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Abstract

Proxy caching is a key technique to reduce transmission cost for on-demand multimedia streaming. The

effectiveness of current caching schemes, however, is limited by the insufficient storage space and weak cooperations

among proxies and their clients, particularly considering the high bandwidth demands from media objects. In this

paper, we propose COPACC, a cooperative proxy-and-client caching system that addresses the above deficiencies.

This innovative approach combines the advantages of both proxy caching and peer-to-peer client communications.

It leverages the client-side caching to amplify the aggregated cache space and rely on dedicated proxies to

effectively coordinate the communications. We propose a comprehensive suite of distributed protocols to facilitate

the interactions among different network entities in COPACC. It also realizes a smart and cost-effective cache

indexing, searching, and verifying scheme. Furthermore, we develop an efficient cache allocation algorithm for

distributing video segments among the proxies and clients. The algorithm not only minimizes the aggregated

transmission cost of the whole system, but also accommodates heterogeneous computation and storage constraints

of proxies and clients. We have extensively evaluated the performance of COPACC under various network and end-

system configurations. The results demonstrate that it achieves remarkably lower transmission cost as compared to

pure proxy-based caching with limited storage space. On the other hand, it is much more robust than a pure peer-

to-peer communication system in the presence of node failures. Meanwhile, its computation and control overheads

are both kept in low levels.

Keywords: Media Streaming, Proxy caching, Peer-to-Peer caching, Media segmentat ion and Resource allocation

I. Introduction

For the past few years, we have witnessed the increasingly used streaming multimedia traffic on the

Internet, and on-demand streaming for clients of asynchronous playback requests is amongst the most

popular networked media services. Given its broad spectrum of applications, like NetTV and distance
�
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learning, it has attracted much attention and many practical deployments have been proposed in recent

years [1]. The limited server capacity and the unpredictable Internet environment, however, make it a

challenging task to design and deploy an efficient and scalable on-demand media streaming service[2],

[3], [4], [5].

To reduce server/network loads, an effective approach is to cache frequently used data at proxies that

are close to clients [6], [7]. Streaming media, particularly those with asynchronous demands, could also

benefit and could have a significant performance improvement from proxy caching given their static nature

in content and highly localized access interests. However, media objects have high data rates requirements

and long playback durations, which combined yield a huge caching resource. To illustrate, a one-hour

standard MPEG-1 video has a volume of about 675 MB; several such large streams will quickly exhaust

the cache space of a standalone proxy. As such, it is necessary to design partial caching algorithms or

group proxies to enlarge cache space [6], [8], [9], [10]. There have been extensive studies toward these

directions, but the storage space of existing proxies are still far from satisfactory, and thus remains a

performance bottleneck of the whole system.

Another approach is to generalize the proxy functionalities into every client [11], [12]. Such a peer-

to-peer communication paradigm allows economical clients to contribute their local storage spaces for

streaming. Specifically, the video data originally provided by a server are spread among clients of

asynchronous demands, and each client can store the full or partial versions of the video stream in

its local cache. Then, one or more clients can collectively supply cached data to other clients, thus

amplifying the system capacity with increasing suppliers over time. However, in contrast to the reliable

and dedicated servers or proxies, these loosely-coupled autonomous end-hosts are not highly reliable since

these end-hosts can fail or may leave the network without any notice. Given the requirement that a media

playback lasts a long time and consumes huge resources, a pure peer-to-peer system may not provide the

desirable information availability in the Internet environment. Another reason for not adopting the pure

P2P approach is that there are no authoritative parties, it is also difficult to identify and penalize malicious

clients that intentionally inject forged data.

In this paper, we propose COPACC, a novel cooperative proxy-client caching system that addresses the
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above deficiencies. The innovative approach in COPACC combines the advantages of both proxy caching

and peer-to-peer client communications. We leverage the client-side caching to amplify the aggregated

cache space and rely on dedicated proxies to effectively coordinate the communications. We develop an

efficient cache allocation algorithm that distributes video segments among the proxies and clients. The

algorithm not only minimizes the aggregated transmission cost of the whole system, but also accommodates

heterogeneous computation and storage constraints of proxies and clients. When multicast service is

available, COPACC also makes effective use of multicast delivery in local regions, which further reduces

the cost of the system.

In this work, we propose a comprehensive suite of distributed protocols to facilitate the interactions

among different network entities. Most operations in this protocol suite are executed by dedicated proxies.

As such, it is not only suitable for clients with limited computation power, but also resilient to client

failures. We also embed an efficient indexing and searching algorithm for video contents cached across

different proxies or clients, as well as a signature verification mechanism, which can effectively identify

and block malicious clients.

The performance of COPACC is extensively evaluated under various network and end-system con-

figurations. The results demonstrate that it achieves remarkably lower transmission cost as compared to

proxy-based caching with limited storage space. On the other hand, with the assistance from dedicated

proxies, it is much more robust than a pure peer-to-peer system. Its transmission cost only slightly increases

when a large portion of clients fail, even though the clients contribute a significant fraction in the total

cache space. Moreover, it scales well to larger networks, and the cost generally reduces when more proxies

and clients cooperate with each other.

The balance of the paper is organized as follows. In Section II, we review the related work. The

COPACC architecture and its parameters are presented in Section III. We derive efficient algorithms for

cache allocation in Section IV, and describe the cooperative caching protocol in Section V. The performance

of COPACC is extensively evaluated in Section VI. Finally, we conclude our work in Section VII.
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II. Related Work

Proxy caching for media streaming has attracted much attention in the past decade, and numerous

algorithms have been proposed in the literature, e.g., run-length caching [13], prefix caching [9], and

segment caching [8], [10], [14]; see a comprehensive survey in [6]. Considering the static nature of video

contents and their intensive I/O demands, many of the algorithms employ a semi-static caching approach,

where popular video portions are cached over a relatively long time period, rather than dynamically saved

or replaced in response to individual client requests. COPACC also advocates semi-static caching, and its

cache allocation is closely related to the prefix-suffix partition and stream segmentation algorithms [15].

However, these studies generally focus on a single proxy case with no cooperation among proxies.

It is well-recognized that proxies grouped together can achieve better performance than independent

standalone proxies [16], [17]. An example for media caching is MiddleMan [18], which operates a

collection of proxies as a scalable cache cluster; media objects are segmented into equal-sized segments

and stored across multiple proxies, where they can be replaced at a granularity of a segment. There are

also several local proxies responsible to answer client requests by locating and relaying the segments. To

achieve better load balance and fault tolerance, a Silo data layout is suggested in [19], which partitions a

media object into segments of increasing sizes, stores more copies for popular segments, and yet guarantees

at least one copy stored for each segment. Our work is motivated by these cooperative systems, and we

enhance them by combining proxy caching and client-side caching, which greatly expands the aggregated

cache storage with contributions from the less expensive clients.

On the other hand, peer-to-peer communications have recently become a popular alternative to the

traditional client/server paradigm. There are a series of pioneer works on peer-to-peer streaming, e.g.,

PROMISE [12], ZIGZAG [20], and CoopNet [21], which have demonstrated the superior scalability of

shifting all functionalities to end-hosts. Yet, we are aware that, in contrast to the reliable and dedicated

servers or proxies, the loosely-coupled autonomous end-hosts can easily crash, leave without notice, or

even refuse to share its own data. Given that a media playback lasts a long time and consumes huge

resources, we believe that dedicated proxies could still play an important role in building high-quality

media streaming systems, as suggested in [22], [23]. Different from COPACC which focuses on caching,
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Fig. 1. The cooperative proxy-client caching architecture.
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Fig. 2. Illustration of different portions of a video stream. The prefix is to be cached by proxies, while the prefix-of-suffix by clients

the key issue addressed in these studies is the optimal construction of an overlay structure. For storage

allocation and management in a hybrid system, an optimal replication algorithm is proposed in [24], and

a cooperative algorithm between a single proxy and its clients in a local area network is presented in [25].

