Nk,t
,

which would happen on or before the rearranged expression as follows,

Nk,t >
32 log(Kt/δ)

(∆(R)
k )2

.

In other words, from the reward feedback and its corresponding elimination, the sample times of arm k are upper bounded
by 32 log(KT/δ)

(∆(R)
k )2

.

Elimination with dueling feedback. The sample times for an arm k from the dueling feedback is given by noticing that for
any arm ℓ < k, when

ν̂k,ℓ,t +

√
2 log(Kt/δ)

Mk,ℓ,t
⩽ νk,ℓ + 2

√
2 log(Kt/δ)

Mk,ℓ,t
<

1

2
,

that is,

Mk,ℓ,t ⩾
8 log(Kt/δ)

(∆(D)
k )2

,
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for all arms ℓ, then the arm k must have been eliminated from the candidate arm set C by Line 14 of Algorithm 1. Therefore,
the sampling times of arm pair (k, ℓ) is upper bounded by 8 log(KT/δ)

(∆(D)
k )2

.

Step 3. Bound the regret. Each suboptimal arm k may be eliminated by either reward or dueling feedback. So, the regret
incurred by the reward querying of arm k is upper bounded as follows,

R(R)
k,T ⩽ ∆(R)

k ·min

{
32 log(KT/δ)

(∆(R)
k )2

,
K − 1

2
· 8 log(KT/δ)

(∆(D)
k )2

}
=

4∆(R)
k log(KT/δ)

max{(∆(R)
k )2/8, (∆(D)

k )2/4(K − 1)}
,

where the factor K−1
2 is an upper bound of the ratio of sampling collection rate between reward and dueling feedback

because the number of arms in the candidate arm set C is at most K−1
2 times smaller than the number of arm pairs in the set.

Next, we bound the regret incurred by the dueling querying of arm k. If the arm k is eliminated by the dueling feedback,
then the dueling regret due to arm k can be upper bounded as follows,

∑
ℓ<k

(∆(D)
ℓ +∆(D)

k − 1)

2
·Mℓ,k,T ⩽

∑
ℓ<k

∆(D)
k

8 log(KT/δ)

(∆(D)
k )2

⩽
8(k − 1) log(KT/δ)

∆(D)
k

.

If the arm k is eliminated by the reward feedback, implying the algorithm has queried the reward of arm k for at most
32 log(KT/δ)

(∆(R)
k )2

times. During this period, dueling regret cost of any arm pair (k, ℓ) from some arm ℓ < k is upper bounded as
follows,

(∆(D)
ℓ +∆(D)

k − 1)

2
× 2× 32 log(KT/δ)

(∆(R)
k )2

=
64∆(D)

k log(KT/δ)

(∆(R)
k )2

,

where the factor 2 every reward query of arm k is accompanied by at most two dueling comparison of arm pairs (k, ℓ) from
some arm ℓ < k.

Taking the minimal among the above two cases, we have the dueling regret upper bound as follows,

R(D)
k,T ⩽ ∆(D)

k ·min

{
64 log(KT/δ)

(∆(R)
k )2

,
8(k − 1) log(KT/δ)

(∆(D)
k )2

}
=

8∆(D)
k log(KT/δ)

max{(∆(R)
k )2/8, (∆(D)

k )2/(k − 1)}
.

Lastly, we bound the total regret as follows,

RT ⩽
∑
k ̸=1

αR(R)
k,T + (1− α)R(D)

k,T

⩽
∑
k ̸=1

4α∆(R)
k log(KT/δ)

max{(∆(R)
k )2/8, (∆(D)

k )2/(K − 1)}
+

8(1− α)∆(D)
k log(KT/δ)

max{(∆(R)
k )2/8, (∆(D)

k )2/(k − 1)}

⩽
∑
k ̸=1

8(α∆(R)
k + (1− α)∆(D)

k ) log(KT/δ)

max{(∆(R)
k )2/8, (∆(D)

k )2/(K − 1)}
.
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D.2. Regret Upper Bound for DECOFUSION (Algorithm 2, Theorem 4.1)

Proof of Regret Upper Bound of Algorithm 2. Step 1. Event definition. We start the proof by defining the following events,

