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Abstract

Although IP-multicast has been proposed and investigated for years, there are major prob-
lems inherent in the IP-multicasting technique, e.g., difficulty to scale up the system, dif-
ficulty in allocating a globally unique multicast address, complexity in supporting higher
level features such as reliable data transfer and congestion/flow control, more importantly,
difficulty to deploy on the current Internet infrastructure due to necessity to change many
core routers. Recently, End-System Multicast (ESM) has been proposed as an alternative
solution so that multicasting services can be quickly deployed. In this paper, we consider
the “architectural” and “optimization” issues on designing an ESM-tree. Specifically, we
present a distributed algorithm on how to create and maintain an ESM-tree. We propose a
distributed algorithm to perform tree optimization (TO) so that an ESM-tree can dynami-
cally adapt to the changing network condition (e.g., drop in transfer bandwidth) so that the
nodes within an ESM-tree can receive data more efficiently. The distributed algorithm has
the important theoretical properties that at all times, a tree-topology can be maintained
and any node joining, leaving, as well as any tree optimization operation will not “par-
tition” the underlying ESM-tree. Therefore, our work can be used to provide an efficient
architectural infrastructure for ESM services. We have implemented a prototype ESM sys-
tem and carried out experiments to illustrate the effectiveness and the performance gains
of our ESM optimization protocol.
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1 Introduction

Multicasting is a mode of communication between a sender and many receivers.
The main advantage of multicasting is that a sender only needs to send the data
once so that significant network transmission resources can be saved. IP multicast-
ing[9,12,13,15,26,32,28] is a conventional way to provide the multicasting services
over IP networks. To support IP multicasting, routers within the IP networks need
to be “modified” so as to maintain many multicast state informations, e.g., mem-
bership for each multicast group, input/output ports for each multicast group so as
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to perform proper packet forwarding, packet error recovery and congestion control
within a multicast group.

There are major problems[10,14,40] in deploying the IP multicast on the Inter-
net. IP multicast requires the core routers to maintain multicast group membership.
This not only violates the “stateless” principle of the original Internet design, but
also introduces high design/implementation complexity on routers. A “stateful” IP
multicast router [17] implies a major scalability problem[17]. Also, IP multicast
requires each multicast group to obtain a globally unique IP multicast address for
communication but this unique address allocation is difficult to ensure in a dis-
tributed, scalable and consistent manner. Also, to multicast data in a reliable and
secure fashion, router needs to participate in the error recovery [20,42] and conges-
tion control processes[4,5,24,?,23,34,35,37,39]. Since not all routers in the Internet
are IP-multicast enabled, this creates a major deployment problem.

One way to overcome the problems described above and to deploy the multicasting
service quickly is to use the end-system multicast (ESM) approach[6,10,19,21,44,33].
In essence, an ESM is an approach to rely on end hosts to provide all multicast
related functions, such as group management and multicast routing based on IP
unicast. The main advantage of ESM over the IP multicast is that ESM does not re-
quire core routers support and hence resolve the deployment problem. To realize an
ESM service, most multicasting functionalities are pushed up to the end systems,
instead of relying the support from the core routers.

Although authors [1,2,10,11,30,41,7] demonstrate the flexibility and advantages
of using an ESM to deliver multicasting services, there are still many unresolved
issues. For example:

(1) What is the proper software architecture to manage the group membership?
(2) How to make sure that an ESM topology is a tree structure � so as to have

efficient group communication?
(3) How end system can adapt to the changes of network condition (e.g., sudden

drop in network bandwidth) and still be able to deliver information efficiently
to all members?

All these issues require a careful architectural and software design so as to avoid
problems such as distributed deadlock and data inconsistency. The contribution of
our work is that we consider “architectural” and “optimization” issues on designing
an ESM-tree. Specifically, we present a distributed algorithm on how to create and
maintain an ESM-tree. We propose a distributed algorithm to perform tree opti-
mization (TO) so that an ESM-tree can dynamically adapt to the changing network

� A non-tree structure implies that some data will be sent in a redundant fashion and
thereby consuming more network resources. On the other hand, a non-tree structure can
provide redundant paths so as to enhance reliability. Note that our ESM system can be
extended to mesh structure by simply taking the union of multiple trees.
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condition, e.g., drop in transfer bandwidth, so that nodes within an ESM-tree can
receive the data more efficiently. The proposed distributed algorithm has the im-
portant theoretical properties that at all times, a tree-topology can be maintained
and any node joining, leaving, as well as any tree optimization operation will not
“partition” an ESM-tree. Therefore, our work can be used to provide an efficient
architectural infrastructure for ESM services.

The outline of the paper is as follow. In Section 2, we present our architectural
as well as different components of an ESM system. In Section 3, we present the
distributed algorithm for the ESM-tree formation, data transfer, tree optimization
and node leaving protocol. In Section 4, we carry out experiments on our prototype
system as well as NS2[31] simulation to illustrate the functionalities as well as
the performance of the proposed ESM architecture. Related work is presented in
Section 5 and conclusion is given in Section 6.

2 System Architecture

In our proposed ESM system, an end system (or end host) is represented as a node
in an ESM-tree. There are three different types of nodes in an ESM-tree, they are:
i) a root node (

���
), ii) a bootstrap node (

���
), and iii) any participating client node

(
���

for ���
	���
�������� ). The root node
���

is the source of data and it is responsible for
initiating the multicast session. For the ease of presentation, we assume that there
is only one root node in an ESM system. Note that the proposed algorithm can
easily accommodate an ESM-tree with multiple source nodes. The root node has a
fan-out constraint ( ��������	 ), which limits the number of directly connected client
nodes. To initiate an ESM session, a root node needs to register with a specific
bootstrap node. A bootstrap node

���
is a well-known server that stores the group

information about a multicast session. For example, it stores the root node’s ID
(e.g., IP address) as well as ID of any client node in an ESM-tree. Whenever a
new client (let say

���
) wants to join an ESM session, it first contacts the

���
node.

Under the ESM architecture, a client node may also play a role of a sender to other
client nodes. For each client node, there is a fan-out constraint, which is denoted
by � � ��	 . Again, this sets the upper bound on the number of client nodes that can
be attached to the node

���
.

Since the network conditions such as available bandwidth and transmission delay
are changing from time to time, to ensure the efficient operation of an ESM system,
each client node will periodically test whether the current data transfer bandwidth
from its parent node is satisfactory or not. If the transfer bandwidth is not satisfac-
tory, then a client node will initiate a tree optimization(TO) operation so as to find
another parent node that can provide a higher transfer bandwidth. We will address
this operation in detail in Section 3.

The high level operation of our ESM system is as follow. The root node
���

first
contacts a well-known bootstrap server

���
for the ESM initialization. A client node
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� �
can participate in the multicast service by first joining the ESM-tree. This is

accomplished by first contacting the bootstrap node
� �

. In return,
���

replies a list of
potential clients to

���
when

� �
wants to attach to an ESM-tree. The client node

���
then chooses a parent node from this returned list. After the successful attachment
to the ESM-tree, the client node

���
can receive data from its parent. Data transfer is

accomplished in a “pipeline” fashion, that is, a client node plays a role as a sender
and a receiver at the same time (except those clients nodes which are the leaf nodes
in an ESM-tree). Also, a client node

���
may choose to find a new parent node if the

transfer bandwidth from its parent node is below some predefined threshold. In this
case, tree optimization operation will be invoked. The main challenge of designing
an ESM system is to make this distributed system “scalable” and “consistent”,
e.g., without deadlock and loop formation. Again, we will explain in detail the
operations and protocols of the propose ESM system in Section 3.

We made the following assumptions about our proposed ESM system: 1) nodes in
the ESM-tree can communicate with each other by exchanging control messages
only (e.g., via TCP). 2) Control messages will not be lost or altered and are correctly
delivered to their destination nodes in a finite amount of time. 3) Control messages
will be delivered in the order they are sent. 4) Each node has a first-in-first-out
queue to store the arrived control messages and they will be processed in a first-
come-first-serve manner, and 5) data transfer between nodes can be carried out
using either the TCP or UDP protocols.

3 ESM Protocols

In this section, we describe various ESM protocols
�

. In Table 1, we first define
various notations which will be useful for the discussion on the ESM system con-
sistency via the distributed locking operations. At any time, the ESM management
protocol ensures that any node

���
can only be in one of the following states: (1)

Both
� ��� ���

and
� ��� ���

are empty, or (2)
� ��� ���

is not empty and
� ��� ���

is empty, or (3)� ��� ���
is not empty and

� ��� ���
is empty. This property is to ensure that there can be

no “loop” within an ESM-tree and thereby eliminate the possibility of an ESM-tree
partition event.

3.1 ESM: The Tree Formation Protocol

When a node
���

wants to join an ESM-tree,
���

first gets a partial ESM-tree topol-
ogy from the bootstrap server. Then,

���
finds a potential parent node, say node

�
	
,

from this partial ESM-tree topology. After that,
���

tries to take a “LP Lock” in the
potential parent node. In essence, a

���
	�� �
is a lock to indicate that node

���
wants to

attach to node
��	

. Finally,
���

makes a real connection to its new parent, node
�
	

.

�
For examples and illustrations of these protocols, please refer to [38]
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Notations

��� the well-known bootstrap server

��� the root node

��� a client node with identifier
�

(
�

may be IP address, host name . . . etc.)� � the “fan-out” limit of a node ��� .
����� number of children nodes which are connected to the client node ��� .� � the parent node of ��� .	 � the sub-tree rooted at node ��� .� ��

� � � ��

� � is a list in node ��� which contains information of other nodes in an ESM-tree. Each

entry in
� ��

� � has the form of � ��� � IP address of ��� � � ��� .��� ��� � ��� ��� � is a lock indicates that node ��� is locked by node ��� , where ��� is an ancestor of��� . Therefore, ��� cannot be a new parent node for other nodes in an ESM-tree. We use

this lock for the tree optimization operation.��� ��� � ��� ��� � is a lock indicates that node ��� is currently locked by node ��� . Therefore, ��� is a
potential parent node for ��� .��� ��� � ��� ��� � is a lock indicates that node ��� is currently locked by node ��� with “LW” type of
lock. After that, ��� needs to reject all the new coming “LP” and “LR” locking request.� ��� � � the set of

� �
locks that are taken on node ��� .� ��� ��� the set of

� �
locks that are taken on node ��� .� ��� ��� the set of

���
locks that are taken on node ��� .