COPACC complements them by considering a more general system with multiple cooperative proxies

with client caching. A two-level hybrid architecture is exploited in [26], where an overlay network is used

in the upper level to deliver videos from a central server to proxies and a collaborative-client network

using loopback mechanism is applied in the lower level to transmit video data from proxy to clients. In

loopback, cache is dynamically updated, which introduces an intensive disk I/O demand for the clients.

Given that the video access pattern changes slowly, semi-static caching is adequate and it can be practically

implemented. Moreover, Loopback concentrates on the collaboration between proxy and its clients only,

but we also emphasize the importance of cooperative caching between proxies in reducing cost.
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III. Overview of The Cooperative Proxy-Client Caching (COPACC) System

Fig. 1 depicts a generic architecture of COPACC. A cluster of proxies are logically connected through

direct or indirect peer links to form a proxy overlay, and each of them serves as the home proxy for

a set of local clients. We assume that proxies and their clients are closely located with relatively low

communication costs, e.g., they could be in the same ISP domain or in the same metropolitan area. A

server storing the repository of videos, however, is far away from them, and the remote communications

incur much higher costs.

The video data are cached across both proxies and clients. We assume that the storage space of a proxy

or a client is limited; the videos thus can be partially cached only, and there is always a full copy at the

server. Specifically, as shown in Fig. 2, a video stream is partitioned into a prefix and a suffix, and the

beginning part of the later is also referred to as the prefix-of-suffix. The proxies are responsible to cache

the prefix of video, whereas the clients cache the prefix-of-suffix of video. Given that the initial part of

a video stream is normally the mostly accessed, this setting reduces the initial playback latency; it also

facilitates the multicast delivery with dynamic clients, as will be illustrated later. When a client expects

to play a video, it first initiates a playback request to its home proxy, which intercepts the request and

computes a streaming schedule: when and where to fetch which portion of the video. It then accordingly

fetches the prefix, prefix-of-suffix, as well as the remaining part of suffix, and relays the incoming stream

to the client. If needed, a proxy may also perform a verification operation, which detects forged video

data through a simple signature mechanism.

Considering the video contents and their access patterns are relatively stable in several hours or even

days, we advocate semi-static caching in COPACC. The cached contents are updated only when the system

parameters have drastically changed, and a cache reconfiguration is then applied through a progressive

cache filling mechanism.

There are two key issues to be addressed in the COPACC architecture:

� How to partition each video and allocate the prefixes and prefix-of-suffixes to different proxy and

client caches? The objective is to minimize the total transmission cost of the COPACC system given
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the video access patterns, the heterogeneous transmission costs, and the storage constraints.

� How to manage, search, and retrieve the cached data in different proxies and clients? These operations

should be highly efficient so as to deploy COPACC in large-scale networks with intensive requests.

To address the above challenges, we present an efficient allocation algorithm as well as a comprehen-

sive suite of cache management and search protocols in the next two sections. Before proceeding our

discussions, we first list the notations and parameters for COPACC, which are also summarized in Table

I.

We assume that there are
�

cooperative proxies, indexed from 1 through
�

, and proxy � serves as the

home proxy for ��� local clients. The video repository at the server includes � Constant-Bit-Rate (CBR)

videos, and video � has length �
	 seconds and rate ��	 bps, ��
������������������ . The total average access rate

at proxy � is ��� , and the probability for accessing video � is ��	� �"!$#	&%(' �)	� 
*�,+ . We assume such statistics

are known a priori, or obtained through online monitoring.

For cache allocation, there is a basic unit of - , also called cache grain, which is a hardware or operating

system constraint, e.g., the size of a disk block. The cache space for proxy � is .�/� units, and that for

client 0 of proxy � is .21�43 5 units. The volume of video � is also represented as a number of units, i.e.,

6 	7
$��	8�9	8:;- units. In practice, the aggregated cache space is less than the total volume of all the videos,

i.e. < />= < 1@? !$#	&%7A
6 	 , where < / 
 !$B� %7A . / � and < 1 
 !$B� %7A !$CED5 %7A . 1�43 5 are the total proxy cache size and

total client cache size.

The cost for transmitting one unit of data from the server to a proxy is denoted by FHGJI / , and, similarly,

the unit cost from proxy � to proxy 0 and that from proxy � to its own clients are represented by F / I /�43 5
and F 1LK /� , respectively.

We use MN	 to denote the prefix size (in units) of video � , and, OH	 , the prefix-of-suffix size. Both the

prefix or prefix-of-suffix of a video are further partitioned into several segments and cached at a proxy or

client. For video � , the size of a prefix segment cached in proxy � is represented by P 	� , and the size of a

prefix-of-suffix segment cached at the client 0 of proxy � is Q 	�43 5 . The segment sizes are to be determined

by the cache allocation algorithm, and the exact positions of the segments are to be determined by the
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cache organization protocol.

Parameter Definition�
Number of the videos���
Volume of video � (in units)�
Number of proxies�
Number of clients���
Number of local client attached to proxy 	
��� Cache space of proxy 	 (in units)
 � Total cache space of all proxies (in units)
����� � Cache space of client � of proxy 	 (in units)
 � Total cache space of all clients (in units)� �
Total access rate at proxy 	� �� Probability for accessing video � at proxy 	����� � Transmission cost per unit data from server to proxy� � � ���� � Transmission cost per unit data from proxy 	 to proxy �� ��� �� Transmission cost per unit data from proxy 	 to its client� ��� Internal cost per unit data of a proxy� �
Prefix size of videos � (in units) �� Size of the prefix segment of video � cached in proxy 	! �
Prefix-of-suffix size of videos � (in units)" ���� � Size of the prefix-of-suffix segment of video � cached at client � of proxy 	

TABLE I

PARAMETERS OF SYSTEM

IV. Optimal Cache Allocation (CAP)

The optimal cache allocation problem (CAP) in COPACC can be formulated as follows,

#%$'&)(+*-,/.1032547698;:=<?>@BADC :FEF>@HG IJA5KLCM9N�O7N < >@JC E >@HG IQPSRTC�UWVYX[Z NBN7N]\_^ Ca`'VYXbZ N7NBNdc @ ^ Cegf>[hji < >@lk 4]m@ Cegf>[hji E >@HG IQk 4Bn@HG IFCego@ hji <?>@qp ero@ hji ers �I hji Et>@HG I kvu > C

where
032547698;:=< >@BADC :FE >@HG IJA5K is the function of the total transmission cost (per unit time) given allocation

:=< >@ A and
:FE >@HG I A ; the second and third constraints follow the cache space limit of proxy U and that of

client ` of proxy U , respectively; the forth constraint applies because we do not consider replication in

this study. That is, the prefix and prefix-of-suffix are stored only once among the proxies and clients in

the network. In this section, we start our discussion from a simple scenario of no cooperation between

proxies, where the cache allocation for each proxy and its own clients can be examined independently.

We derive an efficient optimal solution for this scenario, which is then extended to accommodate multiple

cooperative proxies with client caching, i.e., a general COPACC system.
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A. Single Proxy with Client Caching

As said, we focus on a single proxy and its clients, both of which contribute cache spaces, but there is

no interactions with other proxies nor their clients. Since the transmission costs between this proxy and

all its clients are identical, we refer to this system as a homogeneous cost system. We drop the proxy

index (subscript � ) from the relevant parameters for ease of exposition.