At :=

{
µ̂1,t ⩾ µ̂k,t, ∀k ∈ K̂(R)

t , µ̂1,t ⩾ µ1 − δ, and ν̂1,k,t ⩾
1

2
, ∀k ∈ K̂(D)

t

}
,

Gt :=

{
µ̂k(R)

t ,t ⩽ max
k∈K̂(R)

t \{1}
µk + δ

}
,

Ht :=
⋃

k∈K̂(R)
t

{
µ̂k(R)

t ,t = µ̂k,t and |µ̂k,t − µk| ⩾ δ
}
,

Ut :=
⋃

S∈2K̂
(D)
t \{∅}

{
ν̂1,k,t ⩾

1

2
, ∀k ∈ S and ν̂1,k,t <

1

2
, ∀k ∈ K̂(D)

t \ S
}
,

where the parameter δ is a small positive constant that satisfies 0 < δ < ∆(R)
2 . The At refers to a good event, implying that

the algorithm has correctly estimated the optimal arm at time slot t, i.e., k̂(R)
t = k̂(D)

t = 1, and the other three refer to the bad
events that the algorithm may not correctly estimate the optimal arm, either due to bad reward estimates or bad dueling
probability estimates.

Notice that (1) if both events Gt and Ht do not happen, i.e., GC
t ∩ HC

t , then the first condition of event At holds, and (2)
if event Ut does not happen, then the second condition of event At holds. Putting these together, we have the following
relation between these events,

GC
t ∩HC

t ∩ UC
t ⊆ At, that is, AC

t ⊆ Gt ∪Ht ∪ Ut.

In the rest of this proof, we show two claims: (1) the number of times that any of these three bad events Gt, Ht, and Ut
happens is bounded by O(1) (a term independent of time horizon T ), and (2) for the time slots that the good event At

happens, the regret of DECOFUSION is upper bounded as (7) shows.

Step 2. Bound the number of happening times of the bad events. Following Honda & Takemura (2010, Lemmas 16 and
17), we bound E

[∑T
t=1 1{Gt}

]
⩽ O(1), and E

[∑T
t=1 1{Ht}

]
⩽ O(1). Following Komiyama et al. (2015, Lemma 5), we

bound E
[∑T

t=1 1{Et}
]
⩽ O(eK−f(K)). Putting these results together, we have

E

[
T∑

t=1

1{AC
t }

]
⩽ E

[
T∑

t=1

1{Gt}

]
+ E

[
T∑

t=1

1{Ht}

]
+ E

[
T∑

t=1

1{Et}

]
⩽ O(1) +O(1) +O(ecK−f(K)) ⩽ O(ecK−f(K)),

for some constant c > 0.

Step 3. Bound regret. Denote β := α2

α2+(1−α)2 as the threshold in Line 12 of Algorithm 2. We first define the following
three quantities as the sufficient number of times for exploring arm k from different types of feedback, for sufficiently small
ϵ > 0,

N (Suff)
k :=

(1 + ϵ) log T + f(K)

kl(µk, µ1)
,

M (Suff)
k,1 :=

(1 + ϵ) log T + f(K)

kl(νk,1,
1
2 )

,

L(Suff)
k := min

{
N (Suff)

k,t /(1− β),M (Suff)
k,1,t /β

}
=

(1 + ϵ) log T + f(K)

max
{
(1− β) kl(µk, µ1), β kl(νk,1,

1
2 )
} .
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Next, we bound the expected number of times of exploring arm k for different types of feedback as follows,

E[Nk,T ] ⩽ K/2 + E

[
T∑

t=1

1{AC
t }

]
+ (1− β) · E

[
T∑

t=1

1{Jk,t and At}

]
, (17)

E[Mk,1,T ] ⩽ 1 + E

[
T∑

t=1

1{AC
t }

]
+ β · E

[
T∑

t=1

1{Jk,t and At}

]
, (18)

E[Mk,ℓ,T ] ⩽ 1 + E

[
T∑

t=1

1{AC
t }

]
, ∀1 < ℓ ⩽ k, (19)

where the first constant term comes from the initialization of the algorithm (Algorithm 3), the last terms of (17) and (18) is
due to the imbalanced exploration in Line 12 of Algorithm 2, and the missing third term of (19) is because when event At

happens, the algorithm does not explore arm pair (k, ℓ) for any suboptimal arm ℓ ̸= 1.