Table 1
Notation for ESM

The procedure for a client node
���

to join an ESM-tree is described as follow:

Procedure join ESM(INPUT:address of bootstrap server, OUTPUT:NULL)
01 �
02 while � � is not connected to the ESM-tree �
03 /* use some selection criteria for selecting */
04 /* a sub-list from bootstrap node � � */
05 contact � � to get sub-list of ���! �" � ;
06 "$#&%(')�*�! �" �,+.-

sub-list of �*�! �" � ;
07 / +0-21 "3#4%('5�*�6 4" �31 ; /* number of potential parent node */
08 sort "3#4%('5�*�6 4" � according to performance metric (e.g delay or available BW) ;
09 for 7 from 0 to / -98 �
10 send “join” request to "$#&%(')�*�! �" �3: 7<; ; /* sends LP locks */
11 wait for reply from "3#4%('5�*�! �" �6: 7<; ;
12 if( reply == success ) �
13 /* "$#&%('5���! �" � : 7<; is the new parent node */
14 = � = "$#&%(')�*�! �" � : 7<; ;
15 /* receive the ESM-tree topology from parent */
16 receive ���! 4" � � from = � ;
17 �*�! �" �,+.- �*�! �" � � ;
18 � � is connected to the ESM;
19 break;
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Fig. 1. Bootstrap procedure

20 �
21 �
22 �
23 /* broadcast � � is part of the tree */
24 � � update status via flooding;
25 �

In the above procedure, ������� � �	��� ��
 � �	��� � contains a subset of nodes IDs stored
in
���

. Various methods can be used to select ������� � �	��� � from
� �
��� � , for example:

(1) randomly select a node from
� �
��� � , (2) select those nodes in

� �
��� � that have not
reached the fan-out limit, or (3) use “IP address” and subnet mask to select nodes
in

� �	��� � such that they are within the geographical neighborhood of
� �

. Node
� �

can sort all nodes in ������� � �
��� � according to some performance metrics. For ex-
ample, one can use the packet train techniques[3,16,25] to determine the available
bandwidth between

� �
and its potential parent nodes or node

���
can use the “ping”

utility to estimate the round trip delay between its potential parent node.

After knowing the connectivity condition of these nodes,
���

will sort them and
contact one of the node with the highest performance measures. If the node

� 	
,

which
� �

contacted, can admit
���

as its children,
� �

will receive an ESM-tree
topology information from

��	
(
� �

’s new parent) and become one of the child of� 	
. Finally,

� �
will send an ESM broadcast message (via flooding) to inform other

nodes within the ESM-tree that it had became a child of
� 	

.

Figure 1 illustrates a scenario wherein the ESM-tree has a root node
���

and five
client nodes (

�
� to

���
). A new client node

���
wants to join the multicast session.���

first sends a request to
���

to get the current information of the ESM-tree. The
bootstrap node

���
returns a subset of client nodes which are currently connected

to the ESM-tree. Given these subset of nodes,
���

can determine which node is the
most favorable parent node by testing the available transfer bandwidth or delay be-
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tween these potential parent nodes and
���

. Assume that
���

wants to join
�

� , it
then sends a “join request” to

�
� . Upon receiving the “join request”, a node, say� 	

, executes the following procedure:

Procedure reply join request(INPUT:NULL,OUTPUT:NULL) �
01 �
02 if � 	 receive a “join” request from � � �
03 /* Test whether some ancestors of � 	 locked the node � 	 by

LR */
04 if(

1 � 	 � ��� 1 != � )
05 send “fail” to � � ;
06 /* � 	 or ancestors of � 	 want to leave */
07 else if(

1 � 	�� ��� 1
!= � )

08 send “fail” to � � ;
09 /* � 	 had reach its Fan-out limit */
10 else if( ��� 	 +

1 � 	�� � � 1������ 	 )
11 send “fail” to � � ;
12 else �
13 Add ��= 	 � � into � 	 � ���
14 send “success” to � � ;
15 ��� 	 ++;
16 /* Tell the new child current ESM-tree Topology */
17 send �*�6 4" 	 to � � ;
18 Remove ��= 	�� � from � 	�� ���
19 �
20 �
21 �

In the example of Figure 1,
�

� checks whether
�

�
� ���

is empty or not. If
�

�
� ���

is
not empty, which implies that some other nodes try to select

�
� as parent, then

�
�

should reject the join request. Then, node
�

� checks whether
�

�
� ���

is empty or
not. If

�
�
� ���

is not empty, which implies that some ancestors of
�

� want to leave
the ESM-tree, then

�
� should reject the join request also. When node

� �
receives

a rejection message from node
�

� , node
���

can choose other node from the subset
list as its potential parent and the whole process repeats. If

�
�
� � �

is empty, then
�

�

checks the following condition of 	 � �
� � � 	�
 �
� ��� � � � This condition implies that

the fan-out limit of
�

� has not been reached. If the condition is not satisfied, then�
� has to reject the join request. If the condition is satisfied, then

�
� adds

���
�
� �

into the set
�

�
� � �

and sends an accept message back to
���

. After this,
�

� sends
its

� �
��� � back to
���

because the
� �	��� � in

���
is only a sub-list of

� �
��� ��� . Node���
, upon receiving the accept message, needs to broadcast the information of its
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Fig. 2. State Transition Diagram of a Bootstrap Server for Tree Formation

attachment to
�

� to the whole ESM-tree.

Theorem 1 The above distributed algorithm for join procedure by a client node
guarantees that the ESM is a tree topology.

Proof: We can show that (1) ESM topology is a connected graph, and (2) the topol-
ogy is always a tree. For the first case, a newly arriving client node always contacts
the bootstrap server

���
that replies with a list of potential client nodes from the

ESM connected topology. The newly arriving node will eventually select one of
these nodes as its parent and the new node will be part of the connected graph.
Therefore, a connected graph is maintained after a join operation. To show that the
ESM topology is a tree, we can easily show it by contradiction. Consider a client
node

� �
with multiple parent nodes. This will only occur if the client node

���
sent

out multiple attachment requests and received multiple positive replies. However,
this case would not occur because the join procedure listed above only attempt to
make one attachment at a time. Therefore, node

���
has only one parent and the

resulting ESM topology is a connected tree.

Theorem 2 The above distributed algorithm for join procedure by a client node
guarantees that there is no partition in the ESM-tree.

Proof: Assume the contrary, tree partition will result from join procedure. This
implies that the following situation will occur: tree partition occurs when two or
more nodes, that are not connected to ESM-tree, join up themselves rather than
connect to the ESM-tree. Without loss of generality, assume there are two nodes,���

and
� � . ��� and

� � are going to join the ESM-tree and eventually they connect
to each other. Base on the bootstrap procedure, both nodes will first get a sub-
list of node, ������� � �
��� � and ������� � �	��� � , from the bootstrap server. The sub-list of
node, ������� � �	��� � and ������� � �
��� � , returned from the bootstrap server must contain
the information of either

���
or
� � . That is,

���
or
� ��� ������� � �
��� ��� ������� � �
��� �

Otherwise,
���

and
� � cannot connect to each other. However, this is impossible

because the bootstrap server will not contain information of nodes that have not
joined the ESM-tree (i.e. information of

���
and

� � ). This contradicts our basic
requirement.
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Fig. 3. State Transition Diagram of a Root node for Tree Formation
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Fig. 4. State Transition Diagram of a Client node for Tree Formation

State Description
�����

The initial state of a Bootstrap server. The number of ESM-tree is � .
�����

This is the normal state of a Bootstrap server. The number of ESM-tree is greater than � .
Event Description Receive status

of the bootstrap
server

Messages sent
by the bootstrap
server

� �
The bootstrap server receives a “create ESM-tree re-
quest” from a root node and replies a “success” message
back to the root node. After this, the number of ESM-tree
is increased by 1.

“create ESM-tree
request”

“success” mes-
sage for the
“create ESM-tree
request”

�
	
The bootstrap server receives a “create ESM-tree re-
quest” from a root node and replies a “fail” message back
to the root node. This may imply that too many ESM-
trees are registered.

“create ESM-tree
request”

“fail” message for
the “create ESM-
tree request”

���
The bootstrap server receives a “remove ESM-tree re-
quest” from a root node. After this, the number of ESM-
tree is decreased by 1.

“remove ESM-
tree request”

Nil

��

The bootstrap server receives a “attach to ESM-tree re-
quest” that is initiated by node ��� and replies a partial
ESM-tree topology back to ��� . This implies that ���
wants to join the ESM-tree.

“attach to ESM-
tree request”

partial ESM-tree
topology

�
�
The bootstrap server receives an “addition of node in-
formation request” that is initiated by node ��� , After
this,

� ��

�
��� is updated according to the information re-

ceived.

“addition of
node information
request”

Nil

���
The bootstrap server receives a “removal of node in-
formation request” that is initiated by node ��� . After
this,

� ��

�
��� is updated according to the information re-

ceived.

“removal of
node information
request”

Nil

Table 2
Description of State Transition Diagram in Figure 2 for different states and events.

3.1.1 State Transition Diagram for Tree Formation Protocol

In the following, we use finite state machine representation to formally discuss the
actions by various nodes during the ESM-tree formation process. Figure 2 to Fig-
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State Description� �
The initial state of a root node. It has not registered in any bootstrap server.� �
This is the normal state of a root node. It has registered in a bootstrap server.� 	
This is a “locked” state of a root node. It is locked by one or more “LP Locks” (i.e. �

� � � ��� ��� �
).