This homogeneous cost system has a nice property that the total transmission cost depends only on

how the video streams are partitioned into prefixes and prefix-of-suffixes for caching. This is because all

prefixes are to be cached at the single proxy, and any allocation of the prefix-of-suffix segments across

the local clients yield the same cost due to the uniform cost for proxy-client transmissions. As such,

we can combine the cache of all the clients to form an aggregated cache space ��� , and, to derive the

minimum transmission cost, we only need to find the optimal values of �����
	 and �����
	 subject to cache

space constraints ��� and ��� .
We define an auxiliary cost function �����
����������� , which is the cost for delivering video � with prefix

size ��� and prefix-of-suffix size ��� . Note that �����! "�#��$%�& 	'�"�)(��&+* , 	�� is now equal to -/.�1032 ���#�
���
������� in this

simple scenario. Moreover, minimizing it is equivalent to maximizing the cost saving against the system

with no caching, i.e. maximizing - .�1032 4 �����
56�758�:9;���#�
�����7���<�#= .
We use a dynamic programming approach to solve the problem. Let > be a three-dimensional matrix,

where >?�
�@�A 
�8�@ #��� represents the maximum cost saving for videos 1 through �B�#C�DE�FDHGI� , when  ����
5JD
 ���DK�L�)� units of proxy cache and  A�M�
5JDH #�MDK���+� units of client cache are used. We have

>N�
�A�@ � �@ � �BO
PQR QS 5T�U�VOW5T�B5JDX ���DK�L�Y�B5ZDX #�[DK���\^]�_ ��>N����9ECY�@ ��`9;a)�Y�@ #�b9;ac����de���#�
5T��58�:9f���#��a��8�@ac���g	'�

5JDEa)��DX ��8��5JDKa'�MDX #���7a)�[dha'�[DKi���j

The matrix can be filled in plane-order starting from >N�
5T��56��58� to >?�
Gk��� � �g� � � , and the latter gives the

maximum cost saving. The minimum total transmission cost is therefore -/.�1032 ���+�
5T��58�B9E>N�
Gl�g�L�Y�g���#� ,
and the corresponding prefix and prefix-of-suffix partitioning can be obtained through backtracking the

iterations.
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Fig. 3. A logical view of multi-proxy with client caching.

This dynamic programming algorithm has time complexity ���������
	�����
������ , where � ���������������� !�#"%$
& � � & �('%) . It is applicable with arbitrary cost function * � ��+ ��,.-/� � , which can be instantiated given a specific

transmission scheme. As an example, assume both a server-to-client and a client-to-client transmissions

are unicast-based and relayed by a proxy, * � �0+ �1,.-2� � can be derived as 3�4 � �6587 
09:	 + � $ ) 7 
09;	 -2� $<�07>=1? 	 $
7 
09:	 �@� & �%A + �BA - � �C$D7 �FE �0+ � $ - � ��G , where the first four terms in the second part respectively represent

the costs for retrieving prefix, prefix-of-suffix, the remaining suffix, and the internal cost of the proxy, for

each playback request. Note that 7 �FE is the internal cost per unit data handled by the proxy. When there

is no caching ( + � � -/� ��H ), we have * � ��H , HB�:� & � 3I4 � �J�(7K=1? 	 $L7 
09:	 � . In the end of this section, we

further introduce multicast delivery to the system and derive the corresponding cost function.

The optimal cache allocation algorithm is practically feasible as it is executed off-line and the resulted

allocation lasts for a relatively long period of time. Furthermore, the computation complexity of the

algorithm can be reduced by using a large cache grain M . For storage overhead, a globally unique video

ID as well as the start time of each segment is stored together with the video data, and this is already

incorporated in the existing stream caching system.
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B. Multiple Proxies with Client Caching

We now consider the case of multiple cooperative proxies with client caching. Fig. 3 offers a logical

view of this general COPACC system, in which the segment of prefix and prefix-of-suffix of a video

are placed across different proxies and their clients, respectively, and the transmission of a video stream

thus involve interactions among several proxies and clients. Moreover, the unit transmission costs for the

proxy-to-proxy and client-to-proxy links can be heterogeneous. The cache allocation problem (CAP) thus

becomes much more complex than in the homogeneous cost system.

In fact, we formally prove that CAP is NP-hard in this general case (see Appendix A). We thus resort to a

practically efficient heuristics, which consists of two phases: first, it partitions the prefix and prefix-of-suffix

for each video; second, given the partitions, it allocates the segments of prefixes and prefix-of-suffixes to

the proxies and clients.

1) Partitioning of prefix and prefix-of-suffix: In this phase, we calculate the optimal values of ���
and ��� for each video, and, to achieve a computationally efficient solution, we do not address their

allocation across the proxies and clients. Instead, we approximate the system by a single proxy system with

aggregated proxy cache space ��� and aggregated client cache space �	� . Other parameters are approximated

as follows: video access rate 
���
������� 
 � , access probability ������������
 �!
"������ 
 � � �� , unit transmission

cost #$�&%'�(�)���*�,+-� 
 ������ + � # �&%'�� , and internal cost #$�/.0�1�2���,3546� 
 ��7��� 
 �8 ��� # �:9'���; 8 , that is, we consider

the cost for proxy-to-proxy transmissions as an internal cost, and assume # �:9'���; 8 is 0 if <=�"> .

Given the above transformation, an approximate solution can be directly obtained using the dynamic

programming algorithm for the homogeneous cost system.

2) Allocation to proxy and client caches: In this phase, we allocate the prefix and prefix-of-suffix to

the proxies and clients so as to meet the storage constraints at each proxy and client. The objective is

to minimize the average transmission cost, which is defined as the sum of average cost in delivering the

prefix and prefix-of-suffix to the requested clients. Once � � and � � are determined in the first phase, the

allocation for prefixes to proxy caches is independent from that for prefix-of-suffixes to client caches, and

vice versa. The reason is that the prefix and prefix-of-suffix are stored in different location, and they are
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transmitted to the requested clients separately. Thus, the two allocation problems are independent to each

other and we can solve them individually.

We first consider the allocation for prefixes. Let ���������
	��
������ be the transmission cost when the segment

of size � �� from the prefix of video � is stored in proxy 	 . The problem for optimal prefix allocation is

then formulated as

�������������! �#"%$ �'&� "%$ �(�)�*���
	��+���� �,�-/.0- �'&� "%$ � ��21'3 � �4�6587:9 -;-;-=<?>�! �#"%$ � ��A@ , � � �B	C5D7:9 -;-;-�EF>
-
For unicast delivery, � � �*���
	��+� �� � can be instantiated as

� � �*���
	��
� �� �61!G &�IH "%$ � ��KJML �ONP��RQ �IHTS LKU�V ��IHXWZY �IH\[ ��RH -
Let ]�^�_�����`	 �a1 �'&�RH "%$ J:L ��NP��RQ �IHbS LKU�V ��IHXWZY �IHc[ ��RH , the optimization objective for problem PA can be re-

written as
����� �' �#"%$ �'&� "%$ ]� � �����
	 �ed � �� . Note that, ]� � �*���
	 � is independent of � �� , and can be viewed as the

transmission cost when each unit prefix data of video � cached in proxy 	 . The above formulation for PA

thus can be relaxed as a linear programming problem if �f�� is not restricted to integers. In practice, this is

generally viable, for a video stream that can be partitioned with fine-granularity, and the total data cached

in any proxy is less than its maximum capacity for any optimal solution to the linear programming.