E

[
T∑

t=1

1{Jk,t and At}

]

⩽ L(Suff)
k +

T∑
t=1

∑
n,m>L(Suff)

k

E [1{Jk,t and At and Nk,t = n,Mk,1,t = m}]

⩽ L(Suff)
k +

T∑
t=1

∑
n,m>L(Suff)

k

E
[
1

{
max

{
I (R)
k,t, I

(D)
k,t − I (D)

k̂(D)
t ,t

}
⩽ log t+ f(K) and At and Nk,t = n,Mk,1,t = m

}]

⩽ L(Suff)
k +

∑
n,m>L(Suff)

k

E
[
1

{
L(Suff)
k max

{
kl(µ̂k(n), µ1 − δ), kl(ν̂k,1(m),

1

2
)

}
⩽ log T + f(K)

}]
(20)

⩽ L(Suff)
k +

∑
n,m>L(Suff)

k

E

[
1

{
max

{
kl(µ̂k,t(n), µ1 − δ), kl(ν̂k,1,t(m),

1

2
)

}
⩽

max
{
kl(µk, µ1), kl(νk,1,

1
2 )
}

1 + ϵ

}]
(21)

⩽ L(Suff)
k +

∑
n>L(Suff)

k

E
[
1

{
kl(µ̂k,t(n), µ1 − ϵ) ⩽

kl(µk, µ1)

1 + ϵ

}]
+

∑
m>L(Suff)

k

E
[
1

{
kl(ν̂k,1,t(m),

1

2
) ⩽

kl(νk,1,
1
2 )

1 + ϵ

}]
⩽ L(Suff)

k +O(ϵ−2), (22)

where inequality (20) applies the µ̂k(n) to denote the reward mean estimate with n samples, and ν̂k,1(m) to denote the
dueling probability estimate with m samples, inequality (21) is by substituting L(Suff)

k the definition of L(Suff)
k , inequality (22)

is for that the last two terms are bounded as O(ϵ−2) in Honda & Takemura (2010, Lemma 15) and Komiyama et al. (2015,
Lemma 6), respectively.

Therefore, the final regret upper bound is given as follows,

E[RT ] = E[RT |At] + E[RT |AC
t ]

⩽
∑
k ̸=1

(∆(R)
k /α+∆(D)

k /(1− α))((1 + ϵ) log T + f(K))

max
{
kl(µk, µ1)/α2, kl(νk,1,

1
2 )/(1− α)2

} +O(K2) +O(ϵ−2) +O(ecK−f(K)).
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(a) Reward regret R(R)
T (b) Dueling regret R(D)

T

Figure 3: Regret comparison in different settings (continue)

where we individual bound the two terms as follows,

E[RT |At] ⩽
∑
k ̸=1

α∆(R)
k E[Nk,T ] + (1− α)∆(D)

k E[Mk,1,T ]

⩽
∑
k ̸=1

(α(1− β)∆(R)
k + (1− α)β∆(D)

k )((1 + ϵ) log T + f(K))

max
{
(1− β) kl(µk, µ1), β kl(νk,1,

1
2 )
} +O(ϵ−2)

⩽
∑
k ̸=1

(∆(R)
k /α+∆(D)

k /(1− α))((1 + ϵ) log T + f(K))

max
{
kl(µk, µ1)/α2, kl(νk,1,

1
2 )/(1− α)2

} +O(ϵ−2),

where the last inequality is by substituting the definition of parameter β, and

E[RT |AC
t ] ⩽

(
α∆(R)

2 + (1− α)max
k∈K

∆(D)
k

)(
K(K − 1) + E

[
T∑

t=1

1{AC
t }

])

⩽ K2 + E

[
T∑

t=1

1{AC
t }

]
⩽ O(K2) +O(ecK−f(K)),

where the K(K − 1) comes from the initialization of the algorithm (Algorithm 3).

E. Experimental Setup and Additional Experiments
E.1. Additional Experiments

This section further reports other experiments in Figure 3. Figures 3(a) and 3(b) plots the decomposed reward- and
dueling-based regrets of the aggregated regret in Figure 2(a) in the main paper. They illustrate that the two fusion algorithms
outperform the no-fusion algorithms regarding reward-based and dueling-based regrets, respectively, highlighting the
effectiveness of the fusion algorithms in mitigating regret costs to the other feedback.