This implies that some nodes may want to become a children of the root node.

Event Description Receive status of
the root

Message sent by
the root

���
The root node sends a “create ESM-tree request” to the
bootstrap server and the bootstrap server replies a “suc-
cess” message. After this, a new ESM-tree is formed.

“success” mes-
sage for the
“create ESM-tree
request”

“create ESM-tree
request”

���
The root node sends a “create ESM-tree request” to the
bootstrap server and the bootstrap server replies a “fail”
message.

“fail” message for
the “create ESM-
tree request”

“create ESM-tree
request”

� � �
The root node receives a “get ESM-tree topology re-
quest” that is initiated by node ��� , and replies the ESM-
tree topology (stores in

� ��

� � ) information back to ��� .
“get ESM-tree
topology request”

ESM-tree topol-
ogy

� � �
The root node receives a “ping request” that is initiated
by node ��� and replies an echo message back to ��� . “ping request” Echo message

� � 	
The root node receives an “addition of node information
request” that is initiated by node ��� . After this,

� ��

� �
is updated according to the information received.

“addition of
node information
request”

Nil

� � �
The root node receives a “removal of node information”
request that is initiated by node ��� . After this,

� ��

� � is
updated according to the information received.

“removal of
node information
request”

Nil

Table 3
Description of State Transition Diagram in Figure 3 for different states and events.

Event Description Receive status of
the root

Message sent by
the root

��� 

The root node receives a “LP Lock request” that is initi-
ated by node ��� and replies a “success” message back to��� . After this,

��� � � � is added to
� � � � � and �

� � � ��� �
is increased by 1. This implies that ��� may become a
child of the root node.

“LP Lock re-
quest”

“success” mes-
sage for the “LP
Lock request”

� � �
The root node receives a “LP Lock request” that is initi-
ated by node ��� and replies a “fail” message back to ��� .
This is because �

� � � � � ��� ��� �
	 � � .

“LP Lock re-
quest”

“fail” message for
the “LP Lock re-
quest”

� � �
The root node receives a “free LP Lock request” that is
initiated by node ��� . After this,

� � � � � is removed from� � � ��� and �
� � � ��� � is decreased by 1.

“free LP Lock re-
quest”

Nil

� � � �
The root node receives a “connect as child request” from
node ��� . This implies that

��� � � � exists in
� � � ��� . Af-

ter this, ��� builds a real connection to the root node.

“connect as child
request”

Nil

Table 4
Description of State Transition Diagram in Figure 3 for various events.

ure 4 are the state transition diagrams for a bootstrap server, a root node and a
client node, respectively. In these state transition diagrams, we describe the states
and the events for the Tree Formation Protocol. Table 2 is the explanation of Fig-
ure 2. Table 3 and Table 4 are the explanation of Figure 3. Table 5 and Table 6 are
the explanation of Figure 4. The state transition diagrams of the other protocols will
be shown in the later sessions.

In these state transition diagrams, events are made up by messages that are received

10



State Description

� � This is the initial state of a client node, ��� . It has not connected to ESM service.� � At this state, node ��� has just received a partial tree topology from the bootstrap server. It has not
connected to ESM service.

� 	 This is the normal state of node ��� . It has connected to ESM service.� � This is a “locked” state of node ��� . It is locked by one or more “LP Locks”. (i.e. �
� ��� ��� � � �

). This
implies that some nodes may become a children of node ��� .

Event Description Receive status of��� Message sent by���
� � �

The client node ��� , sends a “attach to ESM-tree request”
to the bootstrap server and the bootstrap server replies a
partial tree topology information back.

partial tree topol-
ogy information

“attach to ESM-
tree request”

� � � ��� cannot connect to a node. It is because there is no
registered ESM-tree.

“fail” message
for the “attach
to ESM-tree
request”

“attach to ESM-
tree request”

Table 5
Description of State Transition Diagram in Figure 4 for different states and events.

by or sent from a node. To illustrate these state transition diagrams for the “Tree
Formation Protocol”, let us consider a scenario in Figure ?? wherein an ESM-tree
is formed initially. Initially, the bootstrap server is at state

���
� , the root node is at

state � � and the client node
���

is at state
�
� . The root node sends a “create ESM-

tree request” to the bootstrap server and the bootstrap server replies a “success”
message back to the root node. The corresponding events are ��� in Figure 3 for the
root node and � � in Figure 2 for the bootstrap server. Then the root node goes to
state � � and the bootstrap server goes to state

���
� . Assuming node

�
� wants to

join the ESM service. It first sends an “attach to ESM-tree request” to the bootstrap
server. Then, the bootstrap server replies a partial tree topology information. The
corresponding events are � � � in Figure 4 for node

�
� and �
	 in Figure 2 for the

bootstrap server. Then the node
�

� goes to state
�

� and the bootstrap server remains
in state

���
� . When

�
� receives the partial tree topology information, it tries to find

a potential parent from this partial tree topology information. The potential parent
of
�

� is the root node (as there is only a root node within the ESM-tree).
�

� sends a
“LP Lock request” to the root node. If the root node replies a “success” message for
this “LP Lock request”,

�
� will send a “connect as child request” to the root node

and make a real connection to the root node. Finally, a “free LP Lock request” will
be sent by node

�
� to the root node. The corresponding events are � � � in Figure 4

for node
�

� and � � 	 , � � � � and � �
�

in Figure 3 for the root node. After this, node�
� goes to state

�
� . The root node first goes � � to � � and then goes back to � � .

3.2 ESM: The Data Transfer Protocol

In here, we focus on the general mechanism for implementing a reliable data trans-
fer application such as file distribution. The data transfer process is initiated by the
root node

���
which has a source data file � . The data transfer process consists of

two phases, namely, (1) the meta-data distribution and, (2) the data distribution.
For the meta-data distribution,

���
multicasts the meta informations about the file

11



Event Description Receive status of��� Message sent by���
� ��� ��� sends a “LP Lock request” to node �5� and ��� replies

a “fail” message for the “LP Lock request”. This implies
that ��� wants to connect to ��� but � � rejects ��� ’s re-
quest.

“fail” message for
the “LP Lock re-
quest”

“LP Lock re-
quest”

� 	 � ��� sends a “LP Lock request” to node �5� and ��� replies
a “success” message for the “LP Lock request”. After
this, ��� sends a “connect as child request” to �5� and
builds a real connection to ��� . Finally, ��� sends a “free
LP Lock request” to ��� . This implies that ��� has suc-
cessfully connected to the ESM-tree by choosing �5� as
parent.

“success” mes-
sage for the “LP
Lock request”

“LP Lock re-
quest”, “connect
as child request”
and “free LP
Lock request”

� 	 � ��� receives a “get ESM-tree topology request” that is
initiated by node � � and replies the ESM-tree topology
information back to ��� .

“get ESM-tree
topology request”

ESM-tree topol-
ogy

� 	 	 ��� receives a “ping request” that is initiated by node �5�
and replies an echo message back to ��� .

“ping request” Echo message

� 	 � ��� receives an “addition of node information request”
that is initiated by node ��� . After this,

� ��

� � is updated
according to the information received.

“addition of
node information
request”

Nil

� 	 
 ��� receives a “removal of node information request” that
is initiated by node � � . After this,

� ��

� � is updated ac-
cording to the information received.

“removal of
node information
request”

Nil

�
	 � ��� receives a “LP Lock request” that is initiated by node��� and replies a “success” message back to �5� . After
this,

��� ��� � is added to
� ��� ��� and �

� ��� � � � is increased
by 1.

“LP Lock re-
quest”

“success” mes-
sage for the “LP
Lock request”

� 	 � ��� receives a “LP Lock request” that is initiated by node��� and replies a “fail” message back to �5� . This is be-
cause �

� ��� ��� ��� � ��� 	 � � or �
� ��� � � � �� � .

“LP Lock re-
quest”

“fail” message for
the “LP Lock re-
quest”

� 	 � ��� receives a “free LP Lock request” that is initiated by
node � � . After this,

��� ��� � is removed from
� ��� ��� and

�
� ��� � � � is decreased by 1.

“free LP Lock re-
quest”

Nil

� � � � ��� receives a “connect as child request” from node �5� .
This implies that

��� ��� � exists in
� ��� � � . After this, ���

builds a real connection to ��� .
“connect as child
request”

Nil

Table 6
Description of State Transition Diagram in Figure 4 for various events.

� to all its children. These meta informations include (a) the file name of � , (b)
the file size of � , and (c) the size of each data packet. For the data-distribution
phase, the node

���
pushes the data packets to all its children also. Upon receiving

a packet, each node forwards the received packet to its connected children nodes.

For the data transfer process, we have to consider the following issues. The first
issue is that a new node, let say

���
, may join an ESM-tree while the data is be-

ing multicasted. Another issue is when an attached node
���

decides to perform a
tree-optimization (which we will describe in the next section) and switches to an-
other parent node. We handle these cases in the following manner. The node

���
needs to inform its parent node

���
: (i) the requested file name � , and (ii) its last

received data packet 	�
 ��� � ��
 ����� ����� ����� . If the node
���

is a newly joined node,
	�
 ��� � ��
 ����� ����� ����� ��� . Two cases are considered: (1) The parent node

���
is still

receiving the file � and 	�
 ��� � ��
 ����� ����� ����� � 	�
 ��� � ��
 ����� ����� ����� . In this case,
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(a)
(b)

Region locked by 
one LR

Region Locked by 
more than one LR

Root  NodeNode that wants 
to switch

Node that may 
locked by both 
LP and LR 

Ni

Nj

NiNi

Nj
Ny NxNjNx

Fig. 5. Some examples for how cycles can be formed:(a) the node wants to switch to its
descendant; (b) the generalize case

the node
���

can start the data transfer from data packet 	�
 ��� � ��
 ����� ����� ����� 
 	
to its child node

���
.(2) the parent node

���
is still receiving the same file � but

	�
 ��� � ��
 ����� ����� � ��� � 	�
 ��� � ��
 ����� ����� ����� . In this case, the parent node
� �

will not
forward any data packet until it receives the data packet with the packet number
equal to 	�
 ��� � ��
 ����� ����� ��� � 
 	 , then

���
can start the data transfer to node

���
.