Similarly, we can formulate the optimal allocation problem for prefix-of-suffixes to be cached at clients

as follows, g �B���C�\� �  �#"%$ � &� "%$ �!hjik "%$ � U �����
	��0l%�=mn��RQ k �,�-o.0- � &� "%$ � hjik "%$ mp��RQ k 1�q �
� �6587#9 -;-r-=<a>�  �#"%$ mn��RQ ks@ , U�RQ k � 	t5u7#9 -;-;-�EF> �0lv587#9 -;-r-�w � >
where � U �����`	��0l%�=mn��RQ k;� is the transmission cost when the segment of size mx��RQ k from the prefix-of-suffix of

video � is stored in client l of proxy 	 . For unicast delivery, � U �����
	��0l%�=mn��RQ k � is given by

G &�RH "%$ m ��RQ k 7 L ��NP��RQ �RHTS L U�V ��RH S L U+V �� > Y �RH�[ ��IH �
which can be re-written as ]� U �*���
	��0l �)d m k� Q � if we define ]� U �����`	��0l �61 �y&�IH "%$ J L �ONP��RQ �IH S L U�V ��RH S L U�V �� W Y �RH�[ ��IH .
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Obviously, both the cost function and the problem SA itself have similar structure as that of problem

PA. The linear programming relaxation thus also applies. We will show later that such relaxation also

holds for multicast delivery.

We also compared the performance between the optimal solution to CAP and the proposed heuristics

solution. As there is no effective algorithm to solve CAP, we use the brute-force approach to find the

cache allocation of a small problem, which contains 20 media streams, 2 proxies and 10 clients. We found

that the solution obtained by our heuristics algorithm is comparable to the optimal solution, where the

performance difference is only around 1%. Thus, our heuristics algorithm provides an efficient way to

obtain a near-optimal solution.

C. Cost Function with Suffix Multicast

So far we have focused on unicast delivery only, and presented the corresponding cost functions. In this

subsection, we further consider multicast delivery, which is known as an efficient vehicle for streaming

to clients with requests close in time [15], [27]. However, though IP multicast has been widely adopted

within ISP networks, its deployment over the global Internet remains confined. We thus assume multicast

delivery at the path from a proxy to its local clients, but only unicast delivery from the server to a proxy or

between two proxies. This assumption does not limit the deployment of COPACC since unicast delivery is

always an alternative if local IP multicast is not supported. Yet, if IP multicast is enabled, the performance

of COPACC can be improved. Furthermore, Application Layer Multicast (ALM) can also be applied in

delivering data between the proxies and clients.

Even though multicast is only enabled at local paths, a proxy can still serve a series of requests from

its local clients for the same video using a suffix batching technique. Specifically, assume the first request

for video � arrives at time 0, the home proxy will fetch and relay the prefix of the video to this client

through unicast, which takes �������	�
� seconds; all the local requests arrive during interval �
�����������	�
��� will

then be batched with a single copy of the suffix for video � being multicast to all the requested clients.

In other words, the batching window is of size �������	�
� .

We now derive the cost function �����������
����� for the case of single-proxy with client caching. We assume
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that the video accesses follow a Poisson arrival, that is, the average number of requests arrived in the

batching window for video � is �������	��

����������������� . The cost per request for multicasting the suffix to batch

of clients is thus ��������� ��!"�$#%�"�&�'�(�����)�+*"�,�-��.��)�,��!/�$#0�/�1#(*/���'�(�2�435*/��6��7�8�9�:�;�/��

�����&�<���������=6 . Since

a prefix is always delivered using unicast, the cost function > � ��� �;? * � � is then given by:

��� �$@BA � ���)� �;! � #(� � �C�-� ���)� * � �-� .;��� ��! � #-� � #-* � �D�E� �43 * ��F�G��� � 

��� � ������� � � �G��� ���)� �E� �43 �H� ��I,J
Similarly, we can derive the cost function KL �M��� ?ONB?QP � of problem SA. For a batching windows contains�R�S�;�/��

�����&�<���,TVU����TVU � requests from proxy N W , we need only a single retrieval for the suffix distributed at

client caches and the server. The cost function KL �M��� ?ONB?QP � at proxy N is thus

X YT U[Z
\ ] � ���)�T �E� ���)�TV^ T=U �-� ���)�TVU�_�`�;� � 

��� � �<���,TVU�� �TVU �/a �,T U � �T U J
Regarding the cost function KL � ��� ?bN � of problem PA, it is exactly the same as that for unicast case

because a prefix is delivery through unicast only. In addition, if �'�\)c ���d c JeJfJ c ���Y , we have the following

observations for KL � ��� ?ON � :
g Given � ? � W
h �8� JiJiJkj 6 , KL �l��� ?bN �H�mKL �,��� W�?ON � is a constant for any Nnh �o� JiJiJHp 6 ;g Given NB?ON W h �8� JiJiJkp 6 , KL � ��� ?bN �H� KL � ��� ?ON W � is a constant for any � h �8� JiJ<J�j 6 .
Since clients often have common interests, it is likely that the distributions of video access probabilities

are similar at different proxies, that is, � �\nc � �d c JeJeJ c � �Y holds. The above observation thus leads

to an simpler yet optimal greedy algorithm for problem PA, as shown in Algorithm 1. Intuitively, this

algorithm always cache the most expensive prefix into the cheapest proxy, so as to minimize the total

transmission cost. Its complexity is qr� jts�u+vwj � , which is generally lower than directly solving the linear

programming problems (even if the simplex method [28] is used). A formal proof of the optimality of

this greedy algorithm can be found in Appendix B.
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Algorithm 1 Greedy prefix allocation
1: Sort proxies in ascending order of cost ��������	��

� ;

Store the results in


-List;

2: Sort videos in descending order of cost �������������� ;
Store the results in

�
-List;

3:

����

first component of


-List;

� � �
first component of

�
-List;

4: Cache as many units as possible for the prefix of video
� �

to proxy

 �

;

5: If proxy

��

has cache space left, then
�����

next component of
�
-List;

6: If prefix of video
� �

has not been fully cached, then

 � �

next component of


-List;

7: Repeat steps 4 to 6 until all prefixes are allocated.

V. Cooperative Proxy-Client Caching Protocol

As shown in Fig. 1, COPACC operates as a two-level overlay, where the first level consists of all

the proxies, and the second level consists of each proxy and its own clients. The interactions among

different entities in this two-level overlay are specified by a cooperative proxy-client caching protocol,

which consists of three subprotocols: cache allocation and organization, cache lookup and retrieval, and

client access and integrity verification. We now detail the operations, and address the practical issues

toward realizing the COPACC system.

A. Cache Allocation and Organization

All the cache allocation and organization decisions are implemented in proxies. The protocol starts

by establishing connections among the proxies, and an election algorithm is then executed to choose a

coordinator. We currently employ the distributed Bully algorithm [29], which opts for the proxy of the

highest computational power as the coordinator. The coordinator is responsible for collecting parameters

from all other proxies and then running the optimal cache allocation algorithm described in the previous

section.