E.2. Experiment Setup

The experiments of Figures 2(a), 2(d), 3(a), 3(b) are conducted with K = 16 arms, where their Bernoulli reward distributions
are with means µ = {0.86, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10}. A dueling
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probability matrix ν determines the dueling feedback as follows,

0.50 0.54 0.57 0.60 0.63 0.65 0.69 0.71 0.73 0.76 0.78 0.82 0.86 0.91 0.95 0.98
0.46 0.50 0.54 0.58 0.61 0.64 0.67 0.70 0.74 0.76 0.79 0.81 0.84 0.87 0.89 0.92
0.43 0.46 0.50 0.54 0.58 0.60 0.63 0.66 0.69 0.72 0.76 0.79 0.83 0.85 0.88 0.91
0.40 0.42 0.46 0.50 0.54 0.58 0.61 0.64 0.66 0.69 0.72 0.76 0.79 0.82 0.85 0.88
0.37 0.39 0.42 0.46 0.50 0.54 0.56 0.59 0.63 0.66 0.69 0.72 0.76 0.78 0.82 0.86
0.35 0.36 0.40 0.42 0.46 0.50 0.54 0.57 0.59 0.63 0.67 0.70 0.73 0.76 0.79 0.82
0.31 0.33 0.37 0.39 0.44 0.46 0.50 0.54 0.58 0.61 0.64 0.68 0.71 0.72 0.75 0.79
0.29 0.30 0.34 0.36 0.41 0.43 0.46 0.50 0.54 0.57 0.59 0.62 0.65 0.68 0.72 0.76
0.27 0.26 0.31 0.34 0.37 0.41 0.42 0.46 0.50 0.54 0.58 0.61 0.63 0.66 0.69 0.73
0.24 0.24 0.28 0.31 0.34 0.37 0.39 0.43 0.46 0.50 0.54 0.56 0.59 0.62 0.66 0.69
0.22 0.21 0.24 0.28 0.31 0.33 0.36 0.41 0.42 0.46 0.50 0.54 0.56 0.58 0.61 0.65
0.18 0.19 0.21 0.24 0.28 0.30 0.32 0.38 0.39 0.44 0.46 0.50 0.54 0.57 0.58 0.62
0.14 0.16 0.17 0.21 0.24 0.27 0.29 0.35 0.37 0.41 0.44 0.46 0.50 0.54 0.56 0.59
0.09 0.13 0.15 0.18 0.22 0.24 0.28 0.32 0.34 0.38 0.42 0.43 0.46 0.50 0.54 0.56
0.05 0.11 0.12 0.15 0.18 0.21 0.25 0.28 0.31 0.34 0.39 0.42 0.44 0.46 0.50 0.54
0.02 0.08 0.09 0.12 0.14 0.18 0.21 0.24 0.27 0.31 0.35 0.38 0.41 0.44 0.46 0.50


where the value of νi,j between arm pairs (i, j) is in row i column j. The algorithms are run for T = 200, 000 rounds
with the following parameters for DECOFUSION and ELIMFUSION: α = 0.5, δ = 1/T , and f(K) = 0.05K1.01. Each
experiment is repeated 100 times, and we report the average regret and the standard deviation of all runs.

Then, Figures 2(b) and 2(c) report the final aggregated regrets under the following two experiments.

Fixing ν, varying µ: Fixing the dueling probability as in the matrix:

ν =


0.50 0.53 0.56 0.59 0.62
0.47 0.50 0.53 0.56 0.59
0.44 0.47 0.50 0.53 0.56
0.41 0.44 0.47 0.50 0.53
0.38 0.41 0.44 0.47 0.50


Vary µ = {0.9, 0.9−∆, 0.9− 2×∆, 0.9− 3×∆, 0.9− 4×∆}, where ∆ ∈ {0.06, 0.11, 0.16, 0.21}.