3.3 ESM: The Tree Optimization Protocol

Tree optimization is to ensure that an ESM-tree can operate efficiently, such as
good transfer bandwidth to all client nodes over a long period of time. We provide
a distributed tree optimization protocol to ensure that the efficient operation of an
ESM-tree and the ESM-tree can dynamically adapt to the changing network con-
dition. The main idea about tree optimization is that each client node constantly
monitors and probes[16] the transfer bandwidth with its parent node. If the transfer
bandwidth drops below some threshold, then the client node will attempt to choose
another parent node so that the client node and its descendant nodes can enjoy a
high transfer bandwidth.

One important technical issue of tree optimization is on how to avoid tree partition
or loop formation. Figure 5 illustrates this problem. Some nodes (those “unfilled”
nodes) in Figure 5(a) & (b) attempt to perform a tree optimization and choose an-
other potential parent node. If they choose any of their descendant nodes (e.g., as
in Figure 5(a)), or they choose a node wherein its ancestor nodes are also in the
process of performing tree optimization (e.g., as in Figure 5(b)), then tree partition
and loop formation can occur. If this happens, those nodes that are not connected
to the root node

���
will not be able to receive any data. Let us state the “necessary

conditions” to partition an ESM-tree.

Necessary conditions to partition an ESM-tree:
Assuming a node

���
wants to choose another node

��	
as its parent node. The
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necessary conditions to partition an ESM-tree are:

� � 	 is a descendant of
���

in an ESM-tree (e.g. as in Figure 5(a)), or
� � � wants to switch to a node

��	
, and an ancestor of

��	
wants to switch to another

node
���

, in which node
���

is a descendant node of
���

. (e.g. as in the left sub-tree
in Figure 5(b)), or

� � � wants to switch to a node
��	

, and an ancestor of
��	

wants to switch to another
node

���
, and an ancestor of

���
wants to switch to node

� � , in which node
� � is

a descendant node of
���

. Notice that this relation can be transitively propagated
(e.g. as in the right sub-tree of Figure 5(b)).

To avoid the ESM-partition problem, we need to make sure that the above men-
tioned necessary conditions will not occurred. We propose a “Distributed Locking
Protocol”. The main idea of this protocol is that for any node that wants to switch
to another node, it prevents other nodes from finding its descendants as a new po-
tential parent. Doing this can avoid the above mentioned necessary conditions and
thereby eliminating loop formation or tree partition.

Assume that node
� �

wants to perform a tree optimization operation, it needs to
take (1) “LR Lock” on itself, (2) “LP Lock” on its potential parent, and (3) “LR
Locks” for all nodes in

� �
(sub-tree rooted by

� �
). If any of the above locks cannot

be taken, the whole procedure will be halted. The procedure executed by
� �

.

Procedure tree optimization(INPUT: �*�6 4" � ,OUTPUT:NULL) �
01 �
02 if (bandwidth(BW) is below threshold) �
03 /* Some nodes want to switch to � � */
04 if(

1 � ��� ��� 1 != � )
05 exit;
06 /* � � or ancestors of � � want to leave */
07 if(

1 � ��� ��� 1
!= � )

08 exit;
09 /* Lock itself to prevent other nodes from */
10 /* finding itself as a new parent */
11 /* Lock itself by ��� ��� � */
12 Add ��� ��� � into

1 � ��� � ��1 ;
13 Pick several nodes in �*�! �" � and test the BW;
14 � � � +.-

the node that has the best BW;
15 /* Lock parent to prevent parent’s */
16 /* ancestors from conducting tree optimization */
17 Lock � � � by ��=���� � � ;
18 if( fail to lock ��= ��� � ) �
19 Free ��� ��� � ;
20 exit;
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21 �
22 /* Lock subtree to prevent other nodes from */
23 /* finding any node in � � ’s subtree as a new parent*/
24 Lock Sub-Tree rooted at � � with LR Locks
25 if( fail to lock Sub-Tree ) �
26 Free ��� ��� � ;
27 Free ��=���� � � ;
28 Free LR locks in Sub-Tree;
29 �
30 Disconnect with old parent = � ;
31 Connect to new parent � � � ;
32 Free ��� ��� � ;
33 Free ��= ��� � � ;
34 Free LR locks in Sub-Tree;
35 �
36 �

If a node
� 	

receives a “LR Lock request” from
���

, it forwards this request to its
children.

��	
will reply a “success” message for the “LR Lock request” to

���
only if

all children nodes of
��	

reply “success” messages to
��	

and both
� 	 � ���

and
� 	�� ���

are empty. The procedure executed by
�
	

when it receives a “LR Lock request” is:

Procedure reply LR request(INPUT:NULL,OUTPUT:NULL) �
01 �
02 /* Let � � be an ancestor of � 	 */
03 /* This LR lock is initiated by one of the ancestors*/
04 /* of � 	 but it will forward to � 	 only by = � � */
05 if � 	 receives a lock � � 	�� � request from its parent � � �
06 /* someone wants to switch to � 	 but � 	 is locked by � = */
07 if (

1 � 	�� � � 1 != � )
08 return “fail” to � � ;
09 if (

1 � 	�� ��� 1
!= � )

10 return “fail” to � � ;
11 /* � 	 is a leaf node */
12 if ( � � 	�� � � ) �
13 add ��� 	�� � into � 	 � ���
14 return “success” to � � ;
15 �
16 /* forward this LR lock to all � 	 ’s children */
17 for 7 from � to

1 �*�! �" 	 1 -98 �
18 if �*�! �" 	 : 7<; is � 	 ’s children
19 send “ � � 	�� � request” to �*�! �" 	<: 7<; ;
20 �
21 wait for all children’s replies;
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22 if ( one or more than one of the children replies say “fail”)
23 return “fail” to � � ;
24 else �
25 /* all nodes within the sub-tree are locked by LR*/
26 add ��� 	�� � into � 	 � ���
27 return “success” to � � ;
28 �
29 �
30 �

If a node
� 	

receives a “LP Lock request” from
���

, it replies a “success” message
for the “LP Lock request” only if both

� 	�� ���
and

� 	 � ���
are empty and

� 	
has not

reached its fan-out limit. Here is the procedure executed by
� 	

when it receives a
“LP Lock request” from

���
.

Procedure reply LP request(INPUT:NULL,OUTPUT:NULL) �
01 �
02 /* � � wants � 	 to become its new parent*/
03 if � 	 receive a lock ��= 	�� � request from � � �
04 /*Already locked by some ancestors */
05 if (

1 � 	�� ����1 != � )
06 return “fail” to � � ;
07 else if (

1 � 	�� ��� 1
!= � )

08 return “fail” to � � ;
09 /* � 	 had reach its Fan-out limit */
10 else if ( � � 	 � 1 � 	�� ��� 1������ 	 )
11 return “fail” to � � ;
12 else �
13 add ��= 	 � � into � 	�� � � ;
14 return “success” to � � ;
15 �
16 �
17 �

We can show that the distributed locking protocol described above has the following
property.

Theorem 3 The distributed locking protocol described above avoids loop forma-
tion and tree partition.

Proof: We can show this by contradiction. Assume that a cycle is formed during
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the tree optimization. This implies that (a) the nodes that want to switch must lock
its potential parent by “LP Locks” and all its descendants by “LR Locks”, and (b)
a node will not release the lock during the tree optimization operation. Also, no
new node can join any node within the subtree of the switching node as all the
descendants of the switching node are locked by “LR Lock”

Assume that a cycle is formed by a set of nodes
� ��� � � � � � ������� �

� ���
, then ev-

ery node in
�

must be both the descendant and ancestor of all other nodes within�
(following the definition of a cycle). Since all the descendants of the switching

node and the switching node itself must be locked by “LR Lock”, all the nodes in�
must be locked by “LR Locks”. It is because there must be at least one potential

parent node within the cycle. This implies that there must be at least one node that
is simultaneously locked by both “LP Lock” and “LR Lock”. However, this contra-
dicts our specification. Therefore, no cycle can be formed during tree optimization
procedure.

3.3.1 State Transition Diagram for Tree Optimization Protocol

Figure 6 is the state transition diagram for a client node. It is an extension of Fig-
ure 4. In this state transition diagram, we describe the states and the events for the
“Tree Optimization Protocol”. Table 7 and Table 8 are the explanation of Figure 6.
The state transition diagrams of other protocols will be shown in later sessions.

C2 C3

E21/E22/E23/E24

E21/E22/E23/E24/

E25/E26/E27/E37/E101

E25

E27

C4

E28

E30/E34/E36

C5

C6

E33

E21/E22/E23/E24/

E26/E28/E29/E30/

E34/E36

E31

E32

E35

E21/E22/E23/E24/

E26/E28/E29/E30/E36

E21/E22/E23/E24/

E26/E28/E29/E30/E36

Fig. 6. State Transition Diagram of a Client Node for the Tree optimization Operation

To illustrate this state transition diagram for the “Tree Optimization Protocol”, let
us consider a scenario in Figure 7 wherein

� 	 initiates the tree optimization pro-
cedure and

� 	 wants to find
�

� as its new parent. At the beginning, node
�

� ,
�

� ,
. . . ,

�
� � are in state

�
� . Assume that

� 	 tries to add
� � 	 � 	 into

� 	 � � � . If
� 	 suc-

ceeds in adding this “LR Lock” on itself, it will forward the “LR Lock request”
to its children nodes. The corresponding event is � ��� in Figure 6 and

� 	 goes to
state

� 	 . � 	 sends a “LP Lock request” to its potential parent
�

� . Assume that
�

�

replies a “success” message back to
� 	 for this “LP Lock request” and adds

���
�
� 	

into
�

�
� � �

. The corresponding events are � � � in Figure 6 for
� 	 and � �

�
in Fig-

ure 6 for
�

� . After this,
� 	 goes to state

� �
and

�
� goes to state

� � . When
���

and
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Fig. 7. ESM: Tree Optimization Protocol

State Description

� 	 This is the normal state of a client node ��� . It has connected to an ESM service.� � This is a “locked” state of node ��� . It is locked by one or more “LP Locks”. (i.e. �
� ��� ��� � � �

). This
implies that some nodes may want to become children of node ��� .