Given ����� �"!#�$&%(' �# and )*�+�,�"!#�$&% �.-0/1 $&%32 �#34 1 , the interval of the prefix in video stream
�

is simply
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���������
	���
��
�
and that of prefix-of-suffix is

������	���
���������	���
����
. The coordinator should then determine the

position of each segment to be allocated to proxies and clients in the prefix and prefix-of-suffix. Since the

total transmission cost depends only on the segment size, COPACC employs a simple organization scheme:

for prefix of video � , allocate segment of interval
�������! "$#  &% �" 	���
 � �'�(�"'#  )% �" 	���
 � � in the video stream to

proxy * , and, for the prefix-of-suffix, allocate interval
�+�,���! "$#  �.-!/10�234#  65 �"87 3 	���
��9���(�"'#  �:-!/34#  15 �"87 3 	���
���� to

the clients of proxy * , which further partitions this interval into segments to be cached in its local

clients according to their cache spaces. Hence, the cache location of each interval of the stream can be

easily calculated from ; % ��=< and ; 5 �� 7 > < . As the coordinator keeps a full copy of the allocations, a lookup

request for the cache locations of a particular video stream can always be accomplished by contacting the

coordinator. To balance the load of the proxies, the coordinator also distributes the lookup information

uniformly to other proxies using a hash function ?A@B�DC ; that is, for video � , a copy of its cache location

information are kept by proxy ?A@B�9C as well. Since the proxies are persistent and reliable nodes, even the

simplest hashing like ?A@B�9CFEG@B�8HJI�KMLNC�O�P will work well in COPACC. In other words, COPACC does

not have to rely on a flooding-based search, nor a complex and costly distributed hash table (DHT), as

in many peer-to-peer systems.

B. Cache Lookup and Retrieval

For each playback request for video � from a client, its home proxy discovers and retrieves the video

data on behalf of its clients. This is accomplished by first issuing a cache lookup request QSRUT9T >WVYX � � � ,
which, according to the cache organization, can be directly submitted to proxy ?A@B�9C . Upon receiving the

location information from proxy ?Z@)�DC , the initiated proxy then issues a series of cache retrieval requests,

Q\[D]_^+[ � ]_`YabR � � � , to corresponding proxies for retrieving and then relaying the segments cached at proxies or

their clients. Finally, the un-cached part of the suffix is retrieved from the server.

When a proxy receives a retrieval request, it first checks whether the requested data has been cached.

If cached, it will stream the data to the requested proxy; if not, it will retrieve the data from the server,

store a copy in its own cache or its clients’ cache, depending on whether the content belongs to a prefix

or to a prefix-of-suffix, and then stream to the initiated proxy. This leads to a passive filling scheme with
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1: while Receive a request do

2: if �����������	��
���
�� ��� from local client then

3: Look up proxy ������������� get  �! �"$# and  &% �"'#
4: Send �����������(��
��)
�� ��� to proxy � for prefix of interval � * "&+-,.0/ , ! �.2143&5 �76 * " .0/ , ! �.218395 � �
5: Send � ���������(��
��)
 � ��� to proxy � for prefix-of-suffix of interval � * "&+-,.0/ , % �. 143&5 � 6 * " .0/ , % �. 143&5 � �
6: Retrieval remaining interval � : �<;>=?� 6�@ � � from server

7: Relay the stream to the request client

8: else if �����������	��
��)
�� ��� for prefix of interval � A 6 5 � then

9: Prefix of interval � A 6 5 � not exist in proxy cache � retrieval from server and store in proxy cache

10: Send prefix of interval � A 6 5 � to requested proxy

11: else if �����������(��
��)
�� ��� for prefix-of-suffix of interval � A 6 5 � then

12: Prefix of interval � A 6 5 � not exist in the cache of any local client � retrieval from server and store

in a local client’s cache

13: Send prefix-of-suffix of interval � A 6 5 � to requested proxy

14: else if �2
 BCB�DFE�GH� ��� from another proxy then

15: Reply  �! �"I# and  &% �"I#
16: end if

17: end while

TABLE II

CACHE LOOKUP AND RETRIEVAL

no need for a synchronized global replacement, that is, an empty cache space (or one with an outdated

cache allocation) will be filled up gradually following the requests from other proxies, which represents

the updated allocation.

C. Client Access and Integrity Verification

The client-side operations are relatively simple, which can be easily implemented in economical but

less powerful personal computers. In particular, a client is not involved in managing the overlay, nor

determining cache allocation and organization. It simply reports its available spaces to its home proxy.
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Fig. 4. An illustration of the cache lookup and retrieval operations. (1) client request to home proxy for video � ; (2) location lookup request

to proxy ���������
	 ; (3) retrieve and relay prefix segments from proxy cache; (4) retrieve and relay prefix-of-suffix segments from clients;

(5) retrieve and relay the remaining part of suffix from server.

The home proxy then determines and keeps the location for data cached in its local clients, and then

instructs the clients for caching the data. Given that clients are not trustable, a flexible and adaptive

mechanism is needed to verify the cached content. For the segment cached in the client, the home proxy

save a signature of the copy, such as its SHA-1 hash value. The overhead of such an verification is

relatively low. More importantly, note that the integrity verification can be enabled/disabled depending

on the importance of the content, as in many peer-to-peer systems. The verification frequency can be

adaptively set to control the verification overhead. A client contributes its cached data only upon a request

from its home proxy. The home proxy will then relay the data to the proxy initiated the request, and if

needed, verify the integrity of the data using the signature. As such, the system can easily identifies and

blocks malicious clients.
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VI. Performance Evaluation

In this section, we evaluate the performance of COPACC. We focus on the transmission cost reduced

by introducing cooperative caching among proxies and clients. We are also interested in examining the

robustness and scalability of this system, as well as identifying the key influential factors.

Unless otherwise specified, the following default settings are used in our evaluation. The video repository

in the sever contains 100 CBR videos each of 512 Kbps rate. Their lengths are uniformly distributed in

between 100 and 140 minutes; the mean (120 minutes) is a typical length of a movie. As suggested by

existing studies on media access patterns, we assume the access probabilities of the videos follow a Zipf

distribution with skew factor ���������
	�� [27]. The cache grain (unit) is set to the size of 2-minute video

data. All the cache sizes discussed in this section are normalized by the total size of the video repository,

and the transmission costs are normalized by the corresponding cost of a system with no cache. Therefore,

our conclusions are also applicable to systems with proportionally scaled parameters.

A. Effectiveness of Cooperative Proxy and Client Caching

A primary design objective of COPACC is to reduce the transmission cost for streaming to clients of

asynchronous requests. Hence, in the first set of experiments, we examine the cost reduction under various

proxy and client configurations.

We assume there are 4 proxies cooperated with each other, and the client access rate at each proxy

is 50 requests per minutes. The ratio between the unit transmission costs of different paths is set to


���������
���������
������ ����� ��� � � . Note that, this setting is indeed conservative as compared to that

in many previous studies [15]. In addition, we are interested in the normalized transmission cost, which

depends on this ratio, while not the exact value at each path.

Fig. 5 plots the transmission cost as a function of the total cache space in the system, where ! � � ! � �

� � � , i.e., the proxies and clients respectively contribute half of the total cache size. Not surprisingly,

increasing the total space reduces transmission cost. With unicast, the cost decreases linearly, while with

suffix multicast, it decreases much faster. When the total cache space is 0.2 (20% of the video repository),



20

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 c
os

t

Total cache space

Unicast w/o proxy cooperation
Multicast w/o proxy cooperation

Unicast w/ proxy cooperation
Multicast w/ proxy cooperation

LoopBack

Fig. 5. Transmission cost as a function of the total proxy-client cache
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Fig. 6. Transmission cost at different paths with suffix mulitcast.

the cost with suffix multicast has been reduced to 0.2; in other words, a 20% cache space leads to a 80%

cost reduction, which implies that batching the requests from local clients can avoid a significant amount

of remote transmissions (server-to-proxy). This can also be verified by Fig. 6, which shows the cost due

to server-to-proxy transmissions quickly decreases with an increase of the cache space, and becomes a

minor part in the total transmission cost when the cache space is over 0.4.

In Fig. 5, we also show the cost when a proxy cooperates with its clients only, while not with other

proxies. Clearly, the cost with cooperative proxies are much lower, particularly when multicast is also

enabled in local paths. As such, in the following discussions, we focus on the results with cooperative

proxies and multicast delivery only.

