
1

Handling High Bandwidth Aggregates By Receiver Driven Feedback Control (Extended Abstract)

Chee-Wei Tan Dah-Ming Chiu John C. S. Lui David K. Y. Yau
Princeton University The Chinese University of Hong Kong Purdue University

I. INTRODUCTION

Network congestion control solutions fall into one of two cat-
egories: end-to-end without involving intermediate routers, and
hop-by-hop to shorten the control loop but at the expense of
more costly router design and operation. The Internet proto-
col suite requires intelligence mainly at the network end points.
TCP, for example, performs end-to-end control, where senders
adjust their allowed windows of outstanding packets according
to acks of previous data sent and receive windows advertised by
receivers. Since the absence of a timely ack can be the result of
either a congestion event or a corrupted packet, such window-
based congestion control may be unduly affected by the goal
of error control [2]. To decouple congestion control from error
control, a rate-based design (e.g., ATM ABR) typically feeds
back a binary congestion control to multiple senders, who then
adjust their sending rates accordingly.

In this work, we consider a variant congestion control prob-
lem in which a receiver computes an explicit allowed traffic
rate and uses it to regulate multiple routers sending to the re-
ceiver. Our design is thus rate-based, but uses an explicit rate
signal instead of a binary signal. Such congestion control has
many applications in practice, such as a web server regulating
its Internet clients in a flash crowd scenario, or a server try-
ing to protect itself from aggressive sources during a distributed
denial-of-service (DDoS) attack. Intelligence is mostly required
at the receiver since all the essential control decisions are made
there. A subset of the routers participate in the control but do
not make control decisions. As sources may not be trusted (e.g.,
in a DDoS attack), their participation is neither required nor as-
sumed.

In our approach, a network receiver, say S, experiencing re-
source overload installs a router throttle [6] at a set of upstream
routers that are several hops away. The throttle specifies the
maximum rate (in bits/s) at which packets destined for S can be
forwarded by each router. Traffic that exceeds the rate limit will
be dropped by the router. An installed throttle will generally
change the load experienced at S. S can then adjust the throt-
tle rate in multiple rounds of feedback control until it achieves
its load target. Our goal is to derive a throttle algorithm that is
(i) highly adaptive by avoiding unnecessary control parameters
that would require configuration, (ii) able to converge quickly
to a fair resource allocation, (iii) highly robust against extrinsic
factors beyond the system’s control (e.g., dynamic input traffic,
and number/locations of current sources), and (iv) stable under
given delay bounds.

II. SOLUTION OVERVIEW

We assume that a receiver, say S, aims to export its full ser-
vice capacity US (in kb/s) to the network, but no more. An im-
portant research question is then how to determine proper throt-
tle rates such that the objective is achieved under heavy load-

ing. It is clear that the throttle rate should depend on the current
demand distributions and therefore must be negotiated dynam-
ically between the receiver and the throttle routers. As stated
earlier, the negotiation approach is receiver driven. A receiver
operating below the designed load limit needs no protection, and
need not install any router throttle. As receiver load, denoted by
ρ, increases and crosses the designed load limit US , the receiver
may start to protect itself by installing a rate throttle, denoted
as rS , at the throttle routers. If a current throttle rate fails to
bring down the load at S to below US, then the throttle rate can
be further reduced. On the other hand, if the receiver load falls
below a low-water mark LS (where LS < US), then the throttle
rate is increased to allow more packets to be forwarded to S.
If an increase does not cause the load to significantly increase
over some observation period, then the throttle is removed. The
goal of the control algorithm is to keep the receiver load within
[LS , US] whenever a throttle is in effect.

In fairly allocating the receiver capacity among the deploy-
ment routers, we define the following notion of fairness:
Definition 1 (distributed max-min fairness) A resource control
algorithm achieves distributed max-min fairness among the
deployment routers, if the allowed forwarding rate of traffic for
S at each router is the router’s max-min fair share of some rate
r satisfying LS ≤ r ≤ US .

III. CONTROL-THEORETIC FAIR THROTTLE ALGORITHMS

We have studied several fair throttle algorithms with increas-
ing sophistication. Each algorithm is a probing algorithm that
tries to determine a common throttle rate, rS , to be sent by the
receiver to all the deployment routers using negative feedback
[1]. They are all designed to converge to the desired fairness
criterion. The difference between the algorithms is in the way
the receiver computes rS , which will affect the speed of conver-
gence and the stability of the system.

A. Binary Search Fair Algorithm

The possible range for the throttle rate rS is [0, US], the two
extremes corresponding to an infinite number of throttles and
one throttle, respectively. A familiar binary search algorithm
[3] can be applied: Reduce the search range by half at every
iteration of the algorithm. This algorithm uses the aggregate rate
ρ to determine the direction of adjustment. When the aggregate
rate is more than US , rS is reduced by half. When the aggregate
rate is less than LS, rS is increased to the mid-point between the
current rS and US .

Binary search is highly efficient if we assume that the traffic
loading is static. When traffic can vary, however, the algorithm
must detect situations in which the shrunken search range for
rS can no longer deal with the changed traffic conditions, and
re-initialize the search range accordingly, which is challenging.