� 
 This is a “locked” state of node ��� . It is locked by one or more “LR Locks”. (i.e. �
� ��� � � � � �

).
This implies that some ancestors of nodes ��� or ��� itself are attempting to switch to another parent.� � This is a “locked” state of the client node. It is locked by one or more “LR Locks”. ��� ’s potential
parent is locked by “LP Lock”. This is the second stage of “tree optimization” procedure. (a) �,� is
locked by

��� ��� � , and (b) its potential parent, ��� , is locked by
� � �!� � .

� � This is the “locked” state of node ��� . This is the last stage of the “tree optimization” procedure.
(a) ��� is locked by

��� ��� � , (b) its potential parent, ��� , is locked by
� � �!� � , and (c)

	 � is locked by����� � � ( � � is a node within
	 � ). At this state, ��� can switch to its potential parent.

Event Description Receive status of
the root

Message sent by
the root

� 	 �
to� 	 � Please refer to Table 6 Nil Nil

�
	 � ��� receives a “LR Lock request” that is initiated by node��� ( � � may be ��� itself). ��� then forwards this mes-
sage to all its children. After this,

��� ��� � is added to� ��� � � and �
� ��� � � � is increased by 1. Notice that ���

will not reply a “success” or “fail” message for this “LR
Lock” immediately.

“LR Lock re-
quest”

“LR Lock re-
quest”

� 	 � ��� receives “success” messages for the “LR Lock re-
quest” from all its children within a time-out period. Af-
ter that, ��� replies a “success” message to its parent for
the “LR Lock” request.

“success” mes-
sages for the “LR
Lock request”

“success” mes-
sage for the “LR
Lock request”

Table 7
Description of events of State Transition Diagram in Figure 6 for different states and events.

� � (children of
� 	 ) receive the “LR Lock request” that is initiated by

� 	 , ��� tries
to add

� � � � 	 into
� � � ���

and
� � tries to add

� � � � 	 into
� � � ��� . Then, they forward

this “LR Lock request” to their children (if any). The corresponding event is � ���
in Figure 6 for both

���
and

� � . After this, both
���

and
� � go to state

� 	 . Since� � has no children node, it replies a “success” message for the
� � � � 	 lock imme-

diately. The corresponding event is � �
� in Figure 6 and

� � remains in state
� 	 .

Furthermore, when
���

receives all its children’s (i.e.
�

� � ) “success” messages for
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Event Description Receive status of��� Messages sent by���
��� � ��� receives “fail” messages for the “LR Lock request”

from some of its children, or ��� cannot receive any mes-
sage from some of its children within a time-out period.
After that, ��� replies a “fail” message to its parent.

“fail” messages
for the “LR Lock
request”

“fail” message for
the “LR Lock re-
quest”

��� � ��� receives “success” messages for the “LR Lock re-
quest” from all its children within a time-out period. This
implies that ��� has locked

	 � with “LR Lock” and ���
can go to next step in the tree optimization procedure.

“success” mes-
sages for the “LR
Lock request”

Nil

� � 	 ��� receives “fail” messages for the “LR Lock request”
from some of its children, or ��� cannot receive any mes-
sage from some of its children within a time-out period.
This implies that ��� cannot lock

	 � and must free up all
the locks which ��� had taken before.

“fail” messages
for the “LR Lock
request”

“free LR Lock re-
quest” and “free
LP Lock request”

��� � ��� sends a “LP Lock request” to its potential parent �5� ,
and � � replies a “success” message to ��� . This implies
that ��� can accept ��� as its new child.

“success” mes-
sage for the “LP
Lock request”

“LP Lock re-
quest”

��� 
 ��� sends a “LP Lock” request to its potential parent �5� ,
and � � replies a “fail” message to ��� . This implies that��� cannot accept ��� as its new child. ��� then free the��� ��� � in

� ��� � � .

“fail” message for
the “LP Lock re-
quest”

“free LR Lock re-
quest”

� � � ��� sends a “disconnect request” to its original parent and
sends a “connect as child request” to its potential parent.
After connected to the new parent, ��� sends a “free LP
Lock” request to the new parent and broadcasts the new
parent-child information.

Nil “disconnect re-
quest”, “connect
as child request”
and “free LP
Lock request”

��� � ��� receives a “free LR Lock request” that is initiated by
node ��� . After this,

��� ��� � is removed from
� ��� � � and

�
� ��� � � � is decreased by 1. Also, ��� will forward this

message to its children (if any).

“free LR Lock re-
quest”

Nil

� ��� ��� receives a “LR Lock request” that is initiated by node��� , through ��� ’s parent. ��� replies a “fail” message im-
mediately to its parent as

� ��� � � is not empty.

“LR Lock re-
quest”

“fail” message for
the “LR Lock re-
quest”

Table 8
Description of events of State Transition Diagram in Figure 6 for various events.

the “LR Lock request” from all its children node,
���

replies a “success” message
back to

� 	 for the
� � � � 	 lock. The corresponding events are � �

� in Figure 6 for
���

and � ��� and � �
� in Figure 6 for

�
� � . After this, both

���
and

�
� � will in state

� 	 .
Upon receiving all “success” messages for the “LR Lock request” from the chil-
dren,

� 	 knows that it has locked
� 	 . The corresponding event is � � � in Figure 6.

To switch to a new parent node,
� 	 goes to state

���
.
� 	 then sends a “disconnect

request” to
�

� and sends a “connect as child request” to
�

� . Then,
� 	 sends a “free

LP Lock request” to
�

� and broadcasts the new parent-child pair information. The
corresponding event is � � � in Figure 6 and

� 	 goes to state
� 	 . After

�
� received

the “connect as child request” and “free LP Lock request” from
� 	 ,

� 	 becomes
a child of

�
� . The corresponding events are � � � and � � � � in Figure 6 for

�
� . and�

� goes back to state
�

� . Later,
� 	 sends a “free LR Lock request” to itself. As a

result,
� � 	 � 	 is removed from

� 	 � � � and
� 	 forwards the “free LR Lock request”

to its children (if any). The corresponding event is � � � in Figure 6. and
� 	 goes

back to state
�

� . Finally,
���

and
� � receive a “free LR Lock request” from

� 	 .
This causes the removal of

� � � � 	 from
� � � � �

in
���

and the removal of
� ��� � 	 from� � � ��� in

� � . Also, they forward this request to theirs children (if any). The corre-
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sponding event is � � � in Figure 6 for both
���

and
� � . After this, both

���
and

� �
go back to state

�
� .

3.4 ESM: The Node Leaving Protocol

A node may want to leave an ESM-tree at any time and may forward data to its
children. If a node wants to leave a tree, the sub-tree under it will be partitioned
from the original ESM-tree. Thus, special procedures are needed to handle this
node leaving event. The main technical difficulty in handling the node leaving event
is similar to that of the tree partition problem in the “tree optimization” procedure.
The difference is that a sub-tree under a leaving node must switch to another parent,
while in the “Tree Optimization” operation, the procedure will be halted and be
restored the node cannot successfully take all the required locks from its descendent
nodes. The leaving node’s children must wait until all necessary locks have been
taken successfully before they switch to another parent node.

The main idea of the node leaving protocol is that when the node
���

leaves, the sub-
tree

� �
(e.g. the subtree where

���
is the root node) will be locked by “LW Locks”

which are initiated by
���

. For those nodes that are locked by “LW Locks”, they will
reject any new coming “LP” and “LR” locking request. At this time, other nodes
may be in the process of leaving/joining the sub-tree

� �
. After

� �
is locked by “LW

Lock”, only the children of
���

will perform the node switching event.

Assume that a node
���

wants to leave. We divide this node leaving operation into
three components. They are : (1) procedure for the leaving node

� �
, (2) procedure

for those nodes that are not within
� �

and, (3) procedure for those nodes that are
within

� �
The procedure that node

���
needs to perform when it leaves is:

Procedure leave(INPUT:NULL,OUTPUT:NULL) �
01 �
02 � � locks itself by � � ��� �
03 /* wait for other tree optimization processes to be finished */
04 if( � ��� ������ empty or � ��� ������ empty �
05 wait for both � ��� ��� and � ��� ��� become empty
06 �
07 ESM-Broadcast the node leave event
08 Leaves the tree
09 �

For a node
��	

that is not within
� �

, it will delete the information of
� �

in
� �
��� 	 .

Here is the procedure that
��	

needs to response to
���

’s leaving message.

Procedure other node leave
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(INPUT: address of leave node( � � ), OUTPUT: ���! 4" 	 ) �
01 �
02 � 	 deletes ALL tree information for �

�
03 if( ��= 	�� � exists in � 	�� ��� where � � is within �

�
) �

04 /* � � is switching to � 	 */
05 � 	 waits for � � to complete the switching procedure
06 /* As � 	 delete the information before */
07 synchronize �*�! �" 	 and ���! 4" �
08 �
09 /*broadcast � � ’s failure */
10 � 	 update status via flooding
11 �

For a node
���

that is within
� �

, it will be locked by
��� � � �

. Then, it will forward� �
’s leaving information to its children (which will cause

���
’s children to be locked

by “LW Locks”). After
� � � � �

and
��� � � �

become empty,
���

waits for the replies
from its children. When all of the

���
’s children reply “success” messages to

� �
,���

replies a “success” message for the “LW Lock” to its parent. Finally, only the
children of the leaving node (i.e.

���
’s children) will find a new parent within the

ESM-tree. Here is the procedure that node
� �

needs to response to
���

’s leaving
message.