In addition, we compare COPACC with another hybrid caching system called Loopback [26]. Each

client in Loopback dynamically caches a portion of video, and a forwarding ring is formed among the

collaborative clients to distribute the video. The results shown in Fig. 5 illustrate that COPACC (with

multicast) performs better than Loopback. In particular, when the total cache space is 0.2, the transmission

cost in COPACC is one-third of that in Loopback. With the cooperation in deciding what to cache,

COPACC utilizes the buffer space by caching distinct segments among the proxies and clients, and ,thus,

achieves lower transmission cost.

To further identify the respective contributions of proxy caching and client caching, Fig. 7 depicts the
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Fig. 8. Transmission cost versus the fraction of the client cache space.

transmission cost versus the fraction of the proxy cache space in the total cache space. We can see that

the transmission cost reduces when the proxies contribute a higher fraction in the total cache space of

the system. Intuitively, the more cache space contributed by proxies, the more direct transmissions among

proxies for delivering a video stream, which generally incur lower costs, because the video data fetched

from a client’s cache have to be relayed by proxies as well. The best performance is thus achieved when

all cache space is in the proxies. Nonetheless, it is often expensive to upgrade dedicated proxies and add

more disk spaces. On the other hand, from Fig. 7, we find that, even if the proxy caches constitute a

small part in the total cache space, a near optimal cost can still be achieved. As an example, when the

total cache space is 0.6 and only 20% is from proxies, i.e., the total proxy cache space is only 0.12, the

cost is already less than 0.13, which is quite close to the optimal value (around 0.1) when the fraction of

proxy cache is 100%. In other words, client caching well complements proxy caching, making COPACC

a very economical alternative to pure proxy caching.

We also examine the benefit of client caching in the system. Fig. 8 plots the transmission cost versus

the fraction of the client cache space when the proxies contribute 10% of cache space. It shows that by

using client cache, the transmission cost can be further reduced. For example, when the clients contribute

20% of cache space, the transmission cost is 20% less than the pure proxy caching system.
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B. Robustness

As in peer-to-peer streaming systems, the robustness in the presence of client failures is also a critical

concern in COPACC. To evaluate this, we assume that each client has certain failure probability when its

own cache is accessed, but the video access rate from all clients remains constant. In Fig. 9, we show the

transmission cost as a function of different client failure probabilities. The total cache space of the system

is 0.4, and we vary, � , the fraction of the total proxy cache space in the total cache space from 0% to

100%, which represents two extreme cases: when ��� ��� , COPACC degenerates to a pure peer-to-peer

system, and, when ����� �	��� , it degenerates to a pure proxy-based system.

We can see that, when there is no client failure, the costs for different � are quite close if there are

certain cache spaces existing in proxies, and the pure proxy-based scheme is the best, which has been

explained previously. More importantly, the cost of the pure proxy-based system remains unchanged when

increasing client failures, and that for
����
 � 
 � ����� , or a normal COPACC system, is also very stable.

For illustration, even if � is 25%, the transmission cost only slightly increases with an increase of failure

probability; when the failure probability is 1, the cost remains a low as 0.22. This is because even if a

suffix is to be fetched from the server in the presence of client failures, the overhead, shared by a batch

of clients, is not excessive. To the contrary, the cost of the pure peer-to-peer system quickly increases and

reaches 1 (the cost of a zero-cache system), when all clients fail. Such results demonstrate that the use

of dedicated proxies with suffix batching remarkably improves the robustness and resilience of COPACC
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under real and synthetic network topologies.

in the presence of client failures, even if the total proxy cache space is minor as compared to the total

client cache space.

C. Scalability and Control Overhead

We further explore the scalability of COPACC with larger number of proxies and clients. Fig. 10 shows

the total transmission costs for different number of proxies and clients. In this set of experiments, we

increased the total number of videos to 1000. The cache space of each proxy, �
� �
, is set to 0.01, and that

of each client, ���� � � , is 0.0005. The access rate from each client is set to 0.01 per minute. In other words,

while a client joining the system contributes certain cache spaces, it also introduces more requests. Yet,

we observe that the transmission cost slightly decreases with more clients, implying that client caching

overcomes the increased loads. Note that the normalized cache space of each client is only 0.0005, or

equivalently, the half size of one video, which can be easily accommodated by personal computers. With

an increase of the number of proxies, we have observed a even more noticeable cost reduction, particularly

when the number is changed from 1 to 10. This confirms that proxy cooperation is worth considerations.

Although the cache allocation algorithm is executed solely by a dedicated proxy, it is practical in a

network with large number of nodes. It took less than a minute to solve a problem with 1000 videos,

20 proxies and 200 clients in our desktop computer. We expect the actual execution time in a dedicated

powerful proxy can be much shorter. Moreover, the execution time can be further reduced by increasing
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the cache grain.

The control overhead is also an important concern toward realizing COPACC. We define the overhead

of COPACC as the traffic volume of control messages (election, allocation, lookup, and retrieval, etc.)

over the total traffic volume, which obviously depends on the scale and streaming rate of the system. Note

that the control message is piggybacked in the data packet, that is, no additional packet is generated for

the control. Therefore, the control overhead of the system is kept in low level. In Fig. 11, we show the

overhead with different number of proxies and streaming rates. The number of clients per proxy is set to

50. It can be seen that the overhead is reasonably low, which is less than 0.3% of the total traffic even

with 20 proxies. In addition, the overhead decreases with higher streaming rates. This is mainly because

the messages are quite short as compared to video segments, and most messages are locally exchanged.

D. Sensitivity to Network Topologies

So far, we focus on regular network topologies with identical transmission costs between proxies. We

have also investigated the performance of our system under various synthetic and real network topologies.

Fig 12 shows the costs under three representative topologies: the 44-node SprintLink network and the

100- and 200-node Transit-Stub (TS) networks. The SprintLink network, representing the topology of a

typical backbone network in north America, is obtained from the Rocketfuel project at the University

of Washington [30]. The TS network is synthesized by the GT-ITM topology generator [31], which

attempts to reproduce the hierarchical structure of the Internet by composing interconnected transit and

stub domains. For both topologies, we randomly place the given number of proxies to the network nodes,

and set the link cost inversely proportional to the bandwidth of each link. A shortest-path routing is then

used to determine the path between proxies, and the cost of a path is the sum of costs across all the link

of this path. The server is connected to these proxies through a remote link: in SprintLink network, it

is assumed to be in Asia, and in TS network, we manually set the unit transmission cost to 5 times the

average cost between proxies.

It can be seen that, under all the three network topologies, the transmission costs of COPACC are

pretty low and generally decrease with an increase of the number of proxies. The performance under
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the TS topology is slightly better, suggesting that COPACC works well with a hierarchical network

structure, where local transmission cost is much lower than remote transmission cost. It is worth noting

that SprintLink network also follows a hierarchical structure, but many low-level nodes are abstracted into

a single nodes. Moreover, the proxies in our evaluation are randomly placed. We thus expect a even better

performance when the proxies are strategically placed and cooperated with each other in closer distances.

VII. Conclusion

This paper has introduced COPACC, a novel cooperative proxy-client caching system that combines

the best features of proxy caching and peer-to-peer communications. It leverages the client-side caching

to amplify the aggregated cache space and relies on dedicated proxies to effectively coordinate the

communications. We have developed an efficient cache allocation algorithm for distributing video segments

among the proxies and clients. We have also proposed a comprehensive suite of protocols that facilitate

the interactions among different network entities. It also enables smart and cost-effective cache indexing,

searching, verifying operations in this hybrid caching system.