2

B. Proportional control with number of throttle estimate

Binary search directly adjusts rS , without using the magni-
tude of the overshoot (or undershoot) of the aggregate rate ρ.
We now present an algorithm that makes use of the information,
as well as an estimate of the number of deployment routers that
actually drop traffic. For clarity of exposition, we will call a de-
ployment router whose offered traffic rate exceeds the throttle
rate (and hence will drop traffic because of throttling) an effec-
tive throttling router. We also call the throttle at such a router an
effective throttle. If the number of effective throttles is n, then it
is reasonable to set the change of rS to

∆rS =
|ρ − C|

n
(1)

where C represents the target rate (a value within [LS, US]) of
aggregate traffic at S. By keeping track of the last throttle rate
rlast and the last aggregate rate ρlast, we can estimate n as n =
|ρ − ρlast|/|rS − rlast|. Given n, we can compute a suitable
change to rS using Eqn. 1.

We wish also to address our fourth objective, namely system
stability despite delay in the feedback control. The objective
can be achieved by trying to correct only a fraction KP of the
discrepancy between the aggregate rate and the rate target. The
fraction KP should be proportional to the discrepancy; hence,
we also refer to such control as proportional control [4].

We found that for stationary traffic demand, the proportional
controller’s rate of convergence is monotonic and relatively fast
[5]. For dynamic traffic, the speed of convergence depends on
the setting of KP . How the setting of KP can affect system
stability motivates the design of our next algorithm.

C. Proportional-derivative control fair algorithms

We now introduce an optimization to the proportional con-
troller. When there is a change in the offered load at the deploy-
ment routers, a higher proportional gain can adapt faster to the
change. However, such “strong” control may result in large fluc-
tuations in the throttle rate. On the other hand, a “weak” control
signal can cause prolonged congestion at the receiver. Hence,
the goal is to reduce fluctuations while still achieving fast con-
vergence. The stability problem that arises when a high propor-
tional gain is used can be mitigated by considering a derivative
control parameter, KD. as shown in Fig. 1. The new algorithm
is called a proportional and derivative (PD) controller [4].

In the algorithm, if ρ > US or ρ < LS, the total expected
change in throttled traffic rate in all of the deployment routers at
the next control interval is

4ρ
′

i+1 = −KP (ρi − C) − KD4ρi; 4ρ
′

1 = 0, (2)

where 4ρi is the actual change and 4ρ
′

i
is the expected change

in the control interval i.
In Eqn. 2, the first term is necessary for the mismatch regula-

tion and the second term tracks the rate of change in the feed-
back. The first term has the largest impact on the aggressiveness
of the probe used in the algorithm. A smaller KP will make the
system slower to converge. But a larger KP may result in larger
overshoots, sometimes even causing the system to become un-
stable – i.e., the system oscillates indefinitely around the band

Proportional-Derivative Fair Throttle Algorithm

rS

.
= (US + LS)/N ; /* Init N = |throttle routers| */

ρlast := −∞
While(1)

sends current rate-rS throttle to deployment routers;
monitor traffic arrival rate ρ for time window w;
If (ρ ≥ US)

C := LS

elif (ρ ≤ LS)
If (ρ − ρlast < ε)

remove rate throttle from routers;
break;

else
C := US ;

fi;
else

break;
fi;
φ := −KP × (ρ − C) − KD × (ρ − ρlast)
rS := rS + φ/est(ρ, r S);
ρlast := ρ;

end while;

Fig. 1. Proportional-Derivative fair throttle algorithm specification.

[LS , US] without convergence. The second term gives a signal
proportional to the rate at which the mismatch changes. It is
more responsive to changes in the mismatch than the first term.
It also has a damping effect on the amount of rate throttle fluctu-
ation. A larger KD implies more damping; it helps the stability
of the system, and allows the proportional gain to be increased.
Our simulation results [5] show that the term can reduce the
amplitude of overshoot significantly during transient response
while maintaining fast convergence.

The PD controller has the best performance among the con-
trollers presented [5]. It is robust against a wide range of settings
– not only does it guarantee convergence, but also it has much
smaller over/under-shoot for the aggregate rates to the receiver
S. Distributed max-min fairness is also guaranteed for all the
deployment routers.

IV. CONCLUSION

A control-theoretic analysis of the presented algorithms can
be found in [5]. In addition, extensive simulation results illus-
trate algorithm performance under different system parameters,
including the number of traffic sources, their traffic patterns,
variant delays of the feedback loops, and the choice of KP and
KD [5]. Our results show that the PD algorithm has robust per-
formance under diverse operating conditions.

REFERENCES

[1] D. M. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks”, Journal of Computer Net-
works and ISDN, 17(1), pp. 1-14, June 1989.

[2] D. Clark, M. Lambert, and L. Zhang “NETBLT: A high throughput trans-
port protocol”, Proc. ACM SIGCOMM, 1987.

[3] T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to Algo-
rithms”, Second Edition, MIT Press, 2001.

[4] B. C. Kuo, “Automatic Control Systems”, Prentice Hall, 1975.
[5] C. W. Tan, D. M. Chiu, J. C. S. Lui, and D. K. Y. Yau, “A Distributed

Throttling Approach for Handling High Bandwidth Aggregates”. Technical
Report CSE-04-110, Chinese University of Hong Kong, November 2004.

[6] D. K. Y. Yau, J. C. S. Lui, F. Liang and Y. Yeung, “Defending against
distributed denial-of-service attacks with max-min fair server-centric router
throttles”, IEEE/ACM Trans. Networking, 13(1), Feb 2005.