Procedure ancestors leave
(INPUT: address of leave node( � � ), OUTPUT: ���! 4" 	 ) �

01 �
02 � � locks itself by � � � � �
03 /* If � � has children, � � needs to forward the event to them */
04 if( � � � �� � ) �
05 Forward “LW Lock” request to children
06 �
07 while( � � � � � is NOT empty ) �
08 /* some nodes may become children of � � */
09 Wait for the switching procedure complete
10 Forward “LW Lock” request to the new children
11 �
12
13 while( � � � � � is NOT empty ) �
14 /* � � or � � ’s ancestors want to switch */
15 if( ��� � � � exists in � � � ��� ) �
16 /* � � wants to switch */
17 continue switching procedure
18 if( switching is success) �
19 Free “LR Lock” in �

�
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20 Free “LW Lock” in �
�

21 �
22 else if( switching is NOT success) �
23 Free “LR Lock” in �

�
24 �
25 �
26 �
27
28 /* If � � has children, � � needs to lock �

�
before it can do a switching process */

29 if( � � � �� � ) �
30 wait for all children’s replies for
31 the successfully taking of “ � � Lock”
32 �
33
34 /* In here, all the children nodes have “LW Lock” */
35 /* This implies all the children */
36 /* have finished the switching procedure */
37 if( = � �� � � ) �
38 /* Replies success of taking “LW Lock” to parent */
39 reply “success” to = �
40 �
41 else if( = � � � � � ) �
42 /* � � is � � ’s(the leaving node) children */
43 /* Switch to a new parent */
44 /* Note : For this switch, � � no need to lock �

�
with “LR Lock” */

45 /* as �
�

is already locked by “LW Lock” */
46 /* Only “LP Lock” at the potential parent node is needed. */
47 switch to a node that is not in the �

�
48 Syn. ���! �" � and ���! 4" ���
49 Send free “ � � Lock” message to children
50 �
51 �

3.4.1 State Transition Diagram for Node Leaving Protocol

Figure 8 is the state transition diagram for a client node. It is an extension of Fig-
ure 4 and Figure 6. In this state transition diagram, we describe the states and the
events for the “Node Leaving Protocol”. Table 9 and Table 10 are the explanation
of Figure 8.
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Fig. 8. State Transition Diagram of a Client node for Node Leaving Protocol

State Description� � This is the initial and final state of a client node ��� (It is also the initial state of a client node). At
this state, ��� has left the ESM service.

� 	 to� � Please refer to Table 7

Event Description Receive status of��� Messages sent by���
��� � ��� broadcasts the “leave request” and leaves the ESM-

tree. This implies that both
� ��� � � and

� ��� � � are empty.
Nil “leave request”

��� � ��� receives a “LW Lock request” from itself. After re-
ceiving this message,

��� ��� � is added into
� ��� � � . This

implies that ��� wants to leave.

“LW Lock re-
quest”

Nil

��
 � ��� receives a “leave request” from �5� . If � � is the par-
ent of ��� , ��� will add

��� ��� � into
� ��� ��� and forward a

“LW Lock request” to its children (if any). If �5� is NOT
the parent of ��� , 	 � will be deleted from

� ��

� � .
“leave request” “LW Lock re-

quest” (with
condition)

� 
 � ��� receives a “LP Lock request” from ��� and replies a
“fail” message to ��� as

� ��� � � is not empty.
“LP Lock re-
quest”

“fail” message for
the “LP Lock re-
quest”

� 
 	 ��� receives a “LR Lock request” from ��� and replies a
“fail” message to ��� as

� ��� � � is not empty.
“LR Lock re-
quest”

“fail” message for
the “LP Lock re-
quest”

��
 � ��� receives a “LW Lock request” that is initiated by �5�
(that means � � is the leaving node) through ��� ’s par-
ent. After receiving this message,

��� ��� � is added into� ��� � � and ��� forwards this “LW Lock request” to its
children (if any). This implies that ��� ’s ancestor (i.e.��� ) wants to leave.

“LW Lock re-
quest”

“LW Lock re-
quest” (with
condition)

Table 9
Description of State Transition Diagram in Figure 8 for different states and events.

3.5 ESM: The Node Failure Protocol

A node
� �

may disconnect from the ESM-tree at any time due to node failure.
For this type of failure, it is not possible for node

���
to inform other nodes of this

failure event. Thus, special procedures are needed to handle this node failure event.
In general, a node

��	
can detect the failure of node

���
by the following events:

� When node
� 	

sends a request message to node
���

and does not get any reply
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Event Description Receive status
of ��� Messages sent by���

��
 
 ��� has no children and
� � is NOT the leaving node. After this,��� sends a “success” message back to its parent for the “LW

Lock”.

Nil “success” mes-
sage for the “LW
Lock”

��
 � ��� has no children and
� � is the leaving node. ��� sends a “LP

Lock request” to a node that is not within
	 � . If the node replies

a “success” message, then ��� can switch to the new parent.
Otherwise, ��� keeps sending “LP Lock request” to different
nodes that are not within

	 � . (Note: This switching does not
need “LR Lock request” as ��� is already locked by “LW Lock”)

Nil “LP Lock re-
quest”

��
 � ��� receives all its children’s “success” messages for the “LW
Lock” and

� � is NOT the leaving node. After this, ��� replies a
“success” message to

� � .
“success” mes-
sage for the
“LW Lock”

“success” mes-
sage for the “LW
Lock” (with
condition)

��
�� ��� receives all its children’s “success” messages for the “LW
Lock” and

� � is the leaving node. ��� sends a “LP Lock request”
to a node that is not within

	 � . If the node replies a “success”
message, then ��� can switch to the new parent. Otherwise, ���
keeps sending “LP Lock request” to different nodes that are not
within

	 � . (Note: This switching does not need “LR Lock re-
quest” as

	 � is already locked by “LW Lock”)

“success” mes-
sage for the
“LW Lock”

“LP Lock re-
quest”

Table 10
Description of State Transition Diagram in Figure 8 for various events.

from node
� �

within a time-out limit, node
��	

will consider node
���

has failed.
� Node

� 	
can assume its neighboring node

���
has failed if node

��	
does not

receive any request from node
���

after, a time-out limit. The implies that every
nodes need to send a “alive” message to their neighbors if there is no communi-
cation for a while.

The main idea of the “Node Failure Protocol” is that when a node
� 	

finds that node� �
has failed, it will notify the other nodes for this failure event. Then, all nodes

will handle
� �

failure by the “Node Leaving Protocol”. Here is the procedure that
node

� 	
needs to response to

� �
’s failure message.

Procedure node fail(INPUT:address of the fail node( � � ),OUTPUT: �*�! �" 	 )
01 �
02 /* ignore the message if � � is already removed from �*�6 4" 	 */
03 if ( � � does not exist in ���! 4" 	 ) return;
04 /* use “Node Leaving Protocol” to handle � � ’s failure */
05 if ( � � is an ancestors of � 	 )
06 ancestors leave( � � , ���! �" 	 );
07 else
08 other node leave( � � , �*�6 4" 	 );
09 /*broadcasts � � ’s failure */
10 � 	 updates status via flooding;
11 �
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4 Performance Evaluation

In this section, we present experimental results to illustrate the soundness and ef-
fectiveness of our proposed ESM service. The performance measure that we are
interested in is the completion time of file distribution under our ESM architec-
ture. For the first three experiments, we use our ESM prototype to compare with
different unicast approaches. We also investigate the performance of ESM under
different network conditions (e.g., with or without background traffic) as well as
the improvement of file distribution completion time under the tree optimization
operation. For the last experiment, we use the packet-level simulator NS2 to study
the performance of the ESM architecture in a large-scale network.
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Serial Link

e

a d

b c

Fig. 9. Experimental Setup

Figure 9 illustrates our experimental setup for the first three experiments. There are
18 computing nodes, running at five different network domains. One of the com-
puting nodes is the root node

���
. There are five routers in the experimental setup,

� � to � � . Unless we state otherwise, the links between the routers (link a,b,c,d and e)
have a transfer bandwidth of 4Mbps. All other links in the system have a bandwidth
of 100 Mbps. For the 18 computing nodes, two of them are of lower configuration
(e.g., AMD K6-300 with 16 MB memory so as to model hand held device) and they
are

�
� � � and

� � � � . The other computers are have a minimum of 128 MB memory.
Three computing nodes are used to generate background traffics and they are

�
� �

� ,� � �
� , and

� � �
� � . All transfer sessions are carried out using TCP.

4.1 Experiment 1 - Comparisons between IP Unicast and the ESM prototype

In experiment 1, we record the finishing time of a reliable file transfer. The size of
the file is

� ��� � . We carry out the experiment under two settings.

� setting A : there is no background traffic in the network.
� setting B : there are three TCP cross traffics inside the network.

25



The three TCP traffics are: (1) from
�

� �
� to

� � �
� through � � , � � and � � , and (2) from� � �

� to
� �

�
� through � � , � 	 and � � , and (3) from

� �
� � to

�
� �

� through � � and � � .
We consider three cases in these experiment, they are:
Case 1 : IP unicast, single file transfer � In this case, the root node,

���
, transfers

the file to a specific node one at a time. The target nodes are
�

� � � ,
�

� � � ,
�

� � � , � �
� � ,�

�
� � ,

�
�

�
� ,
� � � � ,

� � � � ,
� � � � , � 	 � � ,

� 	 � � ,
� 	 �

� and
� �

�
� . Note that this is the ideal file

completion time for
���

to transfer the file to that specific node.
Case 2 : IP unicast, multiple file transfer � In this case,

� �
transfers the file to

all the client nodes
�

� � � ,
�

� � � ,
�

� � � , � �
� � ,

�
�

� � ,
�

�
�

� ,
� � � � ,

� � � � ,
� � � � , � 	 � � ,

� 	 � � ,� 	 �
� and

� �
�

� at the same time. This implies that
���

starts 13 TCP sessions con-
currently. We investigate the situation wherein the root node

���
or the links may

become the bottleneck. Note that this is indeed the common scenario for multiple
file transfer on the Internet.
Case 3 : ESM, multiple file transfer � In this case, we record the completion
time for transferring the file by the ESM-tree topology

�
� . The graph

�
� has the

following topology:
���

is the parent node of
�

� � � ,
�

�
� � ,

� � � � ,
� 	 � � and

� �
�

� ;
�

� � �
is the parent node of

�
� � � and

�
� � � ; � �

� � is the parent node of
�

�
� � and

�
�

�
� ;
� � � � is

the parent node of
� � � � and

� � � � ; � 	 � � is the parent node of
� 	 � � and

� 	 �
� . The data

transfer process is the same as described in the Data Transfer part of section 3.