The performance of COPACC has been evaluated under various network and end-system configurations.

Our key findings can be summarized as follows: 1) With an amplified total cache spaces, cooperative proxy-

client caching significantly reduces the transmission cost for on-demand media streaming; 2) With the

assistance from dedicated proxies, it is much more robust than a pure peer-to-peer system, even though

the proxies may contribute only a small fraction of the total cache space; and 3) It scales well in larger

network, and the cost generally reduces when more proxies and clients cooperate with each other.

We have demonstrated that COPACC works well for symmetric links. However, while many LAN

technologies are symmetric, e.g., Ethernet, certain types, like ADSL, have restricted uploading speeds,

which may reduce the effectiveness of COPACC. Firewalls could have the same effect. This problem

has been a key obstacle to the success of many other peer-to-peer applications, and we expect that

the potential solutions to these applications can help COPACC as well. We are currently investigating

these issues. Other issues, like how to accurately estimate the system parameters or how to model the

participation incentive[32], [33] and security issues[34], should be well addressed in practice. Besides, we
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are also interested in studying how replication can be used to improve the robustness of COPACC under

unexpected client leave.

APPENDIX

A. NP-Hardness of the CAP problem

In this appendix, we prove that the general optimal cache allocation problem (CAP) is NP-hard. We

show this by transforming the optimal resource allocation problem (RAP) to CAP in polynomial time. It

is known that RAP is NP-hard and its decision version is NP-complete [35].

In RAP, there are � kinds of resources to be allocated to � activities, indexed from 1 through � ,

and the total available quantity of resource �������
	��
�
������� is ��� . The objective is to minimize the cost in

allocating the resources to activities, which can be formulated as:

�����������! #"%$&
')(�* & � "%+� ')(�, & �.- & �/�.01 �32
� " $&4')( - & �657�6�809�;:<	=0?>@0/�A�B�A0�CD0
- & �6�FE6GH0

where - & � is the quantity of resource � allocated to activity I , , & � is the effectiveness for each unit of

resource � allocated to activity I , and * & �J� is a convex and non-increasing cost function for activity I with

given allocations.

Note that the resources and activities in RAP are analogous to the cache spaces and videos in CAP,

respectively. Given an instance of RAP, we can create a CAP problem with the following settings: K
L� :
�M� , K
N��O P : Q , and R &� : - & � , IS�T�
	=�B�B�U�V�J09�W�T�
	=�B�B�UXY�Z0?[\�]�
	^�A�B�U_`�.� . Since a`bcK/de�gf.R &�
h 0/f8i &��O P8h � can be

arbitrary function, we set it as * & � "%+� ')( , & �gR &� � . We further set j & to
"%+� ')( �6� , such that the constraint

"lk� ')( R &��m "%k� ')( "onqpP ')( i &��O P 5rj & in CAP is always satisfied. Given this transformation, it is obvious that

an optimal solution to CAP, R &� , leads to an optimal solution to RAP: - & �s:tR &� 0�I��r�
	=�B�B�U�V�J09�S�t�
	^�A�uXY� .
Since transformation is in polynomial time, it follows that problem CAP is NP-hard.
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B. Optimality of the Greedy Algorithm

In this appendix, we prove the optimality of the proposed greedy algorithm for PA with ������ ������
	
	
	 � ���� . We define the matrix of the unit transmission costs �
������������

after executing step 1 through 2 as:

�����
�

�
 � ����� �!� �
 � �����#"$� 	 	%	 	 	 	 �
 � �����'&(��
 � �)"*� �!� �
 � �)"*�#"$� 	 	%	 	 	 	 �
 � �)"*�'&(�
...

... �
 � �+�,����� . . . ...�
 � �.-/� �0� �
 � �.-/�#"�� 	 	%	 	 	 	 �
 � ��-1�2&(�
3�4444
5

where �
 � �+�,����� �76 �8�9;: �=<?> �A@B�8�C 8 9ED >GF.H �8 9JILK 8 9 � �8�9 . Since � �8 � � �8M9 for all
�ON� �QP

, we can drop subscript
�

of

� �8 and simplify the calculation of �
 � �+�,�����
as � ��R 6 �8�9S: � <?> �A@B�8�C 8 9 D >GF�H �8 9 ITK 8M9 . We have the following two

observations on �
 � �+�,�����
:

Observation 1. Given
�,�2U�WVYXZ� 	%	 	 -\[

, �
 � �+�,�����,] �
 � ��U�,�^�*�
is a constant for any

�_VYXZ� 	 	 	 &1[
.

Proof: �
������������,] �
�����U�,�����
� � �`R 6 �8 9 : � < > �A@B�8�C 8 9ED > F�H �8 9 I K 8 9 ] �`a�`R 6 �8 9 : � < > �A@B�8�C 8 9(D > F�H �8 9 I K 8 9
� � � ] � a�
� �
�������� U���,] �
���� U�,� U���

.

Observation 2. Given
��� U�_VYXZ� 	%	 	 &/[

, �
 � �+�,�����,] �
 � ���,� U�*�
is a constant for any

�WVYXZ� 	%	 	 -\[ 	
Proof: �
 � ���������,] �
 � �+�,� U���

� � �`R 6 �8 9 : � < > �A@B�8�C 8�9 D >bF�H �8�9 I K 8�9 ] � �`R 6 �8 9 : � < > �A@B�a82C 8M9 D >bF�H �8�9 I K 8�9
�c6 �8 9 : � < > �A@W�8MC 8�9 D >bF�H �8�9 I K 8M9 ] 6 �8 9 : � < > �A@B�a82C 8M9 D >GF.H �8M9 I K 8�9
� �
 � � U�������,] �
 � � U�,� U���

.

Note that the proxies are sorted in ascending order of cost �
��������^�*�
and the videos are sorted in

descending order of cost �
 � �+�,� �!�
in the greedy algorithm, that is, �
 � ����������d �
 � ��������Pe�

for
�fdg��P

and

�
 � �+�,�����ih �
 � ����Pj�����
for

�kdl��P
. We then have another two observations:
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Observation 3. ��������	��

��� ��������	��
����
���� ����������������

��� ����
�����������
����

� for
���� �"!�#$#%#$����� !&�('

and

�
)���"!�#$#%#$�*
+�,!&��'
.

Proof: From observation 1, we have
�-�����	��

��. ����������/��0��

�21 �����������
3�4�

��. ����������/��0��
��4�
��2165 ,

where
5

is a constant. This is equivalent to �� � ���	��

�71 598 �� � ���$�:��0��

� and �� � ���	��
;�<�
���1�5=8 �� � ���$�:�����
;�<�
>� .
Here, ? �-5@�A! because ��������	��

�B� ��������;� �����

� for

���C ? . It follows that

��������	��

��� ��������	��
+�-�

�
1�5+8 �� � ���=� ��0��

����5D8 �� � ���=� ��0��
D� �

�
� �� � ���;� ����E
���� �� � ���;� �����
D� �

� .

Observation 4. �� � �����E
GF �

�H� �� � ������

��C �� � ���IF �����
�F �

��� �� � ���IF ����E
�� for
��J�/�K!7#%#$#$��LM���E�('

and

�
)���"!�#$#%#$��NO�P

��'
.

Proof: From observation 1, we have �� � ���;F ����E
��	. �� � ���	��

�Q1 �� � ���=F ��	��
DF �

��. �� � �����E
+F �

��1SR ,
where

R
is a constant. This is equivalent to ��������TF)��	��

��1�R>8 ��������	��

� and ��������TF@�����
UFV�

��1�R>8 ��������	��
WFX�

� .