Fixing µ, varying ν: Fixing µ = {0.9, 0.84, 0.78, 0.72, 0.66}, we consider vary preference matrix in:

ν =


0.5 0.5 + 1×∆ 0.5 + 2×∆ 0.5 + 3×∆ 0.5 + 4×∆

0.5− 1×∆ 0.5 0.5 + 1×∆ 0.5 + 2×∆ 0.5 + 3×∆
0.5− 2×∆ 0.5− 1×∆ 0.5 0.5 + 1×∆ 0.5 + 2×∆
0.5− 3×∆ 0.5− 2×∆ 0.5− 1×∆ 0.5 0.5 + 1×∆
0.5− 4×∆ 0.5− 3×∆ 0.5− 2×∆ 0.5− 1×∆ 0.5


where ∆ ∈ {0.03, 0.05, 0.07, 0.09, 0.11}. All other settings of the two experiments are the same as above.

F. Extended Discussions on Regret Definition
If the preference probability νk,ℓ is generated according to the reward means µk, µℓ for any arm pair (k, ℓ). Assum-
ing a relation between the preference probability and reward mean, like the Bradley-Terry model ν1,2 = exp(µ1)

exp(µ1)+exp(µ2)
=

exp(µ1−µ2)
exp(µ1−µ2)+1 or utility dueling bandits ν1,2 = 1+(µ1−µ2)

2 (Ailon et al., 2014), is stronger than the one in our paper and will
lead to a better regret result.

Specifically, with this parametric relation, one only needs to focus on one set of the parameters, either the reward means
or the dueling probabilities. Let us consider the case that the reward mean (µ1, µ2, . . . , µK) as the basic parameters to
estimate, and all observations from dueling feedback can be translated into reward feedback via the parametric relation.
Under this point of view, the reward feedback provides direct observations from the reward mean parameters, and the dueling
(preference) feedback between arms k and ℓ can be considered as a “parametric reward feedback” depending on the reward
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mean parameters. For example, with the Bradley-Terry relation, the parametric form is a logistic function, which is similar
to the logistic bandits (Faury et al., 2020), while with the utility dueling relation, the parametric form is a linear function,
which is similar to the linear bandits (Abbasi-Yadkori et al., 2011).

With this interpretation, we believe that the final regret bound would depend on reward gaps ∆(R)
k and have no explicit

dependence on the dueling gaps ∆
(D)
k (or the other way round if we consider the dueling probabilities as the basic

parameters), and the regret improvement may be in the actual dependence of the reward gaps ∆(R)
k (e.g., the prefactor or

the exponential order of this gap would be strictly less than than the best one without the dueling feedback option). To
rigorously investigate the improvement in regret bounds under these stronger assumptions (out of the scope of current paper)
is an interesting research direction.

Motivation of current regret definition in Eq. (1) The current linear combination definition—especially, the parameter
α ∈ [0, 1]—is motivated by the cost difference between querying a reward feedback, as a dueling feedback, as the dueling
(relative) feedback is usually cost-efficient (Ouyang et al., 2022). Furthermore, this flexible definition covers many interesting
scenarios, e.g., the case of α = 1 is the regret from reward feedback only, and the case of α = 0 is the regret from dueling
feedback only, and in the case of α = 1

2 , the regret is the simple sum of the two types of feedback.

Below, we provide three perspectives on changing the definition of regret in our paper. First, if one only considers the
regret from reward feedback (“define the regret as the loss in the expected reward”), and treat the dueling feedback as a
side free observations, then this regret reduces to the case of setting α = 1 in our regret definition. In this scenario, our
DECOFUSION algorithm achieves constant regret, as discussed in Lines 409–423 (left column).

Second, if one also considers the regret cost due to dueling feedback but count this part of the regret in terms of the expected
regret instead of the dueling (preference) probability in the current definition, then the new regret cost in each decision
round would be the sum of the reward gaps of the pulled three arms (one for reward, a pair for dueling). For this new regret
definition, our algorithm and analysis still works, and the only modification is in the regret upper bound results, where one
needs to change the dueling gap ∆

(D)
k in the nominator of Eq. (5) in Theorem 3.1 and Eq. (8) in Theorem 4.1 to the reward

gap 2∆
(R)
k .

Third, if one further assumes the Bradley-Terry model relation between reward means and dueling probabilities upon the
new regret definition, this would lead to a problem that is similar to logistic bandits (Faury et al., 2020), as discussed in the
previous response, which is an interesting research direction.
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