Case1 Case2 Case3

A B A B A B� � � 	
29.08 30.18 29.16 31.55 29.15 30.11� 
 � 	

160.12 331.26 847.55 1025.67 309.23 658.36� 
 � �
159.36 330.45 856.19 1030.98 308.15 657.92� 
 � �
158.09 333.23 852.34 1031.33 310.22 658.23� � � �
205.36 404.68 942.56 1362.21 378.56 741.95� � � �
168.92 364.22 881.26 1283.04 331.25 703.36� � � �
169.02 360.24 876.45 1278.67 329.65 702.35� 	 � 	
170.22 364.66 881.90 1305.23 326.23 706.10� 	 � �
169.01 365.83 879.45 1299.04 325.06 706.32� 	 � �
170.26 367.89 886.99 1301.45 324.25 705.26� � � �
192.04 395.67 920.73 1109.93 341.23 691.23� � � �
160.55 334.98 854.34 1037.98 311.98 652.36� � � �
159.12 331.23 856.35 1051.08 311.65 653.01

Table 11
file transfer time (in unit of second) for Experiment 1

Summary for Experiment 1: Table 11 illustrates the result. We observe that :

� Case 1 is the optimal file transfer time. Comparing with Case 3 under setting
A, the results are comparable and ESM only runs slightly worse than the ideal
situation (Case 1). For setting B, ESM takes a bit longer to complete the transfer
because it is transferring the file to multiple nodes at the same time.
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� In Case 2,
���

uses IP unicast (via TCP) to transfer the file to all nodes at same
time. Comparing with Case 3 of the ESM file transfer, for both settings, the
results show that ESM performs much better. For setting B, the improvement of
file transfer times to

� � � � and
� � � � is much greater than that of

�
� � � and

�
� � � .

This is because the data packets need to pass through routers � � , � 	 and � � to
reach

� � � � and
� � � � , whereas the data packets need to pass through routers � �

and � � only to reach
�

� � � and
�

� � � . The more routers the data packets need to
pass through, the higher the chance that they may be lost.

The result shows that ESM generally performs better than IP unicast when we want
to transfer data to multiple clients at the same time. Another important point is that
the performance of the ESM server is “topology” dependent. We explore this issue
in the next experiment.

4.2 Experiment 2 - Comparisons between different ESM topologies

In experiment 2, the setup is similar to that of experiment 1. All data transfer pro-
cess is the same as described in the Data Transfer part of section 3. We perform the
experiment with five cases and they are:

Case 1 : ESM, topology
�

� � In this case, we record the file completion times
for transferring the file by ESM-tree topology

�

� . The graph
�

� has the following
topology:

���
is the parent node of

� �
�

� ,
�

�
� � and

� � � � ;
� � � � is the parent node of� � � � and

� � � � ; � �
� � is the parent node of

�
� � � and

�
�

�
� ;
�

�
�

� is the parent node of�
�

� � ;
�

� � � is the parent node of
�

� � � and
�

� � � ; � � � � is the parent node of
� 	 � � ;

� 	 � �

is the parent node of
� 	 � � and

� 	 �
� .

Case 2 : ESM, topology
� � � In this case, we record the file completion times

for transferring the file by ESM-tree topology
� � . The graph

� � has the following
topology:

���
is the parent node of

� �
�

� ,
�

� � � and
� 	 � � ;

�
� � � is the parent node of�

� � � and
�

� � � ; � 	 � � is the parent node of
� 	 � � and

� 	 �
� ;
� 	 � � is the parent node of� � � � ;

� � � � is the parent node of
� � � � and

� � � � ; � � � � is the parent node of
�

�
� � ;

�
�

� �
is the parent node of

�
�

�
� ;
�

�
�

� is the parent node of
�

�
� � .

Case 3 : ESM, topology
� � with a slow link “e” � In this case, we record the file

completion times for transferring the file by a tree topology that is the same as the
one in Case 2 (

� � ). The difference is that the link speed between � � and � � (link e)
is configured to 56 kbps.
Case 4 : ESM, topology

�
	 � The graph

�
	 has the following topology:

� �
is

the parent node of
� �

�
� and

� 	 � � ;
� 	 � � is the parent node of

� 	 � � and
� 	 �

� ;
� 	 � � is

the parent node of
� � � � ;

� � � � is the parent node of
� � � � and

� � � � ; � � � � is the parent
node of

�
�

� � ;
�

�
� � is the parent node of

�
�

�
� ;
�

�
�

� is the parent node of
�

�
� � ;

�
�

� �
is the parent node of

�
� � � ;

�
� � � is the parent node of

�
� � � and

�
� � � .

Case 5 : ESM, topology
� � with a tree optimization operation � In this case,

we record the file completion times for transferring the file when a tree optimiza-
tion operation is performed. At the beginning, the configuration is same as Case
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3. However, node
�

� � � discovers that the link performance between its parent(
���

)
and itself is not good enough. Then, it performs a tree optimization operation and
finds

�
�

� � as its new parent. Finally, the tree topology becomes
�
	 .

Case 1 Case 2 Case 3 Case 4 Case 5� � � 	
29.10 29.08 29.17 29.36 30.29� 
 � 	

370.26 184.96 193.95 169.44 176.02� 
 � �
364.26 184.58 192.36 169.36 175.96� 
 � �
365.23 185.36 193.65 169.90 175.99� � � �
382.32 236.23 240.11 235.23 238.25� � � �
359.42 197.02 198.63 202.66 205.36� � � �
359.38 196.42 197.36 202.60 205.61� 	 � 	
340.30 209.93 213.28 209.02 210.25� 	 � �
343.33 211.23 215.45 210.35 211.26� 	 � �
340.28 208.26 210.01 208.72 209.99� � � �
399.32 222.36 7713.01 249.23 246.23� � � �
353.00 178.06 7691.26 212.00 219.96� � � �
352.48 178.04 7689.82 211.98 218.16

Table 12
file transfer time (in unit of second) for Experiment 2 in Setting A (without background
traffic)

Case 1 Case 2 Case 3 Case 4 Case 5� � � 	
29.45 29.34 29.99 31.86 31.89� 
 � 	

645.96 390.26 396.45 345.23 350.95� 
 � �
642.23 388.26 396.10 343.55 348.96� 
 � �
643.26 381.36 397.65 344.85 351.21� � � �
682.26 469.73 496.36 447.89 440.51� � � �
635.23 436.95 432.69 408.91 401.36� � � �
633.26 434.23 431.26 409.27 401.01� 	 � 	
620.91 441.36 450.36 415.26 423.25� 	 � �
621.54 445.69 452.33 416.23 424.12� 	 � �
620.49 440.36 449.23 412.36 423.14� � � �
672.10 415.69 8000+ 464.69 471.23� � � �
633.26 378.75 8000+ 423.29 434.26� � � �
631.69 376.95 8000+ 422.81 433.27

Table 13
file transfer time (in unit of second) for Experiment 2 in Setting B (with TCP background
traffic)

Summary for Experiment 2: Table 12 and Table 13 and illustrates the result of
experiment 2. We observe that:

� Case 1, Case 2 and Case 4 are ESM with different tree topologies. By compar-
ing their results, we observe that the performance of ESM is indeed “topology”
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dependent. For example, the completion time of setting B in Case 2 differs sig-
nificantly from that of Case 1 and Case 4.

� Case 2 and Case 3 share the same topology,
� � . The only difference is that in

Case 3, the bandwidth of link “e” is reduced to 56 kbps. As we can see when
there is no tree optimization,

�
� � � ,

�
� � � and

�
� � � have a poor performance. Case

5 is the result when a tree optimization is performed when
�

� � � switches to a new
parent and changes the tree topology to

�
	 . From the result, we observe that tree

optimization can help a node to find a better parent and to receive data at a faster
rate.

� Case 4 and Case 5 share the same topology,
�
	 . The only difference is that in

Case 5, there is one tree optimization performed. From both settings A and B, it
shows that tree optimization will only slightly increase the transfer time.

The result shows that ESM performance depends on the tree topology. Also, the
tree optimization procedure is an important protocol for the ESM to improve the
performance of data transfer. As the link conditions between nodes are changing
all the times, the nodes and their sub-trees may suffer a lot. This is the justification
of the necessity of the tree optimization protocol for the ESM service.

4.3 Experiment 3 - Comparison between different thresholds for tree opti-
mization operation in our ESM prototype

In this experiment, we focus on the completion time of a specify node,
�

� � � . We
transfer a

� � � � file. The tree topology at the beginning is
� � . There is no back-

ground traffic in the network at the beginning.

After 2 seconds, the root starts the file transfer.
� �

� � starts to generate a background
traffic to

�
� �

� . The cross traffic will consume some of the bandwidth of link “e”.
This cross traffic will cause

�
� � � to perform tree optimization operation and to

switch to a better parent,
�

�
� � . The tree topology will be changed to

�
	 afterward.

We carry out the experiment under two settings. For setting A, the cross traffic is
UDP traffic. For setting B, the cross traffic is TCP traffic.