Here, ? �-RQ�A! because �� � ���IF���	��

�Y� �� � �����E
�� for
���C ? . It follows that

��������	��
�F��

��� ��,�Z�����E
��
C R[8 �� � ���	��
�F��

����RY8 �� � ���	��

�
1 ��������IF �����
QF �

��� ����
���\F �����

�

The above two observations imply that swapping one unit data of video
�

in proxy



with that of video
��]

(
�^]I���K!7#%#$#_���U�/!_�('

) in proxy

`]

(

Z]I���K!�#$#$#%�a
G�/!&��'

) yields the same or higher total cost, and, similarly,

swapping one unit data of video
�

in proxy



with that of video
� ]

(
� ] �b�a����Fc!&�U#%#$#0Ld'

) in proxy

 ]

(

`]W�/�a�*
GFe!&�U#$#%#�Nf'

) yields the same or higher cost. As the prefixes are fully packed to the proxies and

there is no space left, the solution given by the greedy algorithm is optimal.

Acknowledgement: The authors like to thank the referees for their insightful and useful comments for

improving the quality and presentation of this paper. This research was supported in part by the RGC

Grant CUHK/4186/03E.



29

REFERENCES

[1] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting Real-time Video over the Internet: Challenges and Approaches,” Proceedings of

the IEEE, vol. 88, no. 12, Dec. 2000.

[2] L. Golubchik, J. C. Lui, and R. R. Muntz, “Adaptive Piggybacking: A Novel Technique for Data Sharing in Video-On-Demand Storage

Servers,” ACM Journal of Multimedia Systems, vol. 4, no. 3, June 1996.

[3] S. Lau, J. C. Lui, and L. Golubchik, “Merging video streams in a multimedia storage server: complexity and heuristics,” ACM Multimedia

Systems, vol. 6, no. 1, pp. 29–42, Jan. 1998.

[4] S. Lau and J. C. Lui, “Scheduling and data layout policies for a near-line multimedia storage architecture,” ACM Multimedia Systems,

vol. 5, no. 5, pp. 310–323, Sept. 1997.

[5] P. W. Lie, J. C. Lui, and L. Golubchik, “Threshold-based dynamic replication in large-scale Video-on-Demand systems,” Multimedia

Tools and Applications, vol. 11, no. 1, pp. 35–62, May 2000.

[6] J. Liu and J. Xu, “Proxy Caching for Media Streaming over the Internet,” IEEE Communications, vol. 42, no. 8, Aug. 2004.

[7] J. Wang, “A Survey of Web Caching Schemes for the Internet,” ACM Computer Communication Review (CCR), vol. 29, no. 5, Oct.

1999.

[8] S. Chen, B. Shen, S. Wee, and X. Zhang, “Designs of High Quality Streaming Proxy Systems,” in Proc. IEEE INFOCOM’04, Hong

Kong, Mar. 2004.

[9] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for Multimedia Streams,” in Proc. IEEE INFOCOM’99, New York, NY,

Mar. 1999.

[10] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-Based Proxy Caching of Multimedia Streams,” in Proc. 10th international conference

on World Wide Web (WWW-10), Hong Kong, May 2001.

[11] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous Streaming Multicast in Application-Layer Overlay Networks,” IEEE JSAC,

vol. 22, no. 1, Jan. 2004.

[12] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: Peer-to-peer Media Streaming using CollectCast,” in Proc.

ACM Multimedia, Nov. 2003.

[13] S. Chen, B. Shen, Y. Yan, S. Basu, and X. Zhang, “SRB: Shared Running Buffers in Proxy to Exploit Memory Locality of Multiple

Streaming Media Sessions,” in Proc. 24th International Conference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar.

2004.

[14] Z. Miao and A. Ortega, “Scalable Proxy Caching of Video Under Storage Constraints,” IEEE JSAC, vol. 20, no. 7, pp. 1315–1327,

Sept. 2002.

[15] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal Proxy Cache Allocation for Efficient Streaming Media Distribution,” in Proc.

IEEE INFOCOM’02, New York, Jun. 2002.

[16] S. G. Dykes and K. A. Robbins, “A Viability Analysis of Cooperative Proxy Caching,” in Proc. IEEE INFOCOM’01, Apr. 2001.

[17] M. Hofmann, T. E. Ng, K. Guo, S. Paul, and H. Zhang, “Caching Techniques for Streaming Multimedia over the Internet,” Technical

Report, Apr. 1999, Bell Labs.



30

[18] S. Acharya and B. Smith, “Middleman: A Video Caching Proxy Server,” in Proc. ACM NOSSDAV’00, Jun. 2000.

[19] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Zegura, “Silo, Rainbow, and Caching Token: Schemes for Scalable, Fault

Tolerant Stream Caching,” IEEE JSAC, vol. 20, no. 7, pp. 1328–1344, Sept. 2002.

[20] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-peer Scheme for Media Streaming,” in Proc. IEEE INFOCOM’03,

San Francisco, CA, USA, Apr. 2003.

[21] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Distributing Streaming Media Content Using Cooperative

Networking,” in Proc. ACM NOSSDAV’02, May 2002.

[22] Y. Chawathe, S. McCanne, and E. Brewer, “An Architecture for Internet Content Distribution as an Infrastructure Service,”

http://www.cs.berkeley.edu/yatin/papers/scattercast.ps.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-tolerant

Wide-area Data Dissemination,” in Proc. ACM NOSSDAV’01, NY, Jun. 2001.

[24] M. M. Hefeeda, B. K. Bhargava, and D. K.-Y. Yau, “A Hybrid Architecture for Cost-Effective On-Demand Media Streaming,” Computer

Networks, vol. 44, no. 3, pp. 353–382, Feb. 2004.

[25] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang, “PROP: A Scalable and Reliable P2P Assisted Proxy Streaming System,” in Proc.

24th International Conference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004.

[26] E. Kusmierek, Y. Dong, and D. Du, “Loopback: Exploiting Collaborative Clients for Large-Scale Streaming,” in SPIE Conference on

Multimedia Computing and Networking (MMCN’5), Jan. 2005.

[27] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On Optimal Batching Policies for Video-on-Demand Storage Servers,” in Proc. IEEE

International Conference on Multimedia Computing and Systems (ICMCS’96), Jun. 1996.

[28] G. B. Dantzig, “Linear Programming and Extensions,” Princeton University Press, 1963.

[29] H. Garcia-Molina, “Elections in A Distributed Computing System,” IEEE Transactions on Computers, vol. 31, no. 1, pp. 48–59, Jan.

1982.

[30] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topologies with Rocketfuel,” in Proc. ACM SIGCOMM’02, Aug. 2002.

[31] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an Internetwork,” in Proc. IEEE INFOCOM’96, SF, CA, Mar. 1996.

[32] T. Ma, C. Lee, J. C. Lui, and D. K. Yau, “Incentive and Service Differentiation in P2P Networks: A Game Theoretic Approach,”

IEEE/ACM Transactions on Networking, to appear.

[33] ——, “A Game Theoretic Approach to Provide Incentive and Service Differentiation in P2P Networks,” in ACM Sigmetrics/Performance

Confernece, New York, USA, June 2004.

[34] S. Yeung, J. C. Lui, and D. K. Yau, “A Multi-key Secure Multimedia Proxy Using Asymmetric Reversible Parametric Sequences:

Theory, Design, and Implementation,” IEEE Transactions on Multimedia, vol. 7, no. 2, April 2005.

[35] N. Katoh, T. Ibaraki, and H. Mine, “Notes on the Problem of the Allocation of Resources to Activities in Discrete Quantities,” Journal

of Operational Research Society, vol. 31, pp. 595–598, 1980.