For the tree optimization operation, each node keeps track of two variables. They
are:

� ��� ��� � � � “current transfer rate for the � th packet”
����� � � � � � “average rate for the � packet”, which is calculated as:

��� � � � � � � 	 � 
 ��� ��� � � � � 	 � 
 
 � �	� ��� � �

where ���
� ��� � � � and 
 � � � 	 . Table 3 illustrates the result of Exp. 3 wherein

� “ESM (
� � )” represents the completion time for transferring the file to

�
� � � for

tree topology
� � under no cross traffic situation.
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� “ESM (
�
	 )” represents the completion time for transferring the file to

�
� � � for

tree topology
�
	 under no cross traffic situation.

� “ � ” represents the threshold for the node,
�

� � � , to start the tree optimization
switching process. The switching will take place when

�	� ��� � ��� � � ��� � � � � .
A (UDP backgroud traffic) B (TCP background traffic)

ESM ( � � ) 178.04 178.04

ESM ( � 
 ) 211.98 211.98
� � ��� �

420.23 342.22
� � ��� � 419.36 344.08
� � ��� � 417.23 343.26
� � ��� 	 418.22 345.76
� � ��� � 420.45 342.36
� � ��� � 419.32 218.26
� � ��� � 218.36 219.23
� � ��� � 236.89 231.78
� � ��� � 275.87 268.45
� � � � � 435.23 430.25

Table 14
file transfer time for = � � � (in unit of second) for Experiment 3

Summary for Experiment 3: we observed that

� By comparing the results for � � � � � to 	�� � in Table 14, it suggests that we
should not set the value of � too high (e.g., � � 	 � � ). The reason is that if the
value of � is too high, then node tries to perform tree optimization very often
even when there is little fluctuation in the transfer bandwidth. The more often
a node tries to switch to a new parent node, the longer it takes to finish the file
transfer. The result from Table 14 also suggests that there is an optimal value for
the activation threshold � so as to minimize the file completion time.

4.4 Experiment 4 - NS2 Simulation for Large Scale Network

In experiment 4, we carry out a large scale packet level simulations in NS2[31]. The
performance measure that we are interested in is the completion time of file distri-
bution. The size of file is 5MB. We compare our ESM architecture with unicast.
We also investigate the performance under different network conditions (e.g., with
or without background traffic, with different number of clients in an ESM-tree).

We simulate our ESM architecture with 10, 20, 30, 40, 50, 100, 150, 200 and 300
nodes topologies. In each topology, we partition the network into 5 domains. Each
domain is connected to two other domains and these domains form a cycle. Links
between domains have 1Mbps bandwidth. Links within each domain have a trans-
fer bandwidth between 3 to 100 Mbps, which are evenly distributed. An example
of 100-node topology is shown in Figure 10. In each topology, we carry out six
simulations:

30



100

101

104

102

103

57

43

62

21

69

72

1

30

32

70

45

58

81

48

18

60

82

59

12

71

64

50

8988

2

93

92

25

55

6

11

85

49

84

10
29

90

36

95

66

0

33

77

83

19

56

67

80

17

68

42

6179
78

20
23

97

16

46

96

44

22

35

26
76

5

4

15

28

9
39

73

41

37

14

54

51

74

47

63
75

27

86

34

53

3

7

38

65

40

52

8

31

91

24

87

1394

99

98

Domain 1

Domain 3

Domain 4

Domain 5

Domain 2

Fig. 10. 100-Node Topology

IP Unicast � In this case,
���

tries to send the file to all client nodes by IP Unicast
at the same time. The resulting time is the average of the completion time (the time
between

���
starts the transfer and a client node completely receives the file) of

each node.
Ideal � In this case,

���
tries to send the file to all the client nodes by IP Unicast.

Moreover,
���

will send the file to the client nodes one by one. The resulting time
is the average of the completion time of each node.
ESM � In this case,

���
tries to send the file to all the client nodes using the ESM

protocol. The resulting time is the average of the completion time of each node.
IP Unicast w/UDP cross traffic � In this case, all settings are the same as the case
with “IP Unicast” except there are 5 Constant Bit Rate (CBR) UDP cross traffics.
Each CBR is occupying one cross-domain link with a traffic rate of 0.5Mbps.
Ideal w/UDP cross traffic � In this case, all settings are the same as the case with
“Ideal” except there are 5 CBR UDP cross traffics. Each CBR is occupying one
cross-domain link with a traffic rate of 0.5Mbps.
ESM w/UDP cross traffic � In this case, all settings are the same as the case with
“ESM” except there are 5 CBR UDP cross traffics. Each CBR is occupying one
cross-domain link with a traffic rate of 0.5Mbps.

Summary for Experiment 4: The results of experiment 4 are shown in Figure 11.

� By comparing the “IP Unicast” scheme and the “ESM” scheme in both with and
without background traffic, we can conclude that the “ESM” scheme has a much
shorter file completion time, as compare with the unicast in all cases. This also
shows the effectiveness of the “ESM” scheme in a large scale network.

� By comparing the “Ideal” scheme and the “ESM” scheme in both with and with-

31



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 100 150 200 300

T
im

e 
(in

 s
ec

)

Number Of Nodes in ESM Tree

Result from NS2 - Transfer Time for 5MB file

IP Unicast
Ideal
ESM

IP Unicast w/UDP cross traffic
Ideal w/UDP cross traffic
ESM w/UDP cross traffic

Fig. 11. File Transfer Time (in unit of second) in NS2

out background traffic, we can conclude that the “ESM” scheme runs slightly
worse than the ideal situation in a small scale network. When the scale of the
network becomes large, the performance of the “ESM” scheme can be compara-
ble with the “Ideal” scheme (with respect to the “IP Unicast” scheme).

5 Related Work

In this section, we describe some of the related work in ESM. ALMI[33] is an ap-
plication level infrastructure to provide multicast services to the end system. It uses
a centralized approach to maintain the multicast tree. Only the “session controller”
handles the members joining and maintains the multicast tree. Members measure
the distance among them and send this information to the “session controller”. The
“session controller” computes the multicast tree by finding a MST. Data is trans-
ferred along the multicast tree, while control messages are transferred by using
unicast with each member. The main difference between ALMI and our ESM is
that ALMI is an centralized approach while our ESM is a distributed approach to
maintain the multicast tree.

Banana Tree Protocol(BTP)[21] is designed for a file sharing program, Jungle Mon-
key[29]. It assumes the existence of some bootstrap protocols to handle members
joining. Nodes in BTP can change their parents. To prevent a partitioning of the
multicast tree, BTP restricts the potential parent of a switching process. The poten-
tial parent of a switching process (1) must be a sibling of the switching node, and
(2) must not attempt to switch to another parent. The main difference between BTP
and our ESM is that in BTP, a switching node can only switch to its siblings while
our is a more general approach for tree optimization that can avoid deadlock, loop
formation and tree partition.

Narada[10] is a protocol focusing on the efficiency of the overlay structure. The
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multicast tree is created from a mesh by Narada’s enhance distance vector rout-
ing strategy. A node can join the services by a bootstrap procedure. Each member
stores a list of others members, and constantly probes the other members in the list.
Narada relies on this probing to maintain connectivity for the mesh. When a node
leaves, it notifies the other members to delete itself in others’ list. Tree partition is
detected by timeout (“refresh” message) in Narada. The main difference between
Narada and our ESM is that in Narada uses the partitition detection approach while
our is a partition avoidance approach.

Bayeux[44] is an application infrastructure for end hosts multicast. It is based on
consistent hashing functions used in the Chord and Tapestry[36,43]. In Bayeux,
there is a set of nodes (called “root”) to handle the multicast tree maintenance such
as tree creation, node joining and node leaving. Also, nodes will not change their
“root” after they joined the service. Bayeux depends on the “Explicit Knowledge
Path Selection” protocol to periodically update the routing tables in order to select
a better data delivery path. The main difference between Bayeux and our ESM is
that in Bayeux, a node will not change their parent after they joined the service. On
the other hand, our ESM allows nodes to switch to a better parent node so that the
node and its associated sibling nodes will receive better quality-of-service.

Host Multicast[41] is a hybrid framework of IP unicast and IP multicast. For nodes
that are capable to communicate by using IP multicast, they use IP multicast. Other-
wise, they use IP unicast to communicate. For each node, it runs a daemon process
in user space to provide end system multicast functions. The bootstrap and joining
procedure is systematic and hierarchical. Fail node is detected by timeouts (“RE-
FRESH” message). Nodes can change their parents if they find a better one. To
avoid loop formation, members will detect themselves whether they are within a
loop or not (by exchange of “PATH” message). If a loop is formed, one of the
member within the loop will detect the loop. The main difference in Host Multicast
and our ESM is that Host Multicast uses a loop detection mechanism while our is
a loop avoidance mechanism.

Like Narada, Scattercast[8] also takes the mesh-based approach. The multicast tree
is formed from the mesh that is connecting different nodes. The cost evaluation
functions of Narada and Scattercast are different. The main difference between
Scattercast and Narada is that Scattercast will co-operate some proxy-like agents
(called “SCX”) in its structure. These SCXs will handle most of the multicast func-
tions such as mesh optimization and node leaving. The end-system only needs to
join one of the SCXs to enjoy the multicast services. The main difference between
Scattercast and our ESM is that we allow node to switch to other nodes so as to
receive better service.
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6 Conclusion

In this paper, we propose an architectural framework for performing an ESM ser-
vice. One advantage of ESM is that it resolves the deployment problems of IP mul-
ticast. To have a high ESM service performance, one has to carefully design various
protocols so as to make this distributed service correct and consistent. We propose
and implement the distributed protocols for the tree formation, date transfer, tree
optimization, node leaving and node failure events for the ESM service. We prove
the correctness and properties of these procedures, for example, we can maintain
a tree topology after clients joining event or a tree optimization operation and that
no tree partition can occur in an ESM-tree. We carried experiments to illustrate
the soundness and the effectiveness of the ESM service. We show that ESM can
have a comparable performance even when compare with the ideal condition for
data transfer. Our work provides an architectural framework for people to deploy
multicast service.
